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approach zero, but in this region the Hartree-Fock
value has its greatest departure from the other
three. The reason for this is that E(K) approaches
N, while the first part of the expression for NS(K)
approaches N+N(N —1) because $0 is normalized.
Thus the result in this region is obtained as the
difference between two nearly equal numbers and

can be expected to be quite sensitive to the partic-
ular wave function used.
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An impact-parameter method using Coulomb trajectories has been used to calculate cross
sections for the following two electron-detachment collision processes: (i) e +H —H(1S}
+2e; (ii) e +H —H(28)+2e . The cross section for process (ii) is found to be approxi-
mately two orders of magnitude smaller than that for (i). The results of process (i) are
compared with the available experimental data. The plane- and Coulomb-wave cross sections
in dipole approximations are calculated both at high and low energies and are compared with
the semiclassical results. The asymptotic behavior of the cross sections at high energies is
investigated in detail. Energy distributions of ejected electrons at three different incident
energies are also calculated.

I. INTRODUCTION

Besides its being of intrinsic interest in the the-
ory of atomic collision, the detachment of electrons
from 8 by e impact is of importance in certain
branches of astrophysics. Consequently, it has
been studied both experimentally and theoretically
by several authors in the past. In spite of this a,

number of divergencies prevail both among the
theoretical calculations and the experimental ob-
servations. Experiments were done independently
by Dance et al. ,

' by Tisone and Branscomb, ~ and,
recently, by Peart et al.3 A discrepancy is seen
to exist between the measurements of the first two
groups, at higher energies (where the errors are
expected to be smaller). At around 10 eV (the
region of lowest energy in all the measurements)
the last two measurements differ significantly from
that of the first group. '

Theoretical calculations were done by several
authors4 8 over the past ten years and the results

in general differ widely between one another.
Moreover, apart from the works of Mcdowell and
Williamson' and Bely and Schwartz' these calcula-
tions are widely different from all the experiments.
The calculation of Mcdowell and Williamson, ~ how-

ever, uses the plane-wave approximation for the
incident electron and applies an ad hoe correction
for the Coulomb effect, first introduced by Gelt-
man, 4 which brings their result relatively closer to
the experiments above 20 eV. At lower energies
their theoretical approximations have little justi-
fications and the departure from the experiment
is large (with or without the ad hoc Coulomb cor-
rection). On the other hand, the calculation of
Bely and Schwartz' uses the correct Coulomb waves
for the colliding electron but are obliged to use
partial-wave analysis. This, according to the au-
thors, limits their numerical calculations up to
60 eV, above which too many partial waves, to be
treated numerically, become important. In their
investigations Rely and Schwartz use four different



ELECTRON DETACHMENT OF H BY e COLLISION 2145

approximations for the ejected-electron's wave
function and conclude that the partial waves should
be properly orthogonalized in order to obtain rea-
sonable agreement with measurements.

Besides the absolute values of the detachment
cross sections at lower energies, there is much
theoretical interest" associated with the behavior
of cross sections in the limit of high energies. The
high-energy behavior in the present process is
dominated by the dipole interaction which leads to
the well-known Bethe result':

o = (2m~/E, ) (2+ Bin E,) .

In an elegant calculation using the dipole sum rules
to estimate the dipole matrix element Inokuti and
Kim' have found a value of 8 = 7.484. The basic
assumption of their calculation, however, is that
the incident electron is described by a plane wave.
The question naturally arises whether the plane-
wave approximation is appropriate at high energies
when there is a Coulomb force present between
the incident electron and the ionic target H . We
shall discuss this point in Sec. III.

