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Energy transfer and coherence transfer between two atoms of different species are studied
theoretically. The electric dipole-dipole interaction is the mechanism considered for the ex-
citation transfer. A generalized perturbation method for a damping system is used. A general
formula is derived for the polarization of the sensitized fluorescence resulting from the excita-
tion transfer. This polarization is shown to be dependent on the angular momenta of the two
atoms, and to be independent of their relative velocity as well as of their difference in the
energy of excitation. The polarizations are found to be nonzero in many cases which demon-
strate the transfer of coherence through collision processes. A general and compact formula
is also derived for the polarization of pure fluorescence where excitation exchange has not
taken place. The polarization of the sensitized fluorescence is in general smaller than that of
the pure fluorescence. This means that the coherence is transferred only partially. Finally,
the magnetic field effect has been included. This field depolarization depends on the g& values
and the lifetimes of the excited states of both atoms. The general feature of the field dependence
also differs considerably from that of the Hanle effect for resonance fluorescence.

INTRODUCTION

The polarization of resonance fluorescence has
long been a known phenomenon. ' For example,
when 'So - 'P, excitation is induced by a linearly
polarized light with y polarization, the resulting
resonance fluorescence observed in the z direction
is expected to be 100/g polarized in the y direction.
If a slowly increasing magnetic field is applied in
the z direction, the coherence among the magnetic
sublevels of the excited state will be slowly de-
stroyed because of the splitting of the sublevels,
and the polarization of the scattered light decreases
accordingly. The magnetic f ield depolarization
also depends on the g, value and the lifetime of the
excited state. This is the well. -known Hanle~ effect
for measuring the lifetime of the excited state.
Early theoretical works on damping and polarization
of radiation was done by %eisskopf3 and by Breit.
It has since been applied to the level-crossing' and
optical-pumping problems and has also been ap-
plied to the polarization of the electron-atom col-
lision light. '

The polarization of the sensitized fluorescence
was observed recently by Gough. ' In his experi-
ment a mixture of mercury and cadmium vapour
was irradiated by a linearly polarized resonant
light of mercury, and the fluorescence of cadmium
was found to be 2-5% polarized. This implies~
that part of the coherence among the sublevels of
the excited mercury was transferred to the excited
cadmium through a collision of the second kind.

An optically excited atom A may transfer its ex-
citation resonantly to atom B of the same element
through electrostatic dipole-dipole interaction and
radiative electromagnetic interaction. These inter-
actions were considered by Hutchinson and

Hameka, "Fontana and Hearn, "and Stephen" in
their theoretical studies of the lifetime and the
linewidth of the emitted fluorescence due to inter-
acting atoms. Happer and Soloman'3 studied these
effects in connection with signal shapes in optical
double resonance. Chiu'4 has studied the colli-
sional depolarization of the resonance fluorescence
by considering these interactions. In all these
studies, there is no net energy transfer between the
excitation energy and the kinetic energy, and the
guasistatic approximation was used.

In the present work, we study theoretically the
polarization of sensitized fluorescence. Here
atoms A and B are assumed to be of different spe-
cies and, therefore, possess different energies of
excitation. Atom A can be excited by the incident
light, which is linearly pol.arized. The transfer
of excitation from A to 8 is accompanied by con-
verting the excess energy of excitation &E into
the kinetic energy of the relative motion. The
probability (or cross section) for atom B to emit
light of polarization parallel or perpendicular to
that of incident light is calculated. The polariza-
tion of sensitized fluorescence is then obtained.
Due to a proper rotational. transformation, one is
able to integrate the relative motion of the final.
states and to yield a compact expression which
was not previously obtained for the probability of
sensitized fluorescence. A general formula (in
terms of Clebsch-Gordan coefficients) for the
polarization is derived in Sec. I. The examples
in Sec. III indicate that the emitted sensitized
fluorescence is polarized in many cases. This is
the theoretical verification that coherence can be
transferred through collision of the second kind.
Although the cross section for energy transfer
depends on &E and the relative velocity, the polar-
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ization is found to depend only on the quantum num-
bers of the excited and the ground states of atoms
A and B.

With a magnetic field present in the quantization
direction, the .polarization decreases. The effect
of magnetic field on polarization can be expressed
as a multiplicative factor which (as shown in Sec.
III) will depend on the natural lifetimes and g,.
values of the excited states of both atoms. The ex-
periment on the magnetic-field-dependent l.ine
shape, which is similar to the Hanle effect of reso-
nance fluorescence, will be able to determine the
lifetimes of both atoms. This may be a useful
method to measure the lifetimes of certain atomic
states which are not measurable otherwise. Finally,
the results of sensitized fluorescence and that of
pure fluorescence (where excitation-exchange has
not taken place) are compared in Sec. III. Not only
that the field-free polarization of sensitized flu-
orescence is always smaller than the case of pure
fluorescence, the magnetic field depolarizations
in the two cases are also distinctively different.
The results of present work (as will be discussed
at the end of Sec. III) can be applied to atoms with
nuclear spin when one can isolate and follow the
optical transitions between a pair of hyperfine
levels, one belonging to the upper and the other to
the lower state. The general treatment on the
nuclear-spin effect will be presented in a later
work.

The method of present work can be extended to
calculate the cross section of energy transfer"
where different fine-structure components are in-
volved. Zare and co-workers' have recently mea-
sured the cross-section of excitation transfer be-
tween various fine-structure components of alkali-
atom-alkali-atom collision. Melton and Klem-
perer' have measured the same between different
vibrational levels of the NO molecule. In all these
works the results are obtained by measuring the
relative intensities of sensitized fluorescence.
Following the present method, we can calculate"
directly the intensities of sensitized fluorescence,
hence making possible direct comparison with ex-
perimental results.

