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The fine-structure constant can be determined to high accuracy from precise measurements
of the fine structure of the 2 °P level in helium. One of the necessary calculations is to com-
pute the contributions from the six Breit operators and the mass-polarization operator in
second-order perturbation theory. The eighteen spin-dependent perturbations from inter-
mediate °P states are calculated by solving an inhomogeneous Schrddinger equation for the
perturbation of the wave function by the variational method. The second-order contributions

are then given by a single integral.

These corrections are calculated using standard Hyl-

leraas expansions with up to 165 terms for the perturbed wave functions, resulting in contri-
butions to the two fine-structure intervals of the order of 10 cm™, but only four of the re-

sults are sufficiently accurate.

I. INTRODUCTION

Today there are several accurate values of the
Sommerfeld fine-structure constant a= ez/ fic = 1%7
obtained from high-precision measurements of the
atomic energy levels of hydrogen and deuterium.
These levels can be calculated to any desired ac-
curacy (in principle, at least) from quantum elec-
trodynamics (QED) as a power series in « (and
loga), and thus a can be determined experimenta-
ly. The classic results are those of Lamb and
co-workers,! who measured the 2P;,2-2P;,;; fine-

structure separation in deuterium. Using their
value and a theoretical formula by Layzer, 2
Cohen and Du Mond® obtained ™ =137.0388(6)
for their tabulation of the fundamental constants.
The most widely used value of o today is probably
the one given by Parker, Taylor, and Langenberg"
in their tabulation of the fundamental constants.
They obtained a!=137. 036 02(21), i.e., an ac-
curacy of 1.5 ppm, from measuring 2e¢/% by the
ac Josephson effect.’ '

Helium is better suited to high-accuracy experi-
ments than hydrogenic atoms, because the 23p
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state (of He?) has a lifetime of about 10”7 sec and
a fine-structure comparable to the 22P state of

deuterium which only has a lifetime of about 7x 10-°

sec. The natural linewidth for the 2 3P state of
helium is thus about 3 MHz, whereas for the 2%p
state of deuterium (or hydrogen) it is about 100
MHz. So one can measure the fine-structure in-
tervals of the 2 3P state of helium with an accuracy
higher than anything possible for hydrogenic fine
structures. There are furthermore, two fine-
structure intervals in the fine structure of the 23P
level, and @ can in principle be determined from
either one. The smaller interval has been mea-
sured to®" v,,=2291, 196(5) MHz or 2. 2 ppm and
the larger interval to vy =29 616. 864(36) MHz or
1.2 ppm.?

Since the fine-structure intervals are propor-
tional to the square of @ (to lowest order in «) one
can in principle obtain « to less than 1 ppm from
these helium data. For comparison we quote the
result of Kaufman et al.,® a'=137.0350(4), ob-
tained from hydrogen fine structure, and thus only
good to 3 ppm.

However, there is at present no theoretical for-
mula for the fine structure of helium with terms up

to and including the order a®mc?, such as there is,

say, for hydrogen.? To bring the theory of the he-
lium atom up to the same level of accuracy as cur-
rent experiments, theorists face a formidable
task. As outlined by Schwartz,'®*! this project
consist of several fairly distinct jobs.

Formally, the energy levels are given by a power

series in a?:

E;—Eg=0a?(0| Hy | 0),

+a*(0| Hy[1/(Eq - Hy) |Hz | 0),+a*(0| Hy|0),

+ (terms of order o® and higher). (1)
Here H,, E,, and | 0) are the nonrelativistic Ham-
iltonian, the energy of the (unperturbed) 2 °P state
in atomic energy units, 2&=mc?o?, and the cor-
responding nonrelativistic wave function, respec-
tively :

Hy|0)=Ey|0) .

The subscript J denotes spin dependence where
J=T+78 is the total angular momentum (J=0, 1,
and 2). H, are the lowest-order corrections to
the nonrelativistic Hamiltonian, the so-called
Breit operators,?~!* which are well known. There
are both spin-dependent (spin-spin and spin-orbit)
and spin-independent Breit operators. In first-
order perturbation theory only the former contri-
bute to the fine-structure separations, but in sec-
ond-order perturbation theory both contribute,
since the spin-independent operators mix with the
spin-dependent ones to give a spin-dependent re-
sult. Finally, H, are higher-order corrections to

|on

the Hamiltonian.

There are then four main jobs to be done.
First, since the left-hand side of (1) is known ex-
perimentally to 1 or 2 ppm, we want to know the
leading term on the right-hand side of (1) to 1 ppm.
This task has been accomplished by Schwartz,1°
who evaluated the expectation values of the spin-
dependent Breit operators for a sequence of vari-
ational wave functions | 0), with up to 439 terms
in the expansion. Second, we want to determine
the calculation of the second-order perturbation
energies

(0| HV[1/(By-Hy) JHS | 0) (2)

where HY (HY’), say, is spin-dependent, but HE’
(H$) can be any Breit operator. Since of is of
the order 10~* we only need this term, as well as
the expectation value of H,, to an accuracy of

1%; and terms of a® and higher order in (1) can
be ignored. This is the task which we shall begin
in this paper. Third, we want the determination
of the operator H,. This is probably the most
difficult of the four projects (the other three are
mainly computational problems), requiring much
QED know-how. However, a simplifying feature
is that only spin-dependent operators are re-
quired. A first attempt at this analysis was made
by Kim,!* and a more complete analysis, starting
from the Bethe-Salpeter equation, has just been
completed by Douglas.® Finally, the fourth

job is to evaluate the expectation value of H, to
1%. This work has recently been done by
Daley.!®

In addition to the terms in (1) there are other
corrections owing to the anomalous magnetic mo-
ment of the electron [which gives a a® term in (1)]
which are quite simple; then the reduced mass
must be inserted, and also the operator!’ p, * p,/M
that corrects for the motion of the nucleus, which
contributes in second-order perturbation theory
when mixed with the spin-dependent Breit opera-
tors. We will treat it along with the spin-indepen-
dent Breit operators. Finally, there are a number
of more subtle nuclear (strong-interaction) correc-
tions; one may hope to take over most of the re-
sults'® from hydrogen. Schwartz! has given argu-
ments to show that a finite charge distribution of
the nucleus, smeared over nuclear distances, as
well as vacuum-polarization modifications to the
nuclear potential, have negligible effects.

Since there are some discrepancies between
theory and experiment in QED, the large amount
of theoretical and numerical work required for the
completion of this project seems eminently worth-
while.

II. METHOD

The second-order energy (2) is usually evaluated
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by inserting a complete set of states:

5 (O HL | n)(n | HE 1 0)
n EO_E ’

n

but this is not practical for the present problem
since we do not have a complete set of helium wave
functions. Instead we solve an inhomogeneous
Schrodinger equation for the perturbation to the
wave function. This is formulated as a variational
principle, so that one gets a problem similar to the
original Hylleraas problem of finding the ground-
state nonrelativistic helium wave function, except
that in the present case there is no unknown energy
eigenvalue. Once the perturbation to the wave -
function has been found, the second-order pertur-
bation energy (2) is given by a single integral.

The Schriddinger equation is

(Ho+\H)¥=EY , (3)

where H, is the nonrelativistic Hamiltonian for
helium. In atomic units where the unit of length
is ay=7%/me® and the unit of energy is ¢%/ay= o?
mc?=2R we have

Ho==3VE =3V - Z/r = Z/v2+ /713, (4)

where Z=2. H; are the Breit operators. Expand-
ing the energy F and the wave function ¥ in powers
of the “parameter of smallness” ) (in this case
r=a?), inserting the expansion in (4), and equating
coefficients of powers of X one obtains an inhomo-
geneous differential equation for the perturbation
to the wave function. Since H; is a sum of opera-
tors, Hy=Y,H{’, there are mixed (; #j) and un-
mixed (i=j) second-order energies

(Yo | HY - EP 1 9¥)

G d)_

£ CATS S ©
where the equation for ¥ {’ is

(Hy- E)¥ {’= - (H{! - E{")¥, (6)
and

)
@ _ (Yol HY | ¥g)
Er (¥o | ¥o) @)

Equations (5), (6), and (7) are the fundamental
equations for obtaining the second-order energies
E$*? when Eyand ¥, are known. The homogeneous
equation corresponding to (6) has ¥, as a solution,
so the addition of a multiple of ¥, to ¥{/’ is seen
to leave E ¥ unchanged because of (7).