In the present paper we have adopted an impact
parameter method (much used in nuclear physics
in connection with Coulomb excitations of nuclei
and, in atomic physics, for excitation of neutral
atoms, ' which overcomes the difficulty of adding
contributions from numerous partial waves by an
integration over the impact parameters. The dom-
inant Coulomb repulsion of the incoming electron
by the negatively charged ion is incorporated sys-
tematically by describing the motion of the col-
liding electron by a repulsive hyperbolic trajectory.
The validity of such a replacement of Coulomb
waves propagating at 1.ow energies by a Rutherford
trajectory depends on the peculiar property of the
Coulomb field. It is well known that in scattering
by a Coulomb field the classical description depends
on the size of the so-called Sommerfeld parameter
g which is defined as ri= e,ea/g„where v, is the
incident velocity and z, and zz are the effective
charges on the ion and the electron, respectively.
Thus it is easily seen that the smaller the velocity
of incidence the greater is g. For any inelastic
process, such as the present one, a second condi-
tion need also to be satisfied in order that the tra-
jectory description should be valid. The condition
required is that the difference between the initial
and the final velocities should be small compared
with the initial velocity itself. In our case, the
binding energy of H being small, the incident ve-
locity could be lowered considerably without vio-
lating the condition. Nevertheless, in the end we
shall apply a symmetrizing procedure to account
for the change in velocity, by invoking the principle
of detailed balance.

II. 1ViATHEMATICAL FORMULATION

We shall briefly sketch the mathematical formu-
lation of electron-detachment problem, closely
paralleling the method of Coulomb excitation in
nuclear physics. We shall use atomic units
throughout this paper.

According to the time-dependent scattering the-
ory of Dirac' the transition amplitude between a
state )i) and a state ]f) is given by

Tq=-i f dte' ~&'(f~ V„, (t) ~i),

where 4E,-&= E, —E& is the difference between the
initial and final energies and V,«(t) is the effective
interaction. For the present problem

(2)
where r(t) is the position vector of the incident
electron and r, and r~ are the coordinates of the
two target electrons, all measured from the nu-
cleus (see Fig. 1). We note that a term I/r(f) of
the total Hamiltonian of the system is utilized in
obtaining the Coulomb trajectory, and hence is
subtracted in the effective interaction (2). In the
present calculation we h@ve chosen to represent
the inital state of the H by a variational wave
function involving 20- correlated Hylleraas-type
terms:

This produces for the electron affinity wo

FIG. 1. Collision diagram. r~ and r2 are the coordi-
nates of the target electrons. r(t) is the trajectory of
the incident electron with impact parameter b and de-
flection angle 8.
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= —0.026 386 a. u. which is comparable to the 444-
term calculation of Pekeris, '

zvp = —0. 026 387 a. u.
The reason for this choice is to leave no uncertainty
in the target wave function so that the entire burden
of approximation is borne by the rest of the theory.
We approximate the final target state by a residual
hydrogen atom and an outgoing free plane wave for
the ejected electron:

~Q ~0 ~

4f( 1 2) I ~0 ( 1)e 2+ 40(r2) e'"'i] (4)

where B~(k) is a function of the wave number k of
the ejected electron only. The photoionization
cross sections of H obtained by using the present
B, (k) compare well with the cross sections cal-
culated by Bell and Kingston'~ (see Table I).

The transition can now be written as

x f,.((, 8)B,(k)l,.* (k) . (l2)

We now make the most vulnerable of our approxi-
mations by replacing the interaction (2) by its
expansion in the outer region ~(t) & r„xz. We have

(t) Z riP, (ri r (t)) r2P), (r2 r(t))
(5)X+1

(t)
+

& 3+1(f)

where P~'s are Legendre polynomials of order A..
In this approximation the transition integrals T,.&
can be factored out into matrix elements between
the target states and a time integral over the pro-
jectile trajectory. We get

Defining the ejection angle integrated transition
probability by

(klan, .) J I
r

and noting that the differential cross section

«(kl E*)=Pv(kl E ) I»&dbl

where b= a cot —,
' 8 is the impact parameter and 8

is the angle of scattering, we find

do(kI z, ) = Z(2~+ l)
I
B,(k) I'a '"'v-, df, (. g, e)

)!,=1

&;g=-fZ(2~, l) (f I~& &g.*(~g)+~a&,.*(~2}lf)&g.,

(6)
and the total cross section

(i3)

where

The orbit integrals J» are exactly the same as ap-
pear in the case of Coulomb excitation of nuclei
and are extensively studied in the literature. We
shall merely quote the results:

o(kl &;)=Z (»+ l)
I
B.(»l" "'v*'f.«» (l4)

ii=1

where

4m
df (f e)

( ),

xZ y„-,o f,„((,e) . „dn (l5)sin4 —,'8

J„~= F~~( —,'m, 0) g I~„($, t'),

where the constants

»+ &
' " [(& —v) ! (~+ u) !]'"