'It J Af ( AI) (t Zaay ( BJ) )(&(~) 4(

E;„=&q g + &q|,~~ + T;+g Q
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(1. 1b)
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in capital letter are used for the lower-energy
states (i. e. , initial and final states) and j and m in
small letter for the optically excited states. Our
purpose is to calculate the polarization o, of the
sensitized fluorescence knowing that the polariza-
tion of the incident radiation is 0„. Such informa-
tion will indicate whether the coherence among the
excited states of atom A is transferred to atom B.
The total angular momenta J5 (of the ground state)
and j5 (of the excited state) are quite arbitrary ex-
cept that they can be connected through electric di-
pole transition. In other words Jh (or jif) will be
the electronic orbital angular momentum if the atom
possesses neither electronic nor nuclear spin. J
(or j) will be the fine-structure or hyperfine-struc-
ture quantum number depending on whether the atom
possesses electronic spin or both electronic and
nuclear spin. The states of different J (or j) are
assumed to be well resolved in comparison with the
linewidth of the incident and the emitted radiation.
Neglecting the electron-exchange effect, the initial
(g, „), intermediate (C„and Cs), and final (4&„)
states are simple products of atomic wave functions
(Q), wave function due to internuclear motion ()()
and wave function of the photon field (|jI). The wave
functions and their corresponding energies are as
follows:

I. GENERAL FORMALISM

Atoms A and J3 of different elements are initially
in their ground states (J,M, ) and (J~Ma), respec-
tively. The incident light (see Fig. 1) of energy
@cy:„and of polarization o„can excite atom A into
one of its excited states (j,m, ). The excitation of A

is then transferred to 8 such that h is excited to
state (j,mt, ) and A goes to the lower state (J,'M,')
Finally atom 8 goes to its final state (O'„M,') by
emitting sensitized fluorescence radiation of energy
@cI(.~ and polarization o,. Throughout this work,
the angular momentum quantum numbers J and 18

A(J, M,) B(JbM)
INITI AL STATE

A(J.M,
') EI(JbM,')

FINAL STATE

FIG. 1. Atoms A and B are initially in their ground
states (J/if, ) and (J&Mg. Incident light of energy Kc&„
and polarization O„excites atom A into its excited state
(jism). The excitation is transferred from A to B
accompanied by changes in kinetic energy of the relative
motion. Sensitized fluorescence of ~~~ and 0~ is emitted
by atom B resulting in the lower-energy final state
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EB = e~,M, + qf „+TB+ (n„—1) ftcK „, (1.3b)

@f» ltd'M' (rA»)»t J»Mf, (rB/) Xf(R)»t (n. —1, u)
(1.4a)

the radiative interaction' becomes

H= —(e/mc) Q, A, P», (1. 10)

T„=T, = h /», /2 M (1.6)

TB= Tf=8'kf/2M,

where M = m„mB/(m„+ mB) is the reduced mass of
A and B.

At a given time t, the state wave function u (t) is
a linear combination of the above 4's with time-
dependent coefficient b(t),

Ef»= Eg M + 6g M + Tf+(n„—1)kcK„+ScK» ~

(1.4b)
The intermediate state 4„(or 4B) refers to atom
A (or B) being excited. ~t/(n„) is the phonon state
where n photons of energy +g„and polarization o „
are present; g(n„—1) is the state when a photon v

is absorbed; and P(n„—1, /t) is the state where a
photon v is absorbed and a photon p. is emitted.
X(f), the wave function of the relative internuclear
motion, is approximated by a plane wave as follows:

X(f) = (1/L)s«e»t E

The above X(R) is normalized in a large box of di-
mension L. z/ and z» (or &~.M, ) are the energies
of the atomic excited and ground states, respective-
ly. T's are the kinetic energies of the internuclear
motion. Since the optical excitation and deexcita-
tion are much faster than the nuclear motion, we
have

(t)»(E „E„~&t-/»t (1.13)

Following the time-dependent method for damping
systems, ' ' ' b„(t) is expressed in terms of a
Fourier energy transform,

i(Zn-Z ~t/r'"- 2. .i."'")[E-E,.—,;sr(E)](E E„)

(«i) (1 14)

where

U„(E)=H„;+ Z H„„.r(E -E„.) U„~ (E), (1.15)
n '&i

A, = (4»/)" cQ~ »f», (q/, e '""» + qf e ' ~'"» ),
(1.11)

where Pi is the linear momentum of electron i, r, is
the electronic radius vector refers to the space-
fixed center, ng is the electronic mass, and c is the
velocity of light. The operator q~ annihilates a
photon A. and q~ creates a photon A.. The matrix
elements of these operators over the photon states
are as follows:

(n„—1( q„~ n„) = (n„~ qf ~
n, —1) = (hn, /2c K.L')'"

(1.12)

Substituting (1.8) into the time de-pendent Schroding-
er equation, we obtain equations for the time-depen-
dent coefficient b„(t)'s:

U(t) b (t) @ -»E»u t /h b (t) y»EAt / Fi

+bB(t) Cae ' B' +bf„(t) 4f e ' »' " (1.8)

—', Ar(E) = i ~/ H;„.t(E E„.)U„.(E—),
n'gi

(1.16)

The perturbations H' considered here are the elec-
trostatic interaction V between atoms A and 8, and

the radiative electromagnetic interaction H between
the atomic system and the radiation field. By multi-
pole expansion of the electrostatic interaction be-
tween two neutral atoms, the following dipole-dipole
interaction, "'"which is the lowest-order term to
connect two differently excited atoms, will be con-
sidered here:

V= —(v6 e /B3)Q ~F (-)"C(112;u, v -u, v)

x ~.(») ~. .(Bj)c&, „(&),

where

Ct „(R)=[47//(2l+1)]' Yt, (R), C(112;u,v —u, v)

is the Clebsch-Gordan coefficient, e is the electron-
ic charge, x,(Ai) is the uth component of the spheri-
cal vector r(Ai) of electron i centered on nucleus A,
and t"„„(Bj)is the corresponding one centered on B
Neglecting the second-order terms, i. e. , A~ terms,

f(E —E„.) = lim (E E„~+ ie) '—
=P(E -E„)'-iK5(E -E„.) . (1.1V)

r(E) = (2 i/b) Q„H,.„g(E —E„)U„(E),

Uf „(E)=Z B ~ Hf » B ~ UB ~ (E)f (E —EB~ ) )

UA(E) = HA»u+ Lf &HA f ~ ~ Uf .X(E)f(E —Ef~a)

(1.19)

(1.20)