Equation (6) is solved approximately by the vari-
ational method. Consider the functional

Epl¥i", ¥{”]
= (U0 | Ho= By | WP+ (1| Y~ B | o)
+{(¥o | HP -E{P [ vy . (8)

The variational principle

THE FINE STRUCTURE OF HELIUM 2029

S B[4, {10
with respect to ¥{*’ gives Eq. (13) for ¥{’ and

the value of the functional (8) is then just the sec-
ond-order energy E{"*?’ [Eq. (11)], apart from
normalization. Variation with respect to ¥{? gives
the adjoint of Eq. (6) for ¥{#’; the value of the
functional E, is then E{*}, Once the solutions
¥{" and ¥{ have been obtained we have four dif-
ferent ways of calculating (numerically) the same
physical quantity E5# = E{""?) for j#j (for i=j

we have two ways):

EH (¥, | ¥y)
=—(U{V | Hy—Eo | ¥{y= = (¥{ | Hy- E, | ¥{")
=(¥o | H{" = E{" | ¥{")=(¥{" [H{" - E{" | ¥,) .
(9)

Comparison of the numerical result obtained the
four different ways will indicate the seriousness
of round-off errors.

The method of solution is the usual one of setting
up a sequence of functions to approximate ¥ {#’,
each sequence consisting of a sum of terms U,
with coefficients x\’ as linear parameters :

N
) o @)= 5 L. ¢
‘1/1”~¢ )‘Lllxni)Uny

which turns (6) into a system of N inhomogeneous
linear equations for x{’,..., x\":

N
kzl[w, | Hy | U) = Eo(U, | U 2P =",

1=1,2,..., N (10)
where
bi'= = (U, | H{" | Wo)+ E{V (U, | %) . (11)

We do not use functions U, that form an ortho-
normal set. The accuracy of the computed sec-
ond-order energies will be judged by how well (or
badly) they converge as the number N of trial func-
tions increases.

The choice of these trial functions will be guided
by the ones used for the variational solution ¥ of
the homogeneous nonrelativistic Schrodinger equa-
tion. We will calculate the second-order energies
using the trial functions employed for the variational
solution of the ordinary Schrddinger equation;
these functions are called the standard bases. Be-
cause of the singular nature of the Breit operators
as 7~ 0, 7,0, or 7, 0, the left-hand side of (13)
will be less singular than the right-hand side, i.e.,
HyU,(n=1,2, ...,N) will not reproduce the singu-
larities of H{*’¥,, and this will in general manifest
itself by slow convergence of E§**?) as N increases.
Therefore, one shall have eventually to intorduce
trial functions which have singularities as #; -0,
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=0, or 7;~0, in addition to the terms in the
standard basis. Once ¥, is known, one can de-
termine what extra functions V,, are needed from
the requirement that H, V,, shall have the same
leading singularities at ;- 0, 73—~ 0, and 713~ 0
as H{V¥,.

This approach to second-order perturbation
theory,!® sometimes called the method of Dalgarno
and Lewis,?® has been used to calculate the second-
order Stark effect in hydrogen and the perturbation
on a hydrogen atom of a far-away charge. It was
investigated by Schwartz?! in a series of papers,
culminating with a very accurate calculation of the
nonrelativistic Lamb shift in hydrogen (Bethe sum),
and has also been used by Schwartz® to calculate
the Bethe sum in helium. In these hydrogen prob-
lems, exact solutions for ¥, in closed form were
obtained; in the case of the helium Lamb shift, a
variational solution for ¥, (for each value of the
photon momentum) was used.

III. NONRELATIVISTIC WAVE FUNCTION

To start the calculations we need the nonrelativ-
istic wave function ¥, which is the solution of

Hy¥o=Ey¥,, (12)

with H, given by (4). The time-honored variational
method is used. The functions chosen for the
standard triplet-P basis are (Hylleraas basis)

1-P;, »

Uippn= P Ty 7,;'11,51,‘1.2 g1/ 2kory ,=1/2kry , (13)

where =20, m>0, n>0. The variational wave
functions are
l+min=w

Yo~ o= 2l

1, myn=0

Clmn Ulmn ’ (14)

where the coefficients C;,, are determined from the
variational principle. In (13), P;, exchanges co-
ordinates 7, and 7,, and the P-state character is
given by the vector sign.

This type of triplet-P wave functions were used
by Schwartz!® to calculate the expectation values of
the spin-dependent Breit operators; with w=10
and 286 terms in expansion (14) the results were
accurate to 1 part in 10*. While this fell short of
the goal of 1 ppm, these functions should be quite
adequate for the present purpose since we only need
an accuracy of 1% in the final answers. With an
expanded basis, obtained from (14) by the replace-
ment Cypn—~C imn+Dymn (1 +75)'/2, the goal of cal-
culating the leading term of the fine structure to
1 ppm was achieved with a 439-term wave function,
but the computations had to be done in 52-decimal
arithmetic. Wave functions (14) have been used by
the author® to calculate the three reduced-matrix
elements determining the hyperfine structure of the
23pP level in helium 3 (which has nuclear spin 3);
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with 165 terms the accuracy was about 0.5% .

The three basic variables are thus the two nu-
cleon-electron distances 7, and 7, and the interelec-
tron distance

7122 |F1=To | =(ri+ri-2r75c086,)' %,

where 6, is the angle between ¥, and T',. Wave
functions are computed for w=1,2, ..., 8. The
number of terms in the expansion (13), i.e., the
number of different choices of (I, m, n) such that
O<l+m+n<wwhenl!=>0, m=0, and n>w is

N(w)=3(w+1) (w+2) (w+3) . (15)

The variational-principle equivalent to the Schro-
dinger equation (12) is

6(¥y | Hy—Eo| %3)=0. (16)

Approximating the lowest triplet- P wave function
¥, by an expansion ¥, of the form (14), the varia-
tional principle (16) gives

N(w) N(w)
5[2 21 CeC; (U, | Hy | Uy) = Eo (U, | Ul>)jl =0,

P

(17)
where (I, m, n)—Fk; the so-called “natural” order
is used. This means that the 3 (w +1)(w +2) possible
values of (I, m,n) such that [ +m +n=w, with [ >0,
m = and n =0 are mapped one-to-one into a range
of & values given by N(w — 1) <2 <N(w). Variation
with respect to the coefficients C, gives a sym-
metric eigenvalue problem; using an obvious no-
tation, we have

N
21[ (Hﬂ)lk_EOIlk]Ckzo’ l=1, 2,~--sN(“’)- (18)
k=
We seek the lowest eigenvalue Ey=Ey(w) and cor-
responding eigenvector (Cy, Cs, - .. , Cy(w)) in this
problem. The approximate wave function ¥~ ¥, is
then given by (14). The eigenvalue problem was
solved by an approximate iterative method, de-
scribed by Schwartz.!°

Ideally, the screening parameters ko and x should
also be varied. However, differentiating the ex-
pression in square brackets in (17) with respect to
ko and k gives a huge expression, and the resulting
two equations would be highly nonlinear and im-
possible to solve for ko and k. To obtain the best
values of k and o, i.e., those which give the lowest
eigenvalue E;, one must proceed by trial and error.
For each guess of (ko, k) the matrices (H),, and
I,; must be calculated, which requires the compu-
tation of many integrals; then the secular Eq. (18)
must be solved. This should be done for each value
of w, since there is no reason for the optimum
values of ko and k, for one value of w, to be op-
timum at another value of w. We did not perform
this variation, but used Schwartz’s'® values of
and o for all values of w?*:
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k=4.62, 0=0.29 .

These two numbers are the only input for the cal-
culations reported here. Schiff etal.?® calculate
wave functions and expectation values of the Breit
operators for several states in helium, varying
their screening parameters. However, using a
560-term wave function (with only integer powers
of their variables) and varying the screening pa-
rameters, they did not match the accuracy of
Schwartz’s calculation of the fine-structure inter-
vals that he obtained using 439 terms, with half-
powers, but keeping the screening parameters con-
stant. We therefore conclude that for an accuracy
of 1%, the values of k and 0 may be kept constant.

1IV. MODEL PROBLEM

The procedure for obtaining second-order per-
turbation energies can be tested on a simple case
where the answers are known. The nonrelativistic
Hamiltonian is Hy=T + V, where T is the kinetic en-
ergy and V the potential energy. If we take 7 and
V as perturbations,

H{"=V and H{=T,
then it is known that

(1 ( , ’
E{"=2E,, E{®=-E,, Ej""=E""=E,,

(19)
EMPD=EPZV-_F.

These relations can be deducted from a simple
scaling argument. In cgs units the Hamiltonian is

(Ho)cgs = (ﬁz/m)(T)a.u. +ez(V)a.u. ’ (20)

where (7), ... and (V), ,. are T and V in atomic
units. The Hamiltonian H=Hy+AT +pV=(1+X) T
+(1+u)V, where X and u are “parameters of
smallness,” has the spectrum of H; in scaled
units; since the energy unit is e%/ay=me*/n?,

it follows from (20) that the scaling factor is
(1+p)?/(1+)). Thus the perturbed Hamiltonian H
has a perturbed energy level

(1+p)?

E=E, 1+2

~Eo(1+2u -+ p2+2% —2un).

(21)
Relations (19) follow from (21).