4w (A. + p) !!(A —p,)!! , Z
I
r,„(-,'~, 0)

I

'

x ( —g)'~'"' A+ p, even xi I„,((, e) I' e de, (l6)

=0
20 —&yZp/ PFlpV~

$ = ahE(g/v;

A. + p, odd (Sa)

(lO)

with e related to the scattering angle, and hence

TABLE I. Photoionization cross sections of H .
In the above, v, is the initial velocity, mp is the
reduced mass, and z, and zz are the effective
charges on the target and the projectile, respec-
tively.

Using the wave functions (3) and (4) and per-
forming all angular momentum algebra, the target
matrix element can be written as

(~f(rl r&)l &~' y~ '«i)+ &2 yx (r2)
I y; (ri, r2))

= B,(k) y,„*(5)

Incident energy

(R. u. )

0.005
0.020
0.045
0.080
0.125
0.180
0.320

Present

0.804
3.116
3.348
2. 178
1.326
0. 876
0.429

Bell and Kingston

0.737
3.227
3.933
2.762
1.662
1.067
0.542

Cross sections (10 'cm )
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the impact parameter, by the relation &

=[1 (b/ )']'".
The results (13) and (14) do not take into account

the change in the projectile velocity before and
after the collision. This may be incorporated by
symmetrizing the cross-sectional expressions
with respect to the initial and final velocities as
required by the principle of detailed balance. This
is most readily achieved by replacing Eqs. (9) and
(10) by the symmetrized expressions

a-z, zz/mov, vz ~ g - z,zz (I/vz —1/v;)

and substituting them in Eqs. (13) and (14). To ob-
tain the total cross section of electron detachment
for a given initial velocity and all ejection energies
we must integrate over the energy of the ejected
electron. Thus,

have a natural minimum cutoff, provided by the
distance of closest approach. This corresponds
to bo= 2a. An alternative choice of the cutoff
parameter is ho= go, where go is a measure (ra-
dius) of the size of the target. We have calculated
cross sections using both of them and found that
the choice bo= xo is consistent with the quantum-
mechanical Coulomb-Bethe approximation. One
reason for the breakdown of the choice b0=2a is
that at higher energies it violates the condition
required for the validity of dipole expansion itself.

It is interesting to note that unlike for the case
of straight-line trajectories' the present integra-
tion in Eq. (18) over the impact parameters con-
verges even with bo= 0; this result is due to the
strong curvature of the Coulomb trajectory near
the origin.

&„,(&;)= f™xdkkzo(klE,), . (17)
III. TOTAL CROSS SECTIONS AND HIGH-

ENERGY BEHAVIOR

32m3f (() = p
l
F„( -,' ~, 0)l

'
l
I„($,e) l'z dz,

where

e,= [1+ (bo/a)'j' ~' .

(18}

We can perform the above integral over c analyt-
ically and obtain

where k,„ is the maximum available momentum
of ejection k, for a given energy of incidence E,.
By using Eq. (14) in Eq. (17) we are making a non-
exchange approximation of the exact o(ki E;) by the
semiclassical expression (14), which does not in-
clude any exchange probability. In the event the
probability of exchange is small, the approxima-
tion should be good. For numerical calculations
we have retained the leading term X=1 which cor-
responds to a dipole approximation of the interac-
tion. Thus we need to evaluate the quantity f, ($)
from Eq. (16). Although f, ($) remains finite when
integrated over all scattering angles (i. e. , over
all impact parameters), the multipole expansion
of the potential necessitates a finite cutoff at some
nonzero minimum impact parameter bo.