The index i refers to the initial state which is 4;„
in the present work. Since we are interested in the
intensity of the sensitized fluorescence, we only
need to compute I b»(t- ~) I, which is the proba, —

bility amplitude of reaching the final state by emit-
ting a photon of energy heIt: and polarization o

after the system has been excited by a photon char-
acterized by kcv and g„. For t- ~, the time de-
pendent factor in (1.14) becomes a. r. function and
we have20

b,.( ) = U„(E„)[E,. E,„+,'inr (E,.)]-'-, (1.18-)

where
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+ Z V&,e U& (E)f(E E-e. ), (l. 2la)
gS

Uz(E) = Q ~He &.~ U&. it(E)f(E -E& „)
f'X

and

(Ey„—Ea + 2 gay')Uii(E~~)g(E~~ -Es)

=+~ Va, ~ U~ (Ey, )&(zi -E~ ) (1.27b)

+ Z Vs ~. U~~(E)r(E Eg-), (1.21b) respectively. The identity

(E E„-)f(E E„-)= 1 (l. 28)

r = (2iip„/@'c) d Q„IH (v)
I

', (1.23)

where p„ is the density function of the incident light
and is assumed to be constant over the absorption
width. dO„ is the solid angle of the incident beam
on the system and

IH(~) I'-=(2&.+» ' ~ (~~. I Hl J. b.f«).~.l HIi.~. ).

(1.24a)

The right-hand side of Eq. (l. 24a) (can be shown

later) reduces to

('~)"«""f.'I «. I
i~;r(»)l li.)l' (1 24b)

Substituting (1.22) into (1.21) and using the rela-
tions (which will be proved in Appendix B)

and

Z H~ y ~ ~Hy i a &(Ey -Ey ~ i) = o
yt g

(1.26)

where

HA, ~i gHyi~ ~i g(z~iI, —
Ep i&) = (8/2 Z)yg 5A,A'

(1.26a)

y„=- (4 e'/M')(«) '

"L'~;l(~. l l~r(»)
I Id') I'«,.-e,.)',

(l. 26b)

and a similar relation for ya, Eqs. (1.21a) and

(l. 21b) now read

(Eye EA + 2 z@yA)UA(zyy)L(zyg EA)

HA, iv++8 'VA, B'U8'(Efu)~(zfg E8') (1.27a)

~f 'll(z) ~+A'Hf'x, A' UA'(E)t (E EA')

++8'Hi 'X B' UB'(E)&(z -Ea ) (1 22)

As defined in (1.19), r is the total probability of
absorption from the initial state, and it is propor-
tional to the intensity of the incident light. For in-
cident light that is not too strong, I" is a very small
quantity which after averaging over the initial states
of atom A becomes (derivation will be shown later
in Appendix A)

U„(z) = Q
H f0+ * ~sA Aviv

„, (E-E„+,'i'„)(z z, +-,'&a-y, )
'

(1.29)

The probability W(v- Ii) of absorbing a photon of
energy «ii„and polarization a, (at solid angle dQ„)
and then emitting a photon of energy he&„and polar-
ization o (at solid angle dQ ) is obtained by sum-
ming I b&„(~) I over the final states and averaging
over the initial states as follows:

H(v p) =Q) r)~
I beau(~) I

f vg
(1.30)

where the summation over v and p, means the sum-
mation over the incident and the emitted photon en-
ergy, and the g, sign means averaging over the ini-
tial states. From (1.18) we have

G, lb. ( )I'=E,
l v, „(z,„)I'[(E,.-z,„)'+,'e'r']i-'. . -

(1.31)
Since 1" is very small, the denominator has practi-
cally the property of a b(E&„-E,„) function. Re-
placing g„by dQ„fdic„p„and using (1.23) for 1", Eq.
(1.31) becomes

(1.32)

The integration of the 5 function implies the energy
conservation E&„=E;„. Next, we replace g~ by
(I /2m)'dQ~ J dii ~«~ and keep all factors which vary
slowly with y„outside the integral. The following
is obtained:

was used in deriving the above equations. The
quantity y„(similarly for ys) as defined in (1.26)
is the total transition probability from state A to
all the final states via radiative interaction, and the
reciprocal of yA is the lifetime of the excited state
of atom A. Neglecting the second term on the right-
hand side of (1.27a), we obtain a first-order ex-
pression for U„which is then substituted into
(1.2Vb) to give a second-order expression for Ue.
This second-order expression of U~ is then sub-
stituted into (1.20) to give a third-order expression
for U»(E),

( ) I

2 Q dQ K + GHfp, eVii, ~Hg, «&Hg& as Vei gsH pa

ABA'8 ' (2W) I @(P)I « (1.33)
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where

G= f-d(«~. )kEf. -EA+ 'i&-rA)(Ef. -EB+~BikYB)

x (Ef EA' 2 ifirA) (Ef, —EB —~ +rB)l

(l. 34)
The denominator on the right-hand side of the above
equation can be fractionated into a linear combina-
tion of four terms. Due to the smallness of y„and
yB, each term is a representation of a 5 function,
e.g. ,

(E» —EB + B imyB) = P(Ef„-EB) —im5(Ef ~ -EB),
(l. s5)

where

+f P EB @&~& + ~J' My ~gbmb (l. 36)

The integration over the principal-value parts of the
four terms cancels each term whereas the integra-
tion over the 6-function parts gives

2' 1 1

(aa ~ (r'(r,' —rf)(rra) ' irra j( -aa'i'(&j-rj)(rM) "irraa) aaa —((ra 'a
a —i(r, ) '

(1.37)

where &AB =(~f., -ef...) —(&~.B.-&z„e,), (1.41)

rAB = '(rA+-rB),

~ggm~

C&b~b 6 &b~ b

(l. 36)

(l. s9)

(1.40)

and

&A B= (&f,~,' —ef,m(, )
—(&J'ii,' —~rj, iii, ) ~ (1.42)

Fractionating the denominator, Eq. (1.37) becomes

1 1 2'
2 2 2 -1 (l. 43)

&~AB +Ii (k; -kf j(2M) ikrAB -&A 8+Ii (k; -kf)(2M) +ifirAB (&AA iIirA)-(&BB ~ -@rB) '

+AA' +BB' 0 a d +AB' +A'8 + ~ (l. 44)

Since y» is also a small value, each term inside
the curly bracket of (1.43) is a g function. By Eq.
(1.44), Eq. (1.43) becomes

