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RESULTS

Figures 2-7 show the results for impact on He,
Ne, Ar, H2, N2, and 02. Also plotted are n=2
measurements taken from the literature. The
magnitude of the 3s, 3P, and 3d cross sec tions are
all comparable for any given gas. Generally, the
3d cross sections are smaller than the corresponding
3s and 3P cross sections. The s-state excitation
seems more competitive with the p-state excitation
at the n=3 level than at the n=2 level.

The ratio of 2s to 3s excitation is quite consistent
from rare gas to rare gas and independent of the

energy. The 2s-to -3s ratio is about 4. 5 for impact
on He, Ne, and Ar at all energies. Cross sections
for 2s excitation are available to about 25 keV for
impact on Hz, N2, and Oz. The 2s-to-3s ratio is
about 5. 5 at 25 keV for impact on H2, while it is
about 5 at 20 keV for impact on Nz and O~.

The ratio of 2p-to-3p excitation fluctuates much

more from gas to gas and from energy to energy.
In the case of impact on He, this ratio is about 13
at 10 keV and about 6 at 35 keV. The ratio
is fairly independent of energy for impact on Ne

and remains about 6. For Ar the ratio is about 8.
(The 3P cross section is taken to be about 5x10-t'
cma for Ar, which gives some weight to our 3P
measurements at 30 and 35 keV and reduces the
Orbeii measurement by 20/&. ) For impact on Hs
at 25 keV, the 2P excitation is about an order of
magnitude larger. For impact on Nz and Oz, the

2P excitation appears to be an order of magnitude

larger than 3P excitation.
Figure 8 shows the total H cross sections which

are synthesized from the 3s, 3P, and 3d cross
sections. These cross sections are those that one
would measure for the production of H, radiation
inside the collision chamber at a point sufficiently
far from the entrance aperture to ensure equilibrium
conditions. The excitation H cross sections are
generally comparable to those for the production of
H~ by charge transfer. '

The polariza, tion fractions for the 3d- 2P radiation
are presented in Fig. 9. The polarization fractions
are defined a.s P= (I~t Ig) (I~+Ig) where I„ is the
intensity of the light with the electric vector parallel
to the axis of quantization (atom beam axis) and I,
is the intensity of the light with the electric vector
perpendicular to the axis. They are all positive
but generally decrease in value as the energy is
increased. The errors are large and. therefore it
is difficult to make quantitative statements. Dose
et al. ' have measured positive polarization for
2P- 1s radiation produced by atom impact on the
rare gases. Positive polarization generally implies
that the component of linear momentum, imparted
in the collision process, along the beam axis is
large compared to the component in the perpendic-
ular direction. " For very high-velocity impact it
is expected that the momentum transfer will be more
in the perpendicular direction which will produce
negative polarization. "The Born approximation
predicts negative polarization in 2p-1s radiation
for high-velocity impact of hydrogen atoms on He. '
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