'0 We
therefore redefine the quantity f, (() by the modified
expression

Using Eqs. (14) and (17) we obtain for the total
cross section in dipole approximation (X= I),

g
l

L'2(z~-eo)3 1/3

a„.,(z,) = '
ll

dkk'l a, (k) l'f, (g),
i „0

(2o)

where f, ($) is given by Eq. (19).
Formal expressions similar to Eqs. (13}and

(20) can also be written using the quantum-mechan-
ical dipole approximation and the total cross sec-
tion can again be given by Eq. (20), provided f, ($)
is replaced by the corresponding quantum-mechan-
ical expression

y, (~, , () =~z, k,.k, l dg P l&k, l~-oI;„(~)

(21)

where Ik,) and
~ k&) are the incident and the scat-

tered waves, respectively.
In this section we compare the asymptotic be-

havior of total. cross sections obtained from the
semiclassical and quantum-mechanical equations
(19) and (21) when used along with Eq. (20).

From Eq. (21) using plane waves for
~ k;) and

~ kz) it is easy to show that the dipole-Born ex-
pression for f, is

f,($) = —
g z e "(&eo)& s (&&o)K& (&&o) (19) '*

dq/q,
&min

We note that for ho= 0, f, ($) coincides with the
usual result quoted in Ref. 9.

The choice of a minimum impact parameter in
the present theory is necessitated by our use of
the dipole approximation for the interaction poten-
tial. There is however no unique method of choice
for such a parameter. In the present problem we

where we have defined q= k,. —
k& and hence d&

= (2g/k, k&) qdq. If Ik,. ). and ~k&) are chosen to be
Coulomb waves the integration is no longer simple
but has been evaluated by Mullin and Guth ' in
terms of Gauss hypergeometric functions and may
be written as
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64~4 e2ii g$

fi(qii k) gpk k
'i f (ept'9i I)(e &'Ug I)g |Imi n

dqq —x
d I

E( —t7/ii —1, 'gy, 1 K)
I

(23)

where

x=x(q) = —,' ' (q' —q', „).
f

In the high-energy limit the above expression (23)
simplif ies considerably, '3 yielding 1(

fDBB(Z ]) Pa 2 in P& i+ i)
1 i& 9 (28)

However, in order to use the dipole expansion con-
sistently (following Bethe) if one restricts oneself
to the condition q,„rp= 1 (where rp is of the order
of the radius of the target) one obtains

f, (Z, , ()= +P wP G (k) "&min

dq/q, (24)

where

with

g =1)

471 g; gy 2

(
Plf'9i I) (

Rt'0y 1) g 1

1(
f (Z g}= v G(k)ln " '

0
(29)

In the semiclassical case we note that $ = z, zphZ/
v', as v, -~ and Eq. (19) gives

sin h(vri, .) k;=ky . (25)
f, ($)=p m ln =p v ln

1 pa p v;
ep ~1~2 ~0)

(30)

In the limit V;- ~, G(k)-1, and comparing Eqs.
(22) and (24}, we find that only in this limit the
Coulomb calculation approaches the plane-wave re-
sult.

If one integrates Eqs. (22} and (24) over the com-
plete range of q „=k, —

k& to q,„=k;+k&, one ob-
tains in the dipole-Born case

Using the different limiting forms of f, [Eqs. (2Q)-
(30)] in Eq (20), the total cross section at high
energy may be written as

27' 0o„,(Z, )= Z
' [I„+nI,»Z, ],

f.

where
2

1(f"(Z. ~)=~~'in" *

In the dipole-Coulomb case likewise, one finds

(2S)
Lp(si-p) 3~ip

I„(z,)=—~

. dkk IB,(k)
I

G(k) ln
3 ~0

1

(32}

fnc(Z P) ~ &2G(k)ln 2( i+ f& (27)
and

I2 (E
& -top ) ]1 /2

1, (z, ) = 4m

3 ~ 0
dk k'I &i(k) I'G(k) (33)

TABLE II. Slope and p(k) in different approximations.