4 2

G= B 5[k (kf — k) (/2M) —&] .
y AyB

(1.45)

Now we cons ide r the special case where the mag-
netic field along the quantization axis (B axis) is
zero (the ca.se of nonzero magnetic field will be
considered in Sec. II). Magnetic sublevels are de-
generate and we have

We substitute the above expression for G into (1.33),
then sum (1.33) over the final states and average
it over the initial states. Since

5 P = (u.+ I)-'(u, + I)-'(I,/2~)'
i f

f dk, dQ, P(k, ) f dkf d&f kf
N Mb M'M'

(1.46)

we integrate the G of Eq. (l. 45) over dkf to give

f dkf kf G = (4ii Mkf)/(fi y„yB) (1.47)

and to obtain the following expression for (l. 30):

dQ MK
)(2 '4'l lia 8 '2 ' + d i i p(ki) d f +f)ar B VB AHA ivyrB' ~(aB' A' IIA'rr j)a '

2)ih) yAyBIB(v l «(2J, + Ij(2J(, +I
(l. 46)

In Eq. (1.48), the summation sign on the right-hand
side sums over the intermediate states A, B, A', B'
and the magnetic sublevels (M„M„M,', M', ) of the
initial and the final states of atoms A and B.

The matrix elements over H and V are

ef„B=ie(2n«A„L, ')' (z, M,'Ig, o„r(a,-)Ig, m, )

&&(XfI e '"'"'
IX~) (I 49)

HA;„= —ie(2iikcn„ii „I. )" (j,m, Idio'„r(») I&,M, )

&&(x.Ie " "Ixij (I 5o)

VB,A = (- u 6 e )Q (- )"C (112;u, i) —u, i))
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x (Z,'half.')I~+,. r„(Ai)
I g, m, )

x(jomol&'3'„„(a&)l z3M3)

and by Eil. (l. 5) of the nuclear wave functions, we
have

Q, x.*(R)x.(R') = n(H - K') . (l. 54)

Z=ZZ,
m~ a

(l. 52)

x(x Ic..-.(R)R'Ix.), (1.51)

where r„and rB are the position vectors of nuclei
A and B, respectively, measured from the space-
fixed center. Substituting the matrix elements
(l. 49)-(1.51) into (1.48), we perform the summa-
tions over the intermediate states A, B,A', E'.
These summations imply the summations over the
nuclear relative motions as well as the magnetic
sublevels of the atomic excited states, i. e. ,

ii'(v- ii) = E&(fi yAyB) 'Q 2 (v ii)J dQ; d13i p(k i))'3&

x fde C„Cm, (l. 55)

where

6', &',cue'n. „z „
(2ii) Sl IT(v)l (2Z, +1)(2J +1)' (l. 56)

Having performed the above-mentioned summations,
(l. 48) now becomes

where

Q, =(f./2w)'J dk, d&, l'3,', (l. 58)

c„=(-)"(x~le '" '"' c, „(R)R 'e'" '"I x;),
(l. 57)

z(vs) = c(112;u, v -u, v) c(112;u', v'-u', v') (z,'M,'l~, o„r(B,)Ij,m, )*.(j,m,'Ip, y„. „.(Bj)l z;M, ,)*

x(d.'half.'IG~. (»)Ij.m.')*(j.m.'IGo. r(Ai)l&. iaaf. ) «'3~'I&)~. r(&j)
Ijom3)(iom314y, .(&&)l&3llfo)

x (z.'ivy'I ~ (3»)
Ij.m.)(j.m I

Z „o(Ari)
I
~.ivy ) . (l. 58)

The summation sign in Eil. (1.55) now stands for
the summation to sum over all the magnetic quantum

LVi', ) Substitu. ting (l. 5) into (l. 5V) we have

therefore have~'

0
dRj3(pR)R '= 3. (1.65)

( )p f 3 i(op 3p ) 'Rp J d3R ip'n C (R) R-3

(1. 59)

Substituting (l. 65) into (l.64), the latter is then in
turn substituted into (1.59) to give an expression
for C„; we obtain

where
„C*„C.= , L'(-', o)'( ', -ll)Y*, „(p—) Y, „,(p) . (1.66)

(mA ™B)(mArA ™BrB)
rA rB ~

p= K -k~,
with

(1. 60a)

(l. 60b)

(l. 61)

The unit vector p that appears in Y,„(p) implies the
polar and azimuth angles (8„y,) of vector p with
respect to the space-fixed z axis. By a rotational
transformation (see Fig. 2), Y, (8,y,) transforms
into the following:

Ylm(8pvp)=+ Dm '(8l I/i 0)Ylm (X4) i (1 67)

K= (mA+ mB) '(mBPT„+mA R,)+k, .

By partial-wave expansion

(l. 62)

e' '" =4ii ~P + i'j, (pR) Y,„(R) Yi„(p)m(l. 68)
l& m-g

and integration over the angular part, we have

J d He"" C3, , (R) R

= -4~(~)'" Y, „(P)J, o dR j,(pR) R-'.
(1 64)

The integration limit Ro practically equals the di-
mension of the box I, which is very large. We

J Yl (8p9 p) deaf = 47rnl on og n o
Y'l (Xi)i)

= (4ii)'" nl, on, o (l. 68)

Since the product of two spherical harmonics gives
a linear combination of spherical harmonics with
appropriate coefficients, the integration of (l. 66)
over dO& by using the above formula (l.68) becomes

where (X, g) are the corresponding angles of p with
respect to vector k& (recall p= K-k&), D' (8&, y&, 0)
is the rotational matrix, 3 and (8&, y&) are the angles
of vector k& with respect to the fixed g axis. Inte-
grating (l. 67) over dQ&, we have
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=L-'(4s)'(45) '5„„..
Substituting this into (1.55), we have

(l. 69)

J dAy C„C"„~

=L-'(4s)'(9) '(-)"C(22O; -vvO) C(22O; 000)5. „.
l

I /
i /

~/3

I

/

( 9p/

W(v- i ) =F,(e'y„y, )-'Q Z(v p, )5„„.,
where

Fa=FiL (4s) (45) ' f dA;dk, p(k()kg y

I, = [u',.+ (e,, —~„)(2~/If')]'" .