Because Hj is just the sum of the two perturba-
tions, H,U, will reproduce the singularities of
HP o ~H{ W, (i=1,2), so the standard basis (13)
should be adequate for the expansion of v, There
are no singularities in this calculation to slow down
the convergence of E¥'¥) as w increases.

The calculation of matrix elements (H,),, of H,
(and thus also of T and V) between a pair of ele-
ments in the standard basis is described in Ap-
pendix B. The inhomogeneous system of equations
(16) to be solved is

N(w)
> ApX =0t 1212, ,Nw) (22)
k=1

where A,,= (Hp)y, — Eo(w'),,. Here Eg(w’) is the
approximation to E, obtained when N(w’) terms are
used in the expansion (14) for ¥,; using this varia-
tional wave function in (11), the right-hand side

of (22) becomes

N(w)
b;”:_ Z) Cn[(H{”)ln—El(.i)Im]r (23)
n=1
where
N(w) N(w’)
E{"= [E 2 c,,c,n(H{“)m]/m!%)
m=1 n=1
(24)
and
N(w’) N(u")
<‘I’0' ‘1’0>= Z;l Zi C.Cnlum - (25)

The second-order energies Ej**!) in (9) are given
by

E§H9 (W, | )

N(w’) G N(w’)

== Z>1 Xm)< Zl Xr(r“[(HO)nm—EO(w,)Inm]>
ms=. n=
N(w) (

== 2 b XY (26)
n=1

there are similar expressions for Eg”? .

If w=w’, then Eo(w’) has a value which makes the
matrix A, singular [see Eq. (18)]. We could try
to avoid this complication by keeping w’ bigger
(smaller) than the largest (smallest) value of w
for which ¥{’ and E§""? are calculated. But in any
case Ey(w) is quite close to Ey(w’), and one would

‘have to solve an “almost singular” system of linear

equations, and this can be very unpleasant nu-
merically. It is also preferable to have w’=w in
the calculations for each value of w, so that the
second-order energies are obtained by exactly the
same algorithm for each value of w. So the same
number of standard terms are used in the expan-
sions for ¥{!) and ¥,. The singular matrix 4,,
then has rank N(w) —1, because E,(w) is a non-
degenerate eigenvalue, and we delete one equation
from the system of equations (22). One of the un-
knowns may be put equal to anything, and the deleted
system of equations is solved from the N(w) =1 un-
knowns. This solution is inserted into the deleted
equation and compared with the corresponding
right-hand side. This gives a test on consistency
and round-off errors.

Clearly, the system of equations (22) are not
over-determined. The coefficients C, in expansion
(14) of ¥, demonstrate the linear dependence among
the rows of A,;:

N (w)

N(w)
2 Alkck:<Ut|H0—E0(w)| g C.U)
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TABLEI. Results of variational calculations of the un-
perturbed energy of the 23P level and expectation values
of potential and kinetic energies, in atomic units.

) E, V=3 (v EP=(T)
1 4 —2.1294717879 —2.1557992765 2.1821267650
2 10 —2.1326784020 —2.1349720423 2.1372656826
3 20 —2,1330850392 —2,1330337967 2.1329825540
4 35 —2,1331402223 —2.1331028335 2.1330654447
5 56 —2.1331575951 —2,1331389305 2.1331202659
6 84 —2.133162289 —2.13315571 2.13314913
7 120 —2.133163594 —2.13316125 2.13315891
8 165 —2.133 163983 —2,1331631 2,13316226
Extrapolated —2.13316418(4) —2.1331643(6) 2.1331644(9)
=(U, | Hy-E, ’ ¥y)
=0 fori=1,2,..., N(w).

The same relation holds for the right-hand side:
Ny N(w) . )
2 0 C=( 2 CU, | H? -E{ | %)
k=1 k=1

=(¥o | B | Wo) - E{" (¥, | ¥g)=0

because of (7).

Theoretically, any one of the equations in (22)
may be deleted. But the most important term in
the expansion (14) for ¥, is the first one, with
l=m=n=0, corresponding to the leading (1s2p) term
in a configuration expansion. As a practical mat-
ter, we put X!*’= 0 when we delete the nth equation.
The truncated matrix obtained by deleting the first
row and column of A,, is less close to being singular
(is presumably better conditioned) than the one ob-
tained by deleting the nth column and row of 4,,
with »> 1. At higher dimensions N(w) this may be
important.

Tables I and II present the results in atomic
units. All the computations reported in this work
were done on a CDC-6600 computer in single-pre-
cision arithmetic (48 binary bits corresponding to
slightly more than 14 decimals). When X ¥, X,
..., X, and X{V = 0 were inserted into the left-
hand side of the first equation of (22) and compared
with the right-hand side b{!’, the numbers agreed
to as many or more digits than the ones quoted for
the results of Tables I and II. The iterative pro-
cedure for obtaining ¥, was stopped when the dif-
ference between the eigenvalues calculated for two
successive iterations were less than a certain pre-
scribed € in magnitude. For 1<sw <5 we used
€=10"", put for w=6,7, and 8, € had to be in-
creased to 107'°. This does of course not imply
that the elements C, of the eigenvector are con-
verged to anywhere near this accuracy, since the
variational principle gives an eigenvalue one order
better than the eigenvector, roughly speaking. We
therefore iterated once more to obtain a slightly
different wave function; the computations of Table
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I were done for these two sets of wave functions.
The results agreed to the digits quoted. The sec-
ond-order energies E{"") were calculated by the
two methods of Eq. (26) for both wave functions.
The results using the two different methods (four
in the case of E{"?) calculated with the same wave
function were in slightly better agreement (one more
digit for w=6,7, and 8) than the results calculated
by the same method using different wave functions,
for both methods.

The extrapolated results are obtained by methods
discussed in the Sec. V. The extrapolated E; may
be compared with Schwartz’s best result of
-2.1331641908.1° Relations (19) are well satisfied
by the extrapolated results. Notice that the rela-
tions of the second-order energies among them-
selves are satisfied (to within round-off errors)
for every value of w. This is why we have one and
not four columns in Table II, whereas the relation
involving E; and the first-order energies are only
obeyed accurately by the extrapolated result. This
is obvious if we look at the usual sum for second-
order energies, using a sum over a complete set
of quantum states. For any term in the infinite
sum there are the following relations for the nu-
merators:

(0‘7“")(”‘ V‘0>=<0|H0—V{n)
== [¢o| vlny[*==[¢0] 7| ny |?,

since | n) is an eigenstate of Hy, and In)# | 0).

These results gives us some confidence that we
have a sensible algorithm for computing second-
order energies.

V. METHOD OF EXTRAPOLATION

Schwartz®® has developed a method for estimating
convergence rates of variational calculations based
on an analogy with the problem of fitting a given
function with a finite number of functions from an
orthonormal basis. From this we expect the dif-
ferences between the computed energies for suc-

TABLE II. Second-order perturbation energies from
perturbation by the potential and kinetic energies, in
atomic units.

EMD @D = pih? - QD

—1.8013144780
—2.0881998263
—2.1285361103
—2,1324502372
—2.132976961 2
—2.1330922
—2.1331374
—2.1331539

® DU W | E

Extrapolated EMD=p@2-_ gL =2 133165(2)
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cessive variational calculations, labeled by w, to
be proportional to either a® or w™ (| al < 1,p>1),
called the fast or slow convergence rates, respec-
tively. The unperturbed energies E, as well as the
perturbations E{*’ and E§"*? should exhibit this be-
havior, qualitatively at least. Singularities in the
total Hamiltonian will show up in slow convergence
rates, unless the trial functions also have some
(milder) singularities. We shall merely try to de-
termine p or a empirically from the computed en-
ergies.

If the trial functions are good in the sense that
they have the singularities of the wave functions
(perturbed and unperturbed) built into them, one
expects the fast convergence rate. However, even
in the case of variational calculation of the un-
perturbed wave function ¢, for the 2 3p state, using
the standard basis (13), the convergence rate will
ultimately (for large w) be slow because of a weak
logarithmic singularity in the “exact” wave function
when 7;~ 0 and 7, - 0 simultaneously, the so-called
Fock singularity.?” The advantage of using addi-
tional trial functions proportional to (;+ 7)*/2
(Ref. 11) is that these approximate the Fock terms.

In the extrapolations in this work we try to fit
the data to both the fast and slow rates. In the
former case the ultimate values of o are guessed
from the three or four last computed values of a;
the ratio between successive differences between
consecutively calculated energies. If Q is the last
value of w for which the calculations are done,
then the extrapolation is

(En -Egq,) [a/(l - a)] (27)

which is added to the last computed energy Eg;

the uncertainty in o will give an uncertainty in the
extrapolation. In the latter case the logarithm of
differences between consecutively calculated en-
ergies, log |E,-E |, is plotted versus log w,
and we try to fit the points with a straight line with
more emphasis on the points with higher values of
w; the success of the fit gives an indication of the
usefulness of this extrapolation method. If the
slope of the line is p, the extrapolation is

(Eq - Eq.4)F30),

where

e a e\

Fin- 2 (5o)
9 1. p ppeD(pe2)
*5-1 212~ 72098 (28)

when the sequence of calculated differences is
monotonous. When the differences alternate in
sign we have

F&(P)=§1(—1)"< L ),

Q+n
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L. p  plpsD)(p+2) 0
T2 tag T a8l : (29)

The extrapolated results of Tables I and II (where
the energies decreased or increased montonically
with w) are somewhere between the values obtained
from the two schemes, but closer to the extrapolated
value given by the slow convergence rate. The un-
certainties have been taken as half the difference
between the two extrapolations.