Case Approximation

Dipole-Born
(without cutoff)

Dipole-Bethe
(with cutoff)

Dipole-Coulomb
(without cutoff)

0 +vf/vg)

(1 +vf/vg)

&2rp

8(1+v)/v;)

Slope

Incident
Cross sections (7I ap)

energy
(a.u. ) bp=0 bp=2a bp=3 ~ 42

Coulomb wave Plane wave
Bethe Bethe

Table III. Detachment cross sections for e +H -2e
+H(1$) at lorv energies.

IU Dipole-Coulomb-
Bethe (with cutoff)

Semiclassical

Various cutoff s:
(i) b, =o,
(ii) bp -—2a,
(iii) bp=rp,

Ep=1,
~p=Vg,
~p = [1+(rp/a)'j'"

(1/v 2 rp, ) (1 +vf/v f) 1

va
Rp

0.05
0.06
0.07
0.08
0.09
0.10
0.15
0.20
0.25
0.30

7.1x10 '
0.006
0.065
0.317
0.954
2. 13

16.47
36.82
54. 63
68.01

0.58

18.8

41.5

7.0x10
0.006
0.061
0.291
0.859
1.89

13.33
27.31
37.63
43.90

6.4 x10"
0.005
0.054
0. 25
0.76
1.67

12.02
25. 29
35.68
42. 39

82. 9
109.5
127.2

133.3
135.7
135.6
121.2
106.8
95.4
86.4
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2tion (7raoCross sec

plane waveCoulombb wave
(Bethe)

(goethe)

434. 5
73 1p, 3
63 ' 7~ 7
56. 8~ 2
47 ~ 18 ' 2
4p 434. 9

3] .8
29. 2

27. 0
25. 1

4
22. 0
20 ' 7
1g, 6
18.6
17' 7
14, 3
12.1
11 2
10.5
g. 8
9, 3
7.6
7.0
6. 5
6.0
5.6
5.3
5.0
3.9
3.2
2. 8

4
2, 1
1.8
].6

Incident

energy'
(a. u. ) 42y =2ayo

—0

3.9
448. 7
448. 8
447.0
342 4

38.1
4

31.3
28. 8
26. 6
24. 8

23. 2
1.8

20. 6
19-5
18.5

12.6
11 7
10.9
10.2

9 ' 7
7.9
7.2
6.7
6.2
5.8
5.5
5 ~ 2
4. 1

2. 9
2. 6
2.3

6.1

2. 1

1.7

40

1
3
.5

4.

.2

.6
8.7
5.2
2. 2
g. 5

47. 0
44. 9
36.6
31.1
2g. p

2
25. 5
24. 1
1g.9
18 3
17.0
15.9
14.9
14.0

11
1P.6
8, 8
7.6
6.7
6.0
5.5
5.0
4.6

41.5
55, 1
61 9
64.8
65 0
62.4
5g, p

55.7
52
49.7
47.0
44, 7
42. 6
4p, 6
38.9
37 3

26.7

68.0.3
p. 4
0.5

5 6p. 6 9
92 ~p, 8
85 ~

781.2
72

.6 67
62].8

2.0
2.2
2 4
2.6
2.8
3.0
4.0
5.0
5.5
6.0
6.5
7 ' 0
g. p

lp. p

11.0
]2.0
13.0
14.P
15.0
2p. p

25.0
30.0
35.0
4p. p
45.0
5p. p

55.0

24. 6

]8.2
14~ 6
12.2

4
10.6
g. 9
g 4
7, 6
7.0
6.5
6.0
5.7
5

5.0
3.9
3.2
2. 7
2. 3
2.0
1' 7
].5
1.3

21.0
17 5
16.2
15.0
]3.2

5.0

4.2

-+Hctqons for ~t cross secTABLE IV
„+8-+H (1S)~

Detach men 200-

&50

].00

LIJ

b

50

, l208.06

f the ejected~ tributioted energy d

e'ection ene gy

lculate
section at e3e

FI '

) is the cross sectron 0
~ . ident en ga given i«for ak

letely indePet at4+~)
&n the P"'

not a comp
].ane-

We note tha a
The slope in,

& thus
dent func

.
n for the co

f E at any

tlon «E'
nt, inuum warmimation

unction o
wave appr

varying fu
le

d tobe a slow y
e find for ex~Pt nergy ~' '"

h. abp«&«'55 a.u. )=8 '
7 8 (2~~o.