(l. Vo)

(l. 71)

The incident light, propagating along the x axis,
is assumed to be y polarized, i.e. , cr„r=y. The
emitted sensitized fluorescence observed in the z
direction can be either x or y polarized, i.e. ,
0„' r = x or y. If the intensity of the scattered light
of x polarization equals to that of y polarization, the
sensitized fluorescence is not polarized. On the
other hand we will have 100% polarization if the in-
tensity of x polarization equals to zero. Both x and

y can be expressed in terms of spherical tensors
and v

x= —{1/v 2)(x, -x,) and &
= ( f/W2)(~ t+r t) .

(l. 72)
The matrix elements of x& and ~ & can easily be

FIG. 2. Rotational transformation: Y&m(ep'cjpp) is ex-
pressed in terms of I',~.|ig) [see Eq. (l.67)] by rotating
the space-fixed z axis into the z' axis. The latter is
parallel to vector Q.

evaluated as '

{jm I~. l
J/d) =c(»~; ~um)(jl lr I I

J) .
Using the relations in (l. 72) and (l. 73), we now
sum Z(vp, ) of Eq. (l. 58) over v and all the magnetic
quantum numbers, i.e. , M„M„M„,M „of the
ground states and obtain

' =qoI. qt5,', ,~ ~, ~5 ~, +q25 '„-25 ', -25 ', s +q35 ', 25 ', g+25 ', -2]~(J' j)
NyMyv

'
(1.V4)

where

qo = &C(112; u, v -u, v)C( J 1jb, m~ -v +u, v -u, mn)C(j, l J„m„u, m, +u) (l. 78)

qq =C(112; u, v -u; v)[c(j&1JI, m~, 1, m~+1) —,C(j~l J„mt„—1, m, —1) ][C(J,lj„m, —1, 1, m, )

+C(J',1j„m,+1, —1, m, ) ]C(Jtij» mt, -v+u, v -u, m, )C(j,l J„' m„u, m, +u), (1.77)

qa or qa=c{112; u +2, v -u v2, v)c(j~l Jq, m~+2, +I, m~+1) C(j ql JI, m„, +I, mewl)

xc(J,ljt„m~ -v+u', v -u+2, mt; +2) C(J,l j„' m, wl, +1, m, +2)c(J,1j„m,wl, +1, m, )

&&C(j,iJ„' m, +2, u+2, m, +u). (1.78)

In Eq. (1.78), the upper sign gives qa and the lower
sign gives q3. Again summing (1.V4) over m„m~,

I
and g, we have

(1.74) = [Q,(m,m, uv) + Q,(m,mbuv)
mg~Q'

+Q~(m, m, uv)]R(J; j), (l. 79)

where

Q, (m,mb uv) = q,q, ,

Q,(m,m, uv) = q, qo,

Q3(mmmm t; uv) = qsq p ~

Since

(l.8Oa)

(l.80b)

(l.80c)

m@myu v mzmyuv
Qa(m, m& uv) = H Q, (m,m~ uv), (l. 81)
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the summation of (l. 79) over the remaining mag-
netic quantum numbers, i.e. , rn„m, , g, e, reduces
to

Z &(yy)~„

[Q, (m, m„uv) + 2Q, (m, m, uv) ]R(J; j),
mftmyuv

(1.82)

where the g„, sign on the left-hand side sums over
all the magnetic quantum numbers. Substituting
(1.82) into (1.70), the probability of observing y-
polarized light becomes

W(y y) = I',(@2r„r,) 'P -[Q,(m, m. ,uv)
mftmyuv

+ 2Q,(m,m, uv)] B(J; j) . (l. 83)

The polarization Po of the sensitized fluorescence
therefore becomes

W( y y ) —W( y x) 2$m~m2ugQ2(mam 2 uv)

W(y-y)+ W(y- x) y „„Q1(m,m uv)

(1.85)
The polarization P, expressed in the above Eq.
(1.85) is the polarization in the absence of magnetic
field. When the field is zero, W(v- p, ) and, con-
sequently, P, are invariant with respect to the rota-
tion of the coordinates. As a result y can be re-
placed by z and x can be replaced by y, i.e. ,
W(y- y)- W(z- 2) and W(y -x)- W(z- y). The
matrix elements are transformed accordingly and
W(v- p) becomes easier to evaluate in many cases.
The polarization now takes the following form though
it has the sa.me value as that of (l. 85):

Following similar procedures, the probability for
observing x-polarized scattered light after the ex-
citation by y -polarized light becomes

W(y x) +2(@ rArB) + IQ1(m mbuv)
mg myuv

2Q, (m.m, uv)]a(J,. j). (l. S4) where

W(&- &) —W(, y)
W(&- &)+ W(& y)

g, ,„„[Q„(m,m„uv) —Q, (m, m, uv)]

,„„[Q„(m.m, uv) + Q, (m.m, uv)]
(1.ss)

Q, (m, m2uv) =C(112; u, v -u, v)'C(j, l J,'; m, Om1)' C(J, lj „m,Om, ) C(J,1j~; m2 -v+u, v -u, m1)

&C(j~l J„' m, u, m, +u), (l. 87)

Q1(m, m, uv) =2 C(112; u, v —u, v) [C(j21J~; m1„1, m2+1) +C(j&1J|I,' m2, —1, m, —1) ]C(J,1j„m,Om, )

&&C(j,lJ„m„u, m, +u) C(J2lj1,; m2-v+u, v -u, m2) . (1.88)

Both Eq. (l. 85) and (1.86) can be used to calculate
the (magnetic) field-free polarization.