Each reader must judge the accuracy of the ex-
trapolated result for himself since the schemes
are rather heuristic. A good portion of human
judgment goes into the final extrapolated values,
especially in the assignment of uncertainties. But
we believe that a safe upper bound on the uncer-
tainty is the extrapolated increment itself, i.e.,
the difference between the last calculated and the
extrapolated energies.

VI. SECOND-ORDER ENERGIES WITH INTERMEDIATE 3P
STATES USING STANDARD BASIS

In atomic units the Breit-operators relevant for
this work are

1 G+ 0 (? XPy TpXP )
W _ 1 2 1+0a ) (F1XDP1  TpXPy
Hy -4‘*Z<‘z—9 A tTa ) GO0

3 (6&) ((? —-T)%(D _5)>
@_ _ 9 2(%1+% ) ((r1—T, 1= Pp
H{® = 4a 5 ?;1;2 , (31)

B Lok (5,7, 200 Bl )

i - Lot L, LwBlfwb) | g
2 7y 712

H® = -} (pteph) (34)

H{® = 321026 (r)+6®(1,)], (35)

and the operator correcting for the finite mass M of
the He® nucleus is, in atomic units,

H{" =205, By . (36)
Here m is the (reduced) electron mass, m/M ~1, 36
x10™, so the operator (36) is somewhat more im-
portant than the Breit operators since @?=0, 53 X107,
The operator H {” is the coupling between the spin
and the orbit of the same electron, for both elec-
trons (Z=2), H{¥ is the coupling between the spin
of one electron and the orbit of the other, and H{®
is the spin-spin (or dipole-dipole) interaction. These
are the only spin-dependent Breit operators.

H{* is due to the retarded interaction between the
orbits of the two electrons, H{® is a correction
coming from the relativistic variation of the elec-
tron mass with velocity, and the contact interaction
H{® is a term characteristic of Dirac theory. There
has been some confusion about this operator!®; the



2034 LARS HAMBRO

one given by Bethe and Salpeter?® is not Hermitian.
The operator H{® has been obtained in the form (35)
by Itoh!® and Kim. !* In this work we shall only cal-
culate contributions when the perturbation wave
functions ¥{" have the same symmetry as ¥, i.e.,
from intermediate triplet P states with odd parity.
Therefore, some terms in the spin-orbit operators
proportional to 0, — G, which have vanishing matrix
elements between states of the same multiplicity
have been left out. From the operators H{® and
H{® we have left out terms proportional to 6 ®(%,,)
whose matrix elements between standard terms
(13) vanish.

The spin-orbit operator (including the term that
we dropped) is a contraction of an irreducible
spherical tensor operator of rank one in spin space
and a similar operator in ordinary space. Acting
on a triplet P state it will then give a mixture of
triplet P, triplet D and also singlet P, singlet D,
There can be no higher multiplicities since two elec-
tron spins can only give triplet and singlet. The
spin-orbit interaction has even parity, so it does
not change parity, therefore there are no S states;
these would have to have the odd parity of ¥, and
it is impossible to construct an odd scalar from T,
and T,. The spin-spin operator H{® is a contrac-
tion of a spin operator of rank two and an operator
in ordinary space of the same rank. Acting on ¥,
it will then give a mixture of intermediate P, D, and
F states, all triplets with odd parity. The second-
order perturbation energies that we do not attempt
to calculate in this work are thus second-order spin-
orbit energies from intermediate D, P, and °D
states, second-order spin-spin energies from inter-
mediate D and °F states, and a mixed second-order
contribution from the spin-orbit and spin-spin inter-
actions with intermediate 3D states.

The details of the calculations of the matrix ele-
ments

(Upoyorw |H Uy, i=1,2,...,7

where U,,,, is given by (13), are described in Appen-
dix B, and the calculation of the necessary integrals
is discussed in Appendix A, In Table III we give the
expectation values of the seven operators, using the
wave functions ¥, (14) for w=1,2, ..., 8. The units
are chosen for comparison with the results of
Schwartz!? and Schiff ef al. ?®. These results are for
“stretched” states where J=m;=2, As in Sec. IV,
all calculations were done with two sets of slightly
different wave functions ¥, and the results agreed
to the digits quoted. For w=<4 there was complete
agreement for all 11 digits with which we had the
computer print the results. Careful extrapolations
according to the schemes of Sec. V has been made,
the assigned errors come mostly from the uncer-
tainties in the values of @ or p used in formulas
(27)-(29); this is probably too optimistic. The ex-

Expectation values of the operators (37)—(43) using Hylleraas expansions (18) for the wave functions.

TABLE III.

EV[20n/M)R)
—0.058229558253
—0.059299556 963
—0.061960762 81
—0.06337755521
—0.06419143230
— 0,064 463 46
-~ 0.064 53566

—0.0645629
—0.064580(5)

E® @alg)
7.802284 9193
7.945181016 2
7.9053717914
7.9121701450
7.908 943 679

7.909 714

EP @atg)
—9.650474 2823
—9.9742033112
—9.9012260173
~9. 915990795 6
~9.910076 60

—9.91183

EPea’®)
0. 034 490 724 822
0.032 904 898 326
0.034113 074489
0.034 672 686 84

E® (Lo’
0.019652 745 588
0.018015107575
0.017932 223 852
0.017982384 057
0.01800112012
0.01800943
0.018012 740
0.01801427
0.018016(1)

EP Go'®)
—0.21827744969
—0,201776 410 02
—0.203 08763420
—0.20459137883
—0.2053541147
—0.2056763
—0.20580367
—0.2058600
—0.20591(1)

E{P G o?®)
1 0.13621571056
2 0.131125093 81

3

0.134 790079 01

4 0.136 88109890

0.034 940446 83
0.035 035 69
0.035 065 736
0.035 075 96

0. 035082 (2)

0.137 8979722

0.1383407
7 0.1385195
8 0.1385934

5
6

7.9095189
7.909689

—9.91152658
—9.911905

7.90964(1)

—9.91180(5)

0.13864(1)

0

|on
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H® and H{", the second-order energies are all
monotonic with w as were the first-order energies
E{" (i=1,2,3,4, and 7). The quantities E{?*> and
E{®'® oscillate in a very regular manner with in-
creasing w, permitting a rather accurate extrapola-
tion. This may be accidental since E{M'® | E®),
E$® and ES'® behave quite erratically as w in-
creases. In these four cases extrapolation methods
cannot be justified, so we have just guessed at the
final values.

A general feature of these results is that slow or
fuzzy convergence is associated with sharp loss of
numerical accuracy with increasing w, as well as
with enhanced sensitivity to a small variation in ¥,
and that the seriousness of these diseases for a
particular E{"" is determined by how singular the
operators H{) and H{"> are. Whenever H}{’ or H®
are involved neither the first-order nor the second-
order energies are monotonic with w, except for
E®® EP® and ES®. That these two operators
should cause similar behavior is reasonable since
both yield 6 functions (of T, and T,) when acting on
¥,. The other operators all give pole-type singular-
ities at the nucleus (¥,=0 or 7,=0) or when the elec-
trons come together (#,,=0). For (Ho—-Eg) ¥{¥ to
give 6 functions we need terms proportional to T1/7 15
or T»/7; in the expansion of ¥{*’| but to reproduce
the poles one only needs terms proportional to ?1/1’1
Or T,/75 OF T15/715 [corresponding to an expansion
like (19) starting with /= -1 for ¥{"], so it is not
surprising that the operators H{> and H{® give per-
turbation energies whose behavior as w increases
is quite distinct from that of the other five operators.
It seems as if the mixed second-order energies,
whose convergence is controlled by the poles at 7,
=0 (or 7,=0) and 7,= 0 are better converged than the
unmixed ones who are controlled by one kind of sin-
gularity only. One might expect that the conver-
gence rates determined by the pole at 7;,=0 would
be faster than the ones associated with the poles at
7,=0 or 7,=0, since both ¥{*’ and ¥, vanish when
715=0 (because of antisymmetry), and thus that E{""
should converge more slowly than E$*® and E %,
although this does not seem to be the case for our
values of w.