I~(E;= ' 'g 45 a. u. =

3 that the slpP
lardier than ~

frpm Eq ( 3
he d&gterent

Finally,
onding Bethe p

roximations.

we note
ots willthe correspo '

f different app '"'
jn

choiceaccord»g tot e

y25

50

F00

45 'o
40—

35

Eo 30-
I

Q

Z
O
~~ 20-
4J

M
$5—

C3

10

I

200

5

!
0 I

1,50100
)NQ DENNT ENERGY (

I

50

sectionlated c of the calcula
The solid

Comparison o
eriments-

and

FIG 2. C
(1S) with exp

squares

-—e+e +

on Ci '
nd3

for 8 +
t calculatio '

R fs. 1, 2

is the Prese
ntal d

cur ve is
h exper&triangles are t e exp

respectively.

IN 0

70

35

0
/

/
0/

h
I

2.0 3.0 4.0 5.0

Ijn {E(Ryj

1culat jPns ~resent cas are the
otic «r

h solid line
the asymp

F&G 4, T
'

obtained fro
d triangles

otted lj.ne is o
uares, an

ively

The dash d
. Circles q

3 respe
of lnokut»

1 data of Refs.
tptic result o

imenta
ts the asymp o

the e~
1' representsThe dashed

Ref



2150 F. H. M. FAISAI AND A. K. BHATIA

Incident energy (a.u. )

0. 1
0.25
0.50
1.0
1.5
2. 0

2. 5
S.O

S.5

4. 0
4.5
5.0
5. 5
6.0
6. 5
7.0

Cros s section (7(' go)

1.6x10 4

6.8 x10
5.7 x10-'
7.2& 10-'
1.4 x10
1.4x10
1.S x10
1.Sx10-~
1.2x10 '
1.1x10 1

1.1x 10
1.0 x10
9.9 x10-2
9.6 x10
9.2x10 '
8.8x10 '

TABLE V. Electron-detachment cross section for
e +H —e + e +H (2S).

are seen to be quite inconsistent with the Coulomb-
wave calculation and can be rejected on the ground
that these cases violate the condition for the valid-
ity of dipole expansion of the potential itself.

In Fig. 2 we have plotted the cross sections ob-
tained from our semiclassical calculation (ho = xo)
and compared the results with various experiments.
In Fig. 3 we show typical energy distributions of
ejected electrons for a few given incident energies.
The Bethe plots in Fig. 4 shows the high-energy
behavior of cross sections in various theoretical
approximations and compares them with those ob-
tained from experiments.

In Table V we present the cross sections (with
ho= ro) for reaction (ii). Comparison of this re-
sult with that in Table IV shows that the cross sec-
tion for the residual atom to be in H(2S) state is
about two orders of magnitude smaller than to be
in H(1S) state.
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We summarize the results in Table II.

IV. RESULTS

Within the approximations introduced in this
paper we have calculated the primary detachment
cross sections for the following two processes:
(i) e +H =H(lS)+2e; (ii) e +H =H(2S)+2e .
In Table III we present the low-energy cross sec-
tions for process (i) calculated within the semi-
classical plane-wave and Coulomb-wave approxi-
mations. The low-energy Coulomb-wave results
may be obtained from the limit r]; » I of expression
(23).' This gives for

I:2 (Et -top) ]1/2
327T3o(E)= q' dkk IB,(k)l'e""' "~'.'., o 3~3 '-o

The table shows that the plane-wave result is com-
pletely unreliable in this region while the semi-
classical approximations with various choices of
cutoff parameters are compatible with the cor-
responding results of the Coulomb-Bethe approxi-
mation.