II. MAGNETIC FIELD EFFECT

—g(4 A Bh+(k; -kf)(2M) )]

27'
(+AA' zhrA)(+BB' 2@rB)

(2. 1)

The Y functions above, a.s shown in (l. 35), are linear
combination of the principal-value part and a 5 func-
tion. The principal values arriving from (* and f
above will cancel each other after integrating G
over dk&, and the integration over the 5 functions
gives

If the magnetic field H, along the quantization z
axis is not zero, the magnetic sublevels of the
atomic states will not be degenerate and hence the
conditions of (1.44) and the expression (1.45) for
G will not be satisfied. We now reexpress the orig-
inal expression for G in (1.43) as follows:

G = [f*(&AB.+h (k; -kf )(2M) )

4 'mk

(+A A ' IYA ) (+BB 2IfrB )

Following the same argument as in Sec. I, the
summation and averaging over (l. 30) now gives

P, = p, ~g& H, and P&= p, & g&„H, , (2.4)

where l1B =eh/2mc is the Bohr magneton, then

d Q„M&~ L JdA; dk1P(k; ) kf
(211k) (411 ) I H(v) I hc (2J, + 1)(2J2 + 1)

g Jd~ffffg, B l B,A ffA, 1v+fviB' l B',A 'ff A', iv

(+AA ' zhrA ) ( ABBs zhrB )

(2. 3)

The right-hand-side summation again sums over
all the intermediate states A, B, A. , B, and the
sublevels (M„M2, M „M2) of the initial and final
atomic states. A subscript H is added here to the
above probability WB(v- p) to indicate its magnetic
field dependence. I et
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(1.39) and (1.40) can be written as
I I

+AA = P, (m, - m, ) and &BB = Pb(mb -mb) (2. 5)

x [pb(mb —m,') iriy—B j
' . (2. 6)

Z(vp. ) above is defined in (1.58) and the summation
sign sums over all the magnetic quantum numbers.
E(luation (2. 6) differs from the previous expression

After substituting (1.49)-(1.51) for all the matrix
elements and performing the necessary summations,
(2. 3) now becomes

W„(~- q) = -P,g,» Z(vi )6„„.[P.(m. -m.') ie-yA J

(1.70) for the field-free case by this extra magnet-
ic-field-dependent denominator.

Similar to Sec. I, the incident light is assumed
to bey polarized, i.e. , 0„~ r=y and the emitted
sensitized fluorescence either be x or y polarized.
Let us first consider the case o, r =y and find

W(y-y) the probability of observing y-polarized
light. Since the denominator in (2. 6) depends on

I I
the magnetic quantum numbers m„m„m&, m, of
the excited states only we can sum Z(yy)5„„. over
the other quantum numbers, i.e. , M„M„Mb, M„
and v, and this is the result of (l.74). Substituting
Eq. (1.74) into (2. 6) and performing the summation

I I I
on m„m&, and u, we have

(( Qp(m()mb Qv ) Ib3(m mb Rv) Q3(m mb Bv ) H (Z. .
)

Ii y„yB (2p, —i@yA)(2Pb i&yB-) (2P. +@yA)(2Pb+@YB)
(2. 7)

where Q~, Q3, Qb, and H(J; j) are defined in (1.80) and (1.75), respectively. Since the summation indices
are contained in Q's orily and the denominators are independent of them, by applying the result of (1.81) we

obtain

( )
—y r (bbbb(bbl mb IIV) 2QII(m mblbV)()b rb b b P )) 3(g ~

)
If y„y (4p, +I y„)(4p, +If Y') (2.8)

Following similar procedures, the probability for observing x-polarized light becomes

((Qb(m, m,:bbbb) Q (2, b,mvm)(lbbybb' —4f!,Pb) )&+ YA YB (4P.'+@'yA)(4P'+ fb'yB )
(2. 9)

Substituting (2. 4) for p, and pb the polarization of the sensitized fluorescence in the presence of the mag-

netic field is as follows:

P(H ) P (@yAYB 4g& RJb(V)'B Hl) )@ YAYB

(4ÃS, PB'Hi +f3 yA )(4gqbPB H, +If yB )

(2. 10)

where P„expressed in either (l. 85) or (1.86), is
the polarization for the field-free case. %hen
H, = 0, the magnetic-field-dependent factor in (2.10)
becomes unity, or P(H, ) =Pb. As H, increases,
P(H,) decreases and becomes zero at H, = + (If"yAyB/

4g, g„EBB)'~3. After the zero points P(H, ) becomes
negative and approaches zero again when II, be-
comes very large.

III. EXAMPLES AND COMPARISON WITH PURE
FLUORESCENCE

Let us review briefly the polarization of pure
fluorescence (without sensitizer) when the excitation
of the system was induced by linearly polarized
light. In this case the optical excitation is not
transferred between two atoms. The radiation is
absorbed by and then reemitted from the same
atom. We use the same notations, namely (JM) and

(J M ) to specify the initial and the final states, re-
spectively, and (jm) and (jm ) the excited states.

E) = (2B) cIfB dA„&„n„wJIH(v)I (3 2)

and y, similar to yA (or yB) in (1.25), is the damp-
ing constant of the excited state. The incident light
is again assumed to be y polarized, i. e. , a„~ r=y.
After carrying out the summation procedures in
(l. 31), the probability of observing either y- or x-

J and J need not be the same. However, if J= J
and they belong to the same state, we have the case
of "resonance fluorescence. " Following the result
of Ref. 12 and expressing it in the notation of the
present work, the probability of observing p, -polar-
ized fluorescence after the system was excited by
light of p polarization is as follows:

w ( ™p)=&&Er I&.(")I'
i f g v

= 2)n E) Z (O'M' IK& o„~r; lpm')*
mm'NN'

x(jmlp, (Y„rim) (z'M'I5";o, r(ljm')

x (jm' IZ, cr„~ r,
I
JM) (e„—t„.+i5y)

(3. 1)
where
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where

7
( )

(Q jf )2 IEQ ) 0 (3. 7)

2y q, (m)
g„Q,(m)

WH=Q(y -y) —WH-o(y -~)
Wz =o(y -y)+ WH=o(y -&)

(3. 8)

is the polarization in the absence of a magnetic
field. The prime on I' and I'o is introduced to dis-
tinguish it from the case of sensitized fluorescence.
Similar to the discussion in Sec. I, the polariza-
tion Po [as well as W(y-y) and W(y -z)] in the ab-
sence of the magnetic field is rotationally invariant.