The spin-dependent operators displace the three
fine-structure levels. In first-order perturbation
theory the displacements are

E)s= EP+EP)(I)+EPg(J),
where, for this particular case,

J+1)-4

J
=L ! , 120(- 1)

BrNIE@-a)! ’

which follows from the Wigner-Eckhart theorem. #
Here the expectation values E{", i=1, 2, 3 have been
taken for the “stretched” state where J=m;=2, so

that f(2)=g(2)=1. In second-order perturbation

gW)=

HAMBRO 5

theory the J dependence of the corrections are given
by

[0 IH 1n)], [(n 1H{” |0)],
Ey-E, ’

B3, =20 (37)
n
where the matrix elements [(0H|" |n)], are be-
tween triplet P states, hence their J dependence is
precisely that of the first-order perturbations.
These matrix elements are of course diagonal in J
since H{?’ are scalar operators. Since E,and E,
are unperturbed J-independent energies, we obtain
the second-order displacements

(E2)s= U PES D + D+ 28 (47)
2
+ 2f(J)g(J)iEE(i,3)+ [G(J)]ZE?’:”
=1

2
+2f(W) 20 72 E;h Py 20(J) 27 E&P

i=1 j=4 =4
where E5*? refers to the quantities of Table IV [they
are the corrections given by (44) with J=2]. The
fine-structure interval vy = (Ey)o— (E1); is adjusted

by an amount Avy = (Ej)o— (Ep);:
AVO].: %az(ﬁ {é az[s(Ez(lyl)+E2(2y2)+ ZEz(lyZ))
—50EMY + E@®) + TSES Y |- 203EMY + EZY

+E§1’5)+Eé2'5’+E§1'6) +Eéz,(i))_'_ 30 QZ(E;3'4)+E§3'5)

+EPOY) L om/M) (~ELMT _ERV L 15ES D))
(38)
and there are similar formulas for Av;, and Apg,.
In Table V the two extrapolated results of Table IV
are combined into single final values for the second-
order energies. The uncertainties in the extrapola-
tions are mostly products of human judgment (or

TABLE V. Contributions of the second-order energies
of Table IV to the fine-structure intervals.

Final result for Contribution to Contribution to

@, 4) E,"%9 from Table IV Apy in 104 cm™! Avy, in 107 em™!
(1,1) —0.63(4) ~0.74(5) 0

@2, 2) ~1.12(5) —~1.31(6) 0

1,2) 0.677(5) 1.58(1) 0

1,3) —0.0475(2) 0.924(4) —0.1478(6)
@,3) 0.080(2) —1.56(4) 0.249(6)
(3,3) ~0.0060(3) ~0.175(9) —0.056(3)
(1,4) —0.1356(5) 0.4218(16) 0.8437(31)
(2, 4) 0.1862(4) -0.5793(12) —1.159(2)
3,4 ~0.01320(2) ~0.6160(9) 0.2464(4)
(1, 5) -0.10(5) 0.31(16) 0.62(31)
@, 5) 0.1095(6) —0.3407(19) ~0.6814(37)
(1.6) 0.26(3) —0.81(9) —1.62(19)
2,6) ~0.2512(9) 0.7816(28) 1.563(6)
3,5) 0.0067(5) 0.31(2) —-0.125(9)
(3, 6) 0.0075(5) 0.35(2) —0.140(9)
a7 0.239(5) —-1.90(4) —3.80(8)
2,7 ~0.324(3) 2.58(2) 5.16(4)
3,7 0.0216(1) 2, 58(1) ~1.031(5)
Experimental values 9879.121(12) 764.2606(17)
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prejudice). The contributions of these 18 correc-
tions to the fine-structure intervals vy and vy, in
wave numbers are computed from (45) and the corre-
sponding expression for Avy,. The conversion fac-
tor a?(3a®®)=1.555671(9)x10™* cm™ (6 ppm) has
been obtained from Tables XXXII and XI of Ref. 4.

As seen from Table V, some of the second-order
energies E§*7) have an accuracy which is a good
deal greater than that of the present experimental
value for vy (good to about 2 ppm), but the situation
as regards v, is not nearly so good. The results
fall short of the desired accuracy, which is to sur-
pass the precision of the experimental values. But
they demonstrate that all second-order contributions
are important and will have to be calculated to sev-
eral significant figures before a determination of
the fine-structure constant can be made from the
measured values of vy and vy,. Previously, only
one second-order correction has been calculated,
the mixing (by the spin-orbit coupling) with the
nearby 2P state, Pekeris et al.3 find that this
shifts the J=1 level 1,58x10™ cm™ downwards, of
the same order of magnitude as our results.

One can try two paths to achieve better accuracy
for the various E{*?’. One possibility is to go on to
higher values of w, using just the standard basis as
we have done here. In view of the rather sharp loss
of accuracy for some of the E{*"Y) as w increases,
one would probably have to use double-precision
arithmetic for w210, say. Although the calculations
reported here were done in a matter of minutes on
a CDC-6600 computer it was decided not to go on to
higher values of w, since the computer time re-
quirements would increase drastically. The second
alternative is to make the trial functions for y{*’
more flexible. In a future paper we shall see some
examples of how this leads to increased accuracy.
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APPENDIX A: INTEGRALS

We describe here the evaluation of the many in-
tegrals needed for the calculation of the matrix ele-
ments of the operators between functions used for
the variational expansions. Most of the tricks have
already been used by Schwartz!® and Hambro. 2

The majority of the matrix elements of the opera-
tors Hy, H{V, ... H{" are expressed in terms of the
four basic types of integrals:

d
A(L,M.N)= J ”1Jd”2 et e eyttt

B(L,M,N)= fdvlfdvz

X e-arle-brz,},l -2 Na L-2

71 c0S6;, .

There are two kinds of A and B integrals, the direct
ones for which a=«ko, b=«, called A ;(L,M,N) and

B pi(L,M,N) and the exchange ones for which a=b

= 3k(1+0), called Agy(L, M,N) and Bgy(L,M,N). The
following recursion formulas are used:

AL, M,Ny=A(L -2, M+2, NY+A(L -2, M, N+2)

-2B(L-2,M+1,N+1), (Al)
which follow from
v,=vii v - 21,7, cosby,, (A2)
and
B(L,M,N)=[(L -2)/(L+2)][B(L~-2,M+2,N)
+B(L -2, M, N+2)-2A(L -2, M+1, N+1)], (A3)
which follow from (A2) and
fdﬂl I sin6,,71,
ao, dQ, riy?
"L+ 2 J’ f cos® Ly, (Ad4)

This identity is proved by one partial integration;
take T, as fixed along the z axis, then 6;,=0,=6 and

f‘ml J’dﬂz F(6y,)== f” de sin@ F(9) .
0

The recursive calculation is started by

MIN!
PLEFY LN

B(Z’M’N):O’ A(Z’M’N)=

A(l,M,N)=FM+1,N;a,b)+ FN+1,M;b,a),
(A5)
B(1,M,N)=3[F(M+2,N-1;a,b)
+F(N+2,M-1;b,a)], (A6)
where the F integrals are defined by
F(M,N; &, B)= [ dr e v [ ds eBss¥T

There are three kinds of F integrals; for the com-
putation of the direct A and B integrals we need F
integrals with a=«k, B=«o and a=ko, B=«k and for
the exchange integrals we need the F integrals for
a=B=3xk(l+0). Itis easy to calculate the F inte-

grals:
1M-1
F(Myl;a’ﬁ)—ﬁg_am)ﬂ—7
M+N-2)! N-1
F(MsN;a’ B):‘é(aiB)M-b]V)-i-*' B F(MyN_l;a’ B)
follow after one partial integration in s. Equations

(A5) and (A6) follow from
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asy __l re
47r Vi Vs’ 47r 7’12 3r ’

where 7,(r) is the greater (smaller) of 7, and 7,.

These recursion schemes give the A integrals
for L=1, M=1, N=>1 and the B integrals for
L=1, M=22, N>2. The schemes are all safe in
the sense that there are no substantial loss of ac-
curacy due to subtraction of almost equal quanti-
ties. For L >2 the B integrals are all negative be-
cause the dominant contribution to B integrals with
a positive power of 7,, comes from large values of
712 When cos b6y, is negative. So for L >4 the re-
cursion formulas (A1) and (A3) are safe.
at.the actual numbers involved one can convince
oneself that there is no important loss of accuracy
when L=3. These integrals are sufficient for the
calculation of matrix elements of Hy, H{® 6 and H{"
in the standard basis.

The integrals

’

S+7
S =7

F, (M,N;aB)= J-

0

o0 ro
dre'“'r”"j dse™ s¥11p=>—"—
r

for @ =«,B=ko and a=«ko, B=k, and a=B=3k(l +0)
are also required. Substituting »=yx and s=9y we

get
FL(M,N;O!,B)
= [tapamtg e wdy yH N lgmtaxehly

1 1-x J,

0

_M+N-1)! 1 an M n[(L+x)/(1 - )]

aM#N o (x+B/a)M*N .