In Table IV, we present the cross sections at
higher energies. This table shows clearly that the
semiclassical calculation with minimum impact
parameter ho= xo (which corresponds to Bethe's
prescription q,„~p =1 in the corresponding
quantum-mechanical dipole approximation) gives
consistent results with the Coulomb-Bethe approxi-
mation. The other choices such as bo = 0 and bp = 2a

We would like to thank Dr. A. Temkin for his
helpful comments and encouragements during the
course of this work and Dr. K. Omidvar for a
critical discussion regarding the significance of
cutoff in the dipole approximation. Our special
thanks are due to Professor E. Gerjuoy for his
helpful communications on ionizing collisions in-
volving three particles.

APPENDIX

In this Appendix we show the correspondence
between the quantity I~ with the usual matrix ele-
ments M2„,:

M„,=, &+,
I
(r, +r,)'I e,&3 ap

a s&~~lr|+ro l~~&&+~lri+ral~~&3ao

where S stands for summation over all final dis-
crete and continuum states of the system. Approxi-
mating 4z by Eq. (4) and neglecting all other re-
sidual target states, we find

[2(E. g)0) ]1/2
4~

I,M„~=
ao „0

dkI a, (k) I'=f, (E,) .

dk I&+;I~i i'1Q(~1)+~21'lo( 2) I f&l'.3ap „

Using Eq (11), we have
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The unitarity relation of quantum-scattering theory is studied for the general case of scatter-
ing by an arbitrary noncentral force arid it is shown how it can be utilized to determine the
phase of the scattering amplitude from the measured differential cross section. It is found
that the unitarity relation leads to a pair of nonlinear integral equations for the phase of the
scattering amplitude if the cross section is known. It is shown that from these equations one
can obtain, without introducing approximations, a system of linear algebraic equations for a
certain set of scalars from the values of which one can readily calculate the phase. In general,
the above system of linear equations may admit also redundant nonphysical solutions for the phase.
However, when the magnitude of the cross-section data satisfies certain conditions the solu-
tion of the equations is unique and must equal the correct physical value of the phase. Unlike
previous methods for phase determination, the present approach is based on a form of the
unitarity equation which is not simplified by any of the assumptions of parity, rotational, or
time-reversal invariance for the underlying scattering interaction. Therefore, it can be ap-
plied to the determination of the phase also in cases such as particle scattering by, or in the
presence of, external fields which do not possess the above-mentioned symmetries. A general-
ization of this method to many-channel scattering is also provided. Similar results hold also
for the determination of phases in the theory of electromagnetic-wave scattering by an obstacle
of arbitrary shape.

I. INTRODUCFION

Considerable progress was made recently towards
a complete solution of the problem of determining
the scattering amplitude from the corresponding
differential cross section. ' ' One of the main moti-
vations for interest in this question has been the
theoretically proven possibility of constructing sys-
tematically the potential from the scattering am-
plitude at a fixed energy and for all the angles, in
the case of elastic scattering by a central poten-
tial. This result indicates that the determination
of the scattering amplitude from the measured cross
section is likely to be an essential preliminary step
in any scheme of obtaining the potential from ex-
perimental data. That statement is bound to be
valid also for the general case of scattering by non-
central forces, for which the problem of determin-
ing the interaction from the scattering amplitude
has not been solved yet.

The question of determining the scattering am-
plitude from the differential cross section has been
investigated mainly for central potentials, but the

results obtained, which will be reviewed briefly
below, hold also for parity-invariant forces in
general. Within this scope, at least a formal
mathematical answer to the problem at hand was
given. The tool suggested for the determination of
the phase of the scattering amplitude (this is the
only quantity which is unknown, the absolute value
of the amplitude being, of course, the square root
of the cross section) is the unitarity relation of
quantum-scattering theory. ' When the differential
cross section for scattering by a central (or, more
generally, parity-invariant) potential is known, the
unitarity relation yields a certain integral equation
for the phase of the scattering amplitude. Newton,
Martin, and Gerber and Karplus3 have all indepen-
dently shown that, under a certain restriction on
the magnitude of the given cross section, the phase
of the scattering amplitude is determined uniquely
by this equation, except for a certain, relatively
trivial, twofold ambiguity. Also, the above authors
have shown that the unitarity equations can be solved
iteratively, arid that the iterations converge uni-
formly in the scattering angle to the true value