By rotating the coordinates such that W(y -y)- W(z-z) and W(y-x)- W(z-y), Po can also be
expressed as follows:

WH-o(z -z) —Wz=o(z -y)
&o=

WH-o(z -z)+ WH=o (z -y)

polarized fluorescence becomes

Q~(m) 2h ygo(m)
(2&sa g &.)'+ @'&'

(3. 3)

where the "+" sign refers to W(y -y), i.e. , y polar-
ization, and the "-"sign refers to W(y -x), i. e. ,
x polarization,

F =2~F I(&'I l~*r;lij)'l(jll&;r;ll~)l', ('4)
q (m) = —,'[Cy'1&;m —1, 1, m)2+C(Zlj;m+1, —l, m) ]

x [C(j 1j';m, 1,m+ 1) +C(jlZ'; m, —1,m —1) ],
(3 6)

Qz(m) = r'C(Zlj; m —1, 1,m) C(Jlj; m —1, —1, m —2)

x C (j 1&'; m, —1, m —1)C (j 1J';m —2, 1, m —1) .
(3. 6)

The polarization of the observed fluorescence there-
fore is

where

Q ii(m ) —K Qg(m )
Z- @i(m)+ Z. q.(m)

(3. 9)

Q„(m) = C(Z1j;m0m) C(jl~; mom) (3. 10)

(3. 12)

where

$ = 2Po 8,/KY . ' (3. 13)

We also express (3. 7), the expression for pure flu-
orescence, in terms of $,

I

P (a,)= (3. 14)

Equations (3. 12) and (3. 14) are plotted against

Q, (m) = 2 [C(j1J';m, 1, m + 1)

+C(j 1J';m, —1, m —1)']C(Jlj;mOm)

(3. 11)
The expressions (3. 8) and (3. 9) for field-free polar-
ization P', are identical. Qf course, they are dif-
ferent from that of sensitized fluorescence, which is
expressed in (1.85) and (1.86). The numerical
values of field-free polarization for both pure fluo-
rescence and sensitized fluorescence are listed in

Table I for different transitions. The polarization
of sensitized fluorescence is in general smaller
than that of pure fluorescence. Since the former
differs from the latter by its energy-transfer pro-
cess, these results indicate that coherence is only

partially transferred during the excitation transfer
between atoms.

The magnetic field depolarization of sensitized
fluorescence as shown in (2. 10) is very different
from that of pure fluorescence which is expressed
in (3. 7). For direct comparison, we consider a
special case where p& = p& = y and g& =g~„=g;. Equa-
tion (2. 10) of sensitized fluorescence now becomes

TABLE I. Polarizations in the absence of magnetic field.

Transitions

P0' (pure
fluores cence)~

(Vo) Transitions

Po (sensitized
fluorescence)"

(%)

100

44. 68

60

'S, (W) —'P, g) ~ ~ ~ 'P, (a)- 'S, (a) 14.29

iP ig) iP 'Pi(A) - '~2(A) ~ ~ ~ '~2(~) —'P, (a) l.83

Si/2- 'Pi/2- Si/2 0 0

Si/2- 'P3l2- Si/2 i/2~) - P3/2+) ' ' ' P3/2') - ~i/2@') 3.70

Results are obtained from Eq. (3.8) or (3.9). Capital J and J' refer there to the total electronic angular momenta

of the initial and final. states, respectively, and small j refers to that of the excited state. For all the transitions con-

sidered here we have J=J'.
Results are obtained from Eq. (1.85) or (1.86). For all the transitions considered here we have J~(= J&) = J~ (=J~) for

the initial and final states and j~=j& for the excited states.
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oP

FIG. 3. Magnetic field depolariza-
tion; Polarizations [see Eqs. (S. 12)
and (3.14)] are plotted against $11,
where ( = 2p, @&/ky. Solid line repre-
sents a special ease (i.e. , g&, —-g&
=g& and y&=yz=y) of sensitized
fluorescence, and $H, = + corre-
sponds to a minimum value of —8 Po
of the polarization. Dashed line
represents the pure fluorescence
where no excitation transfer has taken
place ~ Pp is the field-free polariza-
tion for both cases.

-=.2

$H, in Fig. 3. At $H, = 0 both P(H, ) and P'(H, ) are
at their maximum values, namely, their field-free
values Po and Po, respectively. The polarization
of pure fluorescence P'(H, ) drops to half of its max-
imum value at $H, =+ 1, and it approaches zero as
$H, -~. Qn the other hand the polarization of sen-
sitized fluorescence P(H, ) becomes zero at $H, = + I,
and it reaches a negative minimum, namely, —8Pp,
at $H, = + v3. When $H, -+~, P(H, ) againapproaches
zero, however, from the negative side. For the
general case of sensitized fluorescence, where y&

4y~ and gj cg, , the depolarization will depend on

y„, y~, g;, and gz„. The experimental line shape
of depolarization can therefore determine the life-
times of the excited states of both atoms A and B.

The radiative interaction and the electrostatic
interaction considered in this work are purely elec-
tronic, thus the nuclear spin of the atom will not.
have a direct effect on them. However if the atom
possesses nuclear spin I, the spin angular momen-
tum will couple with the electronic angular momen-
tum J@to give total angular momentum Fh (i. e. ,
F= I+ J) of the atom. The hyperfine interaction
I 7 requires that our eigenstate be represented by
F instead of J. The nuclear spin, therefore, af-
fects the polarization of the fluorescence indirectly.
Such nuclear spin effect has been studied in the
cases of optical-pumping signals and Hanle-effect
signals. ' However, the results of the present work
can be applied to atoms with nuclear spin provided
one can isolate and follow (e. g. , by optical laser)
the optical transitions between a hyperfine level E
of the ground state and a hyperfine level f of the ex-
cited state. It was mentioned in Sec. I that J@ (of
the ground state) and l @ (of the excited state) refer
to the total angular momenta of the atom. %hen
atoms under consideration possess nuclear spin,
4 and j are therefore to be replaced by the conven-
tional quantum numbers F (of the ground state) and

I'(E) =(2i/h)Q~ H;, g Hg;„g(E E~) . -
Since the transition-matrix elements here involve
atom A only, the summation in (A2) reduces to

and the summation over the photon states of

absorption, which for linearly polarized light in-
cident at a solid angle dQ„ is simply

(Ai

da„ fd~„p„. (As)

The principal-value part of the g function in (A2) is
neglected because it contributes to a small energy
shift only. After integrating the 5-function part and
substituting (1.49) and (l.50) for the matrix ele-
ments, (A2) becomes

f (of the excited state) for the hyperfine levels, re-
spectively. The magnetic quantum numbers M andI now refer to the magnetic sublevels of F and f.
Kith these proper substitutions, all the formulas
derived in this work are directly applicable to atoms
with nuclear spin. Often one cannot isolate the op-
tical transitions between a pair of hyperfine levels
F and f, and instead one observes the superposition
of all the transitions between different pairs of hy-
perfine levels. %hen a magnetic field is present,
the intensity due to each individual transition will
be weighted by its own field-depolarization factor
which depends on the g& value of the excited level
involved. %hen this is the case, a proper summa-
tion over all the hyperfine levels involved will be
needed. A general treatment on this nuclear-spin
effect will be presented in a later work.