Substituting x = (1 —«)/(1 + #) we obtain
F,(M,N;a,B)

W*'N—l)! 1 o (A =211 +2) " 1n(1 /u)
PR L [T—u+(B/a)l +u)]72 "

To avoid dangerous recursion schemes we compute
the integrals along M + N =const and use the back-
wards recursion formula

F,(M,N;a,B)
_QF,(M+1,N;a,p) +BF,(M,N+1;0,8)
M+N

For the actual calculation we must treat the three
cases separately.
For a =8, we have

M+N-1)! & (N-1 1
F,(M,N;a B)—% 121 ( )W

(A7)

J-1

1
X J’ duu"'l(l—u)”*”""llnl,
0 u

where the expansion

(1 +2)¥t= i(? 1)(2 )71 —u)V

By looking

jon

has been used. Defining the integrals

1
J(M, N)= -f A u 11 - ) Iny

__ 8 ! M-1 N-l_ 9
_—aMJ; duu” (1 -u) == o’ B(M, N),

where B(M, N) is Euler’s Beta-function, we have

__ 8 IMrn)

J(M’N)“aM T(M+N)
__ T(nr(nN) ( I'(M) T'(M+N)
T(M+N) T I‘(M+N))

__Immrw [(”" 1 ) (“’*ﬁ’" 1 )
tosm W27 "\ 4 &7
where y is Eulers constant.®* Thus we have

M-1)1(N=-1)1
(M+N-=1)!

J(M, N)=

WL, 1 1
S A VN

and we obtain a closed expression,

1 & (v-1)
FL(M,N; ¢, ¢)= Zmw— 2y =7 MN=J =11

1 1
X 29 [ —peee g ——
2 (J+ +M+N—1>’

where c=k(1+0).
For a=k>fB=ko and /a=0, the expansion
1
[1-u+0(l+u)]*

1 S By
B (1+0)F <1+L ]

el R

L(L+ 1)~-(L+k—1)>‘

is used where B=(1 -¢)/(1+0)< 1.
infinite series for the integrals

F.;(M,N; k, ko)

This gives an

L=k
= g I 2, FADF DS 0))

where A=x(1+0) and

F )=2"N-1)I(M+N-J-1)1/(N=-J)!,
Fu,R)=B*J(J+1)+-(k+J-1)/k] for k=1,
F(d,0)=1

1 1
Sgs(J, k)=

k+d T BeMaN-1

This looks complicated, but the formula lends it-
self to an efficient programming. The series is
rapidly converging; in the program we truncate
when the ratio of the kth term to the sum of the
first 2 — 1 terms falls below a certain € (we used
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€=1019),
The third and last case is when a=«ko< 8=« and
B/a=1/c; the appropriate expansion is then
1
[1-u+(1/0)(1+u)]*

=<‘21)L (1+§ _‘ik(_;!"_“)_k.

L(L+1)-"(L+k—1)> ,

where B=3(1~0)<1. This gives an infinite series
of the same form as the one for F (M, N; «, ko) but
with A=2k and

FJK(J’ k)

=B¥(M+N-J)*** (M+N~J+k-1)/k! for k=1,

1

1
Fi(,1)=1, Sg;(J, k) = T T e MaN-1

and F ;(J) is unchanged.

Armed with these F; integrals we compute the
A(L, M, N) integrals with L=0, M>1, N>1 and
B(L, M, N) integrals with L=0, M>2, N=>2:

Ap(0, M, N)=3[F (M, N; ko, k)+ F (N, M; k, ko) ],
B, (0, M, N)

=5lF(M+1,N-1; ko, k) + F1(M -1, N+1; ko, k)

+F (N+1,M-1; k, k6)+ F (N -1, M+1; «k, ko)]

- 3[F(M, N; ko, k) + F(N, M; &, ko)] ,
and there are similar formulas for Az,(0, M, N) and
BEX(O’ M} N)'

We also require the A and B integrals for M=0,
N=1land M=1, N=0when L>1. To obtain these,
one has to evaluate the integrals F(M, N; o, B) with
N=0and N= -1, Once the integrals for N=0 are
found, the ones for N= -1 (and more negative values
of N) are obtained from
F(M, -N; a, B)

(M-N-1)! B

= £ - ; A8
3~ A\M<N ’ bl ]

N(@+p) i NF(M N+1; o, B), (A8)
which results from one partial integration. So we
can calculate F integrals with negative N as long
as M - N =1 with this scheme. A recursion formula
for F(M, 0; a, B) starting with small values of M
was not used because of loss of accuracy by subtrac-
tion. Instead we used backwards recursion,
F(M_l)o; a, B)

1 ( (M =-2)!
T M-1\ (a+p¥!
and started by approximately evaluating the integral
for a high value of M by an asymptotic series:
(-1)!
(Br)*

+aF(M,0; a, B)> (A9)

-Br

[f e L
r

S BY oo

g]-&
after n+1 partial integrations.
ymptotic expansion

2 (=1*M-F-2)1k!
w0 (o p)Riph

DI(-1 n+l ©
. (n+1)1(-1) J’ sﬂnli s
v

This gives the as-

F(M,0; a, B)= +7,,

Al10
where ( )

7| m+nzf“
Vn<—§m—

-
dy e o7 yM-n-3 f ds e
0 r

(n+1)!
= ’Bn+2

Of course, the formula (A10) is only valid as long
as n>M —3. The sum in (A10) and R, are evaluated
for several values of n; we choose as the approxi-
mate value of F(M, 0; «, 8) the sum in (A10) ob-
tained with the value of » which gives the smallest
R,. The error then diminishes for each iteration
using formula (A9) as long as M —1> a(a=4. 62,

1. 34, or 2.98). The scheme is checked by com-
paring the value obtained for F(1,0; «, B) with

F(1,0; o, B)

0 S ©
=f g e'“f dre ®"=— L f ds ePs(em?s 1)
s a s
o 0 0

1 © ;
= f de’ dse"e*"‘"’s=—1—1n9—tﬁ.
0 0 @ B

(M -n=3)! -
(a+pgiev-s— =

With our values of k and ¢2* we obtained

F(50, 0; ko, k)=0.2702036705%x10%% ,

F(50,0; $k(1+0), 5£(1+0))=0. 413 306 x 10%

using 16-decimal arithmetic. The error estimates
R, were too small to affect the numbers quoted.
This method did not work for F(50, 0; «, ko); the
asymptotic series only gave three good digits;

i.e., R, was never less than the sum in (A10) di-
vided by 1000. This integral was computed by up-
wards iteration in 28-decimal arithmetic (with
eight decimals a huge negative answer was obtained,
showing how drastic the errors can become when an
unsafe recursion formula is used). It was also
computed from the formula

(MK—MI)! (

l+0

F(M, 0; k, ko) = In . +(M=-1)!

(D1 -[o/(+ o))
Xf:’l B(M~F-1)1k! )

and by truncating an infinite series

(M -1)!
L

F(M, 0; k, ko)= - [y+1n(ko)] - I(M)
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— (=k0)* (M+E-1)!
- kZJl R kEk! ’
I(M)=f dre™*y" " Iny
0
M-1 (M -2)

=T s

and I(1)= —=(Ink +y)/k. It turns out that Euler’s
constant y cancels in this expansion. None of the
three methods described are very good because the
terms alternate in sign, but with 28-decimal arith-
metic the values obtained by the three methods
agreed to nine digits :

F(50, 0; &, ko)=0.880736751x10% ,

Actually the last and first methods (upwards re-
cursion) agreed to 13 digits.

To calculate the matrix elements of H,>, the
integrals A(0, M, N) with M=0 or N =0 (but M+ N
=>1) and B(0, M, N) with M=1 or N=1 are required;
thus, one needs F(M, 0; «, 8) and F(0, N; a, B).

For both these cases the procedure described
earlier breaks down. Instead we employ a numeric-
al method devised by Schwartz® which is well suited
to these cases where the integrand has mild singu-
larities at both end points. First, setu=1/
[1+exp(-1y)] to transform the region of integration
from O0<u < 1 to — <y < and then make the ad-
ditional change of variable x=exp(y) — exp(-y).

The integral

f _: dx F(x)
is then approximated by the sum
& 2, F(nd)
-

truncating when the terms fall below a certain ac-
curacy. Then the spacing 6 is reduced and the sum
evaluated again. This method works very well,
converging fast as the spacing is decreased.

APPENDIX B: MATRIX ELEMENTS OF OPERATORS

Here we present some of the algebra involved
in expressing the matrix elements of the eight op-

|
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o

erators in terms of the integrals defined in Ap-
pendix A. It is most convenient to work with one
spherical component of the vector ?1 in (18); we
take T{"(F;) = - (x; +iy,)/V2 corresponding to m,

=L=1. The matrix elements are all of the form
1-P - 1-P
M 0y = ———12— (D) ] ——12
v <4mfz T e 2) | H| =

X T(F) (1, 2)> ,  (B1)

where

-1/2 -
(1, 2) = €7 20T 71BNy o

and the ordering (I', m',n’)—k'; (I, m,n)—F is
implied. H is any of the eight operators, and every
one of these is symmetric in the coordinates of the
two electrons, H=H(1,2)=H(2, 1), so that

vy fﬂ [T (FyJutgemene (1, 2)

Myn= 47 47

=T (T e e (2, D] HTE (F1)t 1l L, 2).