APPENDIX A

In this Appendix, we prove Eq. (l. 23), which is

I'= (4"~3«')e'"' p.&&.
l «.

I I
~;r(&~)

I li.) I'

(Al)
After substituting Eq. (1.15) into (1.16), the defini-
tion for the ground-state damping constant becomes
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r=(4m/@&')e n„K„p,d&, Z (&,~, IZ, ~. r(») lj.~.)(j.m. l
Zo', r(»)

I
J.~.) ~

m
a

(A4)

Since the averaging over the initial states of atom
A is defined as

r=(2d, +1)-'P r
m

a

(A5)

&he resulting I', therefore, takes the expression in
(Al).

APPENDIX B

Here we verify the following equation:

and for linearly polarized light (i.e. , o„'r =x, y, or
z) we have

~ (d. .I
Z . (A ) lj. .)

M m

x(j,m.
l Z,.o„r(af) ld, m, )

goy Hy ig g' g (Ey& —Eye~) = (A/2&) 7A 5AA ~ ~

f'X

which appea. rs as Eq. (1.26) in the text. The
g(Ez„—E&,„) on the left-hand side of (Bl) is again
replaced by -i m5(E&„-E&.,). The summation in
(Bl) sums over all the final states, i.e. ,

Z =(I/2m)' 5 fdQg. dt's kg. ,
ga' N~~

and the photon states of emission, i.e. ,

L=(1./»)'2 f de„du, lf', , (»)

where g;, includes the two transverse polarizations.
The matrix elements over II, which can be derived
from (1.49) and (1.50), involves the optical transi-
tions of atom A only. Consequently, the summation
over the nuclear motion [by (l. 54)] gives rise to the
following orthogonal relation:

(I,/2. )' fda, .dl, , ~,', (x, I. *"'"Ix..)(x.l.'"""lx, ) = 5.....
The summation over the atomic matrix elements and the photon polarizations gives

~ ~ fd&. (j.m. l~ o. 'r(»)
I &'~')«'lif'I~; o. r&~) lj'~')

(B4)

= ( +/&) K + (- ) (j,m, I Z; r, (Ai)
I
J,M, )(J,M, I g, r, (A j)

Ij,' m, )
a a

=(3v) ~ f(j. l I&*'(»)ll&')I'5- - ~ 5~ ) ~

a

(B5)

Integrating the 6 function over d&, and letting

~ 6~ J. 5 ~ 5g g. ,ma~ma a~ a a a 1

Eg. (Bl) becomes

A, f'1 +f' A, A' K(Ef@ED'g),
f'A,

(B5)

is the energy of the emitted photon when atom A is
making a transition from the upper state j, to the
lower state J,'. Defining

y„=- (4e'/3@)(5c) '

where

—&J' =@Ca'g
a a

(Ba)

=(-l~)e'(@c) '4~
"~ l(j. ll&~r(»)ll d.') I'«&. -~'.)', (»)

a

which is the total transition probability from the
excited state j, to all lower states, and substituting
(B9) into (BV), we thus prove Eq. (Bl). The damp-
ing constant y„here in (B9) is more general than
that introduced in (2. 9) of Ref. 12 where only a
single lower state was considered.
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A new method for obtaining absolute differential excitation cross sections in low-energy
electron-atom scattering is employed. The method utilizes certain of the kinematic properties
of a recoiling-atom beam in an electron-atom crossed-beam configuration to distinguish be-
tween elastic scattering events and excitation to various atomic levels. Differential cross sec-
tions for elastic scattering and excitation of the 4p state of potassium are presented at 1.0,
3.0, 4.4, and 5.2 eV. A combined cross section for the 4s-5s, M excitation integrated over
a restricted angular range is also presented.

I. INTRODUCTION

The need for experimental information on the
excitation of atoms by collisions with electrons has
been outlined in a recent article by Moiseiwitsch
and Smith. ' The techniques which have been em-
ployed thus far to study such excitation processes
involve using either (i) radiation detectors, (ii)
metastable detectors, or (iii) scattered-electron
detector s.

It is the purpose of this paper to introduce an-
other method for studying inelastic processes in
which observations are made on the scattered atoms
and to present elastic and inela, stic differential
cross sections for the 4s -4p transitions in elec-
tron-potassium scattering at low energies (& 6 eV).
This method has certain advantages over the first
two techniques in that it is more general, i. e., not
limited to a specific type of excitation, and is not
complicated by such problems as cascading and
uncertainties in detector efficiencies. Compared
to the third technique, it has the advantage of not
requiring a sophisticated electron source and de-
tection system but suffers to some extent from the

disadvantage of not having as good resolution.

II. RECOIL METHOD

The method used here is an extension of the
atom-beam recoil technique first introduced by
Rubin et al. , and subsequently used by a number
of investigators to measure total, differential,
spin-exchange, and spin-flip cross sections. The
basic method has been described in detail in a
recent paper. %e present here a brief summary
of the recoil technique and a detailed account of the
application of this method to the measurement of
differential elastic and inela, stic cross sections.

The technique utilizes certain of the kinematic
properties of the recoiling atoms in an electron-
atom crossed-beam configuration, to distinguish
between collisions involving elastic scattering and
excitation to various atomic levels. In the recoil
method, observations are made on the scattered
atoms and the determination of absolute cross sec-
tions requires a measurement of the ratio of the
scattered to the unscattered atom-beam currents.
Since both quantities a,re measured with the same
detector, the detector efficiency does not enter into