Whenever we have more than one differential op-
erator (V, or V;), it is preferable to let all opera-
tors act to the the right. The matrix elements are
then sums of terms whose coefficients only depend
on unprimed indices, so that the actual programs
are unsymmetric in the indices. The matrices of
the eight operators are all symmetric, since the
matrix elements are real and the operators Hermi-
tian. If one lets one V operator act to the left and
one act to the right, the program will be symmetric
in primed and unprimed indices and can produce a
symmetric matrix even if the integrals used are
wrong. When all operators act to the right, the
computed matrices will be unsymmetric if the in-
tegrals have incorrect values. We thus get a check
on the integrals by letting all operators act to the
right; several errors in the programs were de-
tected this way.

We now discuss the operators one by one.

The nonrelativistic Hamiltonian H; is given by

(5):

Ho TP (T (1, 2) =( T(TP{3k3(0% + 1)+ (1/7y) [$k0(2m + 4 + D=-Z]+ (/7)) tx(2n+2+ l)-Z]*(l/rf)%m(m+ 3+1)

—/7E)znt+1+1) = (1/73)31Q21+ 4+ m+n)+ (1/715) + (/v 3skol + (v2/v3) 1kl + (r3/ v v3y) ml

+(r8/rEri)aml — (r3/viviikel = (vy/ vy rh)ikl} + TIE) (1/73) th (1, 2)

13
Ly = Py a; 8 > l
= [1 (7)) < 2 cil, myn; ko, )7yt rat yfg) + T;l)(rz) 7%—2—:, Uma(1, 2) .

(B2)

Introducing L=1+1', Mp=m+m', Np=n+n', and N,=n+m’ one gets the following formula for the matrix

elements:
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(Mo)k'k=§ ’if_,lci(l,m,n; ko, k) [Apf(L+2+s;,Mp+4+p;, Np+2+q;)

—Bpx(L+2+s;,Mg+3+p;,Ng+3+¢q,) ] +UBp(L, Mp+4, Np+2) = Agx(L, Mg+ 3, Ng +3)]

It is convenient to write out H{" T{" (¥,)u; ., (1, 2) in detail to see what terms, other than the standard
ones, are required in the expansions of zpi” for Hong” to reproduce the most singular terms in Hﬁ”wo. Since
we only consider intermediate triplet P states, the P parts are projected out when three spin-dependent
operators act on §,. The angular momenta of the unperturbed state are fixed by choosing the “stretched”
state, i.e., J=m =2 so that the spin part of the wave function is a(1) @(2). We have

HP () a@) T (F (1, 2)= 2 {au)a(m [—j—s oy X Tah Gr- %)]
i va

1712 71
- 75 laws)+ a@pup L (Lo 71;)} T (Fuil1,2), (B3)

where vectors have been resolved in spherical components
(U)t'_' ¥ (in i’l)y)/‘[zy Vo=Vy (Fix F2))¢= - “/-2 T)fl)(-flx-fz) == Z‘[ZZI uc(111 A U)T;(Ll)(-fl) T)EL. (Fz) (7\ =+ 1, 0"' 1)

by the usual law for combining spherical tensors; C(l,l,l ;mm;) are Clebsch-Gordan (CG) coefficients.
The second term in (B3) is pure D, the first term is a mixture of P and D. The P part of

\[2 T S (r1>< rz) T1 b (ri)

is
- A/V2) TP (FxF) TV (F1) = TV (F1xTo) TV (F) 1 =3 [TV (7)) (Fy T) - T (F2) 73 ],
which is proportional to [Ty X (TyxT;) ],;. So the P part of (B3) is
1
Za(1) a(2>[ T )+ g (7 - 77 170 G (B Fo) - 180 (7 n]] Ui (L,2) . (BY)
The terms proportional to ! only contribute exchange integrals to the matrix elements. Since
Fpr [Fyx (F1xTp) |= - ri3sin6y ,

we use (A4)to obtain a simple formula for the matrix elements:

(M), =3Z{Aps (L +2, Mp+1,Np+2) =(1/L) [ 1Bgy(L+2, Mg +3, Ng) +1' Bgx(L +2, Mg, Ng +3)]}

Proceeding to the next operator we obtain, after a similar angular momentum projection, the expres-
sion

P part of H{Pa(1)a@)TM (F)um(l, 2) = a(l)a(2)< %) { TE(Fy) - T(F)

1 ko 1 m k1  »n @ W B5
+2(- 2 +—1;1-+ 5 1’2——17{> [TV (F (T Ty) = T (To) 7] Uimn(1,2) . (BS)

The integrals contributing to the matrix elements the factor (72— 72) cancels out. As with H{1, the
are easy to write down. The first two terms must remaining terms only give exchange 1ntegrals, and
be treated separately when L=0, when the formula (A4) is used again, except when L=1, when the
s, f s, 1 formula

f ?a NG J’d91 stzz sin® 912
is used, in which case F integrals are needed.
Since

N . _risry _ (i-vd? Y1+ Ve

£y (ty ~To)=2 (r3 -7} +7%), 473yl 8vird Ly -yt

Tpe (Fy—Tp)= %(Vi -r5- 1’%2) ’ is used, so that F, integrals are required. The
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spin-spin operator is a contraction of two tensors
of rank two:

3_

B=42 N
Z; S fzu) Tff)(rm) (-1*

H®= -
712 w=-2

Only the spin-operator & with 1 =0 gives back
the spinor a(1)@(2) when it acts on that state; we
have

S a(1)a(2) = (1/V6)(201, 05, — 01, 03, — 03, 0z, ) (1) (2)
=VZ a(l)a(2).

T& (¥1,) TV (F,) is a combination of P, D, and F
parts:

P part of T (F15) T (Fy)
= P part of (1/V6)(2z% - x% -y %) TV F1)
=(I/VIO[VETE Fp) TR F) - VE TRFR)TE 7))

HAMBRO 5

+(1/V10) TP )T DEY]

=5 V3 [TV (r)r%e = 3T{V (ryy) Fra - 1 |

after some CG algebra. It was necessary to ex-
press T 2 (F;,) in terms of TV (rl) and T P (%,);

one can use a formula due to Rose®® or work the
relations out by inspection. We quote one example:

TP (Fio) = TE(Fy) + T (F,) - 2VE T (Fy) T (F,)
_\/—%[ (1)("1 T{I)(Z +T](.1)(’1 T(1)(;2)] .

The result is

P part of H{¥ a(1)a(2) T (F)u (1, 2)
=:(1/r%)al)a(2) [3TMF ) (Fyp - Ty)

- T{I)("’l)yiz]ulmn(l’ 2) .

For the matrix elements one gets

(BS6)

dv doy [ [ (v3-78%  v3-3+% 1
(3) _ 41 1 2 1 2 1 2
(Ml )k'k =10 4[4,” '[4,” l_( 2 ,},gz 3 771{2 2 V12 > ul'm'n'(l, 2)

which can easily be expressed in terms of A, F,
and F, integrals, when the cases L=7+1'=0, 1, 2,
and 3 are given special treatment. The formulas

22 2 .2
-7r3)  ritvy 1
3rhk 67 ) i 1)] “am1,2)

cancel.
We have dropped the constant $o? from the spin-
dependent Breit operators in this discussion as

da a9 1 2, 3,2 well as in the actual calculations; the factor is
—L j__i A &AL S— included in the units in which the numerical results
4 47 712 3 s (’V) - 1’() are given
s Proceeding now to the spin-independent operators,
4y dﬂz 1 _ 1 . . s
- o e C —(72—_—1’2—)2- we shall just write out the result of the action of
4 12 177 H{* on one of the trial functions. After some
are required. For L=0 all terms with (72 - #2)? tedious but trivial algebra we obtain, omitting o?,
J
- 1 - 3k 1 3n 1 2l+3n Kk 7, Kk e n r
H(4)T(1) 1.2)= = T(I) 2 o ELLS 2 ol 1 1
T E (1, 2)= 5 T ) 4 rgn, | 2 i 7k 4L 4 vk 2 vhrd
@ l(21+2+m+n)+2n(m+1) Ko [ 73 Ko/ 73 rs 2717, 37
o | - *o(n_, T, Lol TL, Ti_2nT _
71 8 \ 71272 71271 16 \ria7z2 7127 712 "7
2 3 2
Ko % K m\ v mk v KO n\ 7 MK 7,
— Q@l+n)—5—+ 5 (21+1 21+1+ - — 2 — (21+ % 2 — 2
g ( +n)v'rf2 +4( * +m)7§ 4( 2) V3 7 8 rhvi 4 Ity rf271+3 8 »in
3 2
nKG vy mKO v mfo _) _ i _gmn j_LT”z 2 o, i X@p41-
+373 nre 8 s 2< rdx v g 2) ri7rs 7 ) Y1272
KG 7y n 1 Ko K 7 m 1 ]
-n— -z - — (21 - -m = -—= (21- . BY7
ng m D) (21+1 m);—lz—yg-+ 2 (21 mg P 3 (21 n)m Uymn(l, 2) (B7)
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The matrix elements cannow be writtenintermsof A,
B, F, and F;, integrals, againinthe cases when L =0,
1 allterms with 73 must be taken care of specially.
If we write out directly the action of H{> on the
trial functions we get 112 terms. To evaluate its
matrix elements we make use of
(f| vig)y=(v%| v%),

VT (B, gy (1, 2) = (— 2

THE FINE STRUCTURE OF HELIUM 2043

where f and g are elements of the standard basis.
(This is not necessarily true if there are negative
powers of 7y, 73, Or 73, in f or g.) It turns out that
the matrix elements are sums of 225 terms. In-
stead of writing a program containing these terms
explicitly, we let the computer do most of the work.
With the notation of (B2) one has

7
- - ?
o TV (F) + T4 (F) 2 d; (b Kc)név‘i’w;‘)u,mn(l, 2),
12 i=1

7
V2T (F )y (1, 2) = (T{“(f1)2 , (W, K)rigygng) tmn (1,2)
j=1

This gives the following expression for the matrix element, again omitting o?

M) pp== =
( ! )kk 24 i=1 j=1

1/
(L 22 diUmn, ko), ('m'n"; ko)Ap L +2+pi4p; M p+4+qi+q;, Np+2+7,+7,)

1
+4ll'Ap (L -2, Mp+2,Np+4) =212, d;(I'm'n’ ; ko) Bp, (L +p;, Mp+3+q,,Np+3+7,)
j=1

7
- 21" )5 d;(lmn ; ko)BpL +p;, Mp +3 +qi, Np+3+7;)

i=1

.
)
-

-

>

i=1 j=1

sWmn s Oy, Um'n"; KApAL +2+5s, +85, Mp+4+t;+t;, Np+2 +u; +uy)

1
z ’ r s
20 di(lmn ; koY, ('m'n 5K)Bpx (L+2+p;+5;,Mg+3+q;+uy, Ng+3+7,+1,)

7
+2 50, U'm'n 5 K)Agy (L +S;, Mp+2+u;, Ng+4d+t;)

11

77
=22 23 hy(tmn; ) (1'm'n’ KO)Bpx(L +2+p;+5;, Mg +3+7,+1;, Np+3+q;+u)

i=1 j=1

+2l iZ;h.(lmn, K)Apx (L+s;, Mg +4 +t;,Ng +2+u,))

All the summations are done by the computer; the
coefficients d; and %, as well as the integers ®i,q:,
7;) and (s, ¢;,u;) are determined by a subroutine
once [mn is given. The program thus becomes
symmetric in primed an unprimed indices, so that
the computed matrix of H{®’will be symmetric even
if some of the integrals have incorrect values.
However, almost all the integrals used were also
required for the matrices of H,, H{¥’, H*), and
H{"” which were evaluated in a nonsymmetric
fashion, and thus gave a valuable check on the in-

]

1 =

tegrals.

It is trivial to obtain the matrix elements of the
contact term operator; they are zero unless
Np =0, in which case we have

®) o K
(04 )k'k=~1—2————k—r(’w) T, K=Mp+L+4.

Finally, the operator H{" is quite easy after we
have done H{* . Omitting the factor /M, we

have

Il+m+n+2) Iko 7y Ik %

D P (3 gyl n L Wz — £9 coso
HiP TV )uym (1, 2) = [Tl 62)( 27, 72t r";2>+T1 (71)< ey 2 7% 12 75t g cos
Ko cosf K cosf KO 75c086 K 7,cosf cosf 7, cOSs6 7, cosf
gy 2 oY B -] == —-1= 2 1
2 n 2 n 2 rh 2 A 17y 7 vl 737h )]u,m,,(l, 2)-
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To evaluate the exchange part of the matrix ele-
ments we use cos?6=1 ~sin?6 and (A4), or we may
rewrite (B8) using

riiri-v3,
cosf= .
27,7y
Only A and B integrals are required to calculate
the matrix elements of H{" .

This concludes the description of the evaluation
of matrix elements of the operators. The formulas
of this appendix will be used also in later papers,
where we go beyond the standard basis and include
one negative power of 7;,7,, or 7, in the expan-
sions for y{¥.

APPENDIX C: SPIN-INDEPENDENT SECOND—ORDER
ENERGIES

The spin-independent second-order energies cal-
culated along with the spin-dependent ones in Sec.
VI are listed in Table VI, with the same convention
for the number of digits quoted as in Sec. VI.

The unmixed second-order energies E$'" (i=1,

2, ... ,7) that we calculate are always upper bounds
to the true values. The exact unmixed second-order
energy is given by (14) :

Eérue:<\1,1 | HO_EDI ‘I/1>+ 2(‘1’1 [ Hl_El I ‘I’0> s

(c1)
where the (exact) perturbed function ¥, satisfies
(Ho - Eo)‘Ill == (H1 - E1)‘I’o ) (C 2)

assuming that the unperturbed wave function and
energy ¥, and E, are known exactly. In practice
the expression (C1) is calculated by using an ap-
proximation ¥, to ¥,, 9 =¥, + Ay, so that

EF'=E;+ (A | Hy-E, | Ay,)

+2(AY | Hy= Eo | ¥,)+2(A% | H - E(| %) .

(C3)

The two last terms of (C3) cancel because of (C2);
the second term of (C3) is seen to be positive if
Ay, is expanded in the complete set of (triplet P)
eigenfunctions of H,, remembering that E, is the
lowest (triplet P) eigenvalue. Thus we have E§*'°
> Ef™®  as we set out to prove, but this does not
necessarily imply that E, should decrease mono-
tonically as more terms are included in the ex-
pansion for ;. However, in all the calculations
reported here, this monotonic decrease does in
fact take place.

Notice that the differences between successive
calculations for E§»%, E{»®, and E®® are almost
constant, so that extrapolation of these values would
give infinite results. This is just as it should be
since both # {5’ and H {® give 6 functions when acting
on yy; thus y{> and y{® should have terms propor-

TABLE VI,

Second-order spin-independent perturbation energies, using only standard terms (18) in the expansions for l})f” (i=4, 5, 6, 7).

EfVeel®) B PRon/M)R] BV Ca'R) BBV Ram/MR] BSD R0k n/MQ]

EMDRatR)

ESB V2 (m/MPR]
-89.151341771 -0.067 054443539 -0.509607 89526 0.29744454540 0.033581361648 149.92960428

-108.818603 13
-133.136 85157
-155.75170849
-177.7267
-199.26
-220.50

Ez(G'G)(2“4Gl)
-241,56

E§5,5)(2a4 ®)

ENDRatx)

-0.668956 889 07
-0.020398608 31

1.179 844 500 8
-0.10323505458 0.09295684687 0,062 084852257 241.74706234 0.45410128699 -0.320344711 7

~-252,.29957845
-349.3225438
~442.9295373
~534.409 2377
-621,79741

-708.1

1 -0.019941220293

2 -0,028765953478

3 -0.03333580832
4 -0.035906 82884

0.053 384471490 194.06528344 -0.1280635666

0.03804557052 0.01712544041

-0.121394680 80
-0,142266384 00
~-0.1608640252
-0.18066290
-0.191578
-0.19615
-0.20010

-0.134151 816
~-0.2873564
~0.1894
~-0.2499
~-0.2061

0.06881801
0.367 0018
0.1671

0.067 95106559 287.2351047

0.064 126 857

0.0821650
0.074 06

-0.0404388526
~0.0733325
-0.05552(1)

~0.06256(1)
-0.0559@)

331.05116

371.4

0.072 38333
0.0744489
0.075196
0.075 703

5-0.037393 840
6 -0.0380736
7-0,0383437
8 -0.0384779

0.2876(1)
0.1992(1)

416.6
458.7

0.07796(1)

-1793.0

0.07491(1)

-877.3

jon
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tional to (1 - Py,)T { (F,)/7,. This makes the sec-
ond-order energies E i = (i | H{ ~E | yy)
(¢, =5, 6) proportional to an integral with & (¥;)
(from H{*’) and 1/7; (from p{*’) and ¢, under the
integral sign, and this is obviously divergent.

Otherwise, the energies E*%, E{*® EST  and

E$*" show fairly regular oscillatory behavior with
w, i.e., differences between successive calcula-
tions alternate in sign, and E{**, E{"™, and EST
seem to converge monotonically.

*Based in part on a Ph.D. thesis submitted to the
University of California, Berkeley.
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