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Pauli Approximation in Many-Electron Atoms
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The Pauli approximation for many-electron atoms is derived. This yields an unambiguous
expression for the fine-structure splitting and other first-order relativistic corrections to the
energy, using nonrelativistic wave functions. A formalism is developed for atoms, based on
these results, which is suitable for the evaluation of the fine structure using multiconfiguration
wave functions. Fine-structure splittings calculated from Hartree-Fock wave functions are
presented for the ground states from He through Ar; the remaining energy corrections are
also presented. Multiconfiguration results are presented for the lowest D and P states of N,
accounting for about 80% of the discrepancy between Hartree-Fock values and experimental
values.

I. INTRODUCTION

The Pauli approximation is the basis for most
attempts to deal with relativistic effects in many-
electron systems. In this approach, expressions
are derived, with respect to the appropriate non-
relativistic wave function, which give the first-
order corrections to the energy. Such expressions
were found by Breit' for a two-electron system and
appear, with a few modifications, in their most
familiar form as the terms II, through H& given by
Bethe and Slapeter. ' These terms give the fine
structure and include, among others, spin-orbit,
spin-spin, and spin-other-orbit couplings. They
do not account for hyperfine structure or the effects
of nuclear motion. The primary reason for the
popularity of the Pauli approximation lies in its
ease of application in comparison to more fully
relativistic treatments: Only the nonrelativistic
wave function need be dealt with, rather than the
more complicated relativistic wave function.

In this paper we apply the Pauli approximation
to the case of atoms. The formalism we develop
here is of sufficient generality to apply to wave
functions which are mixtures of configurations.
We present expressions for all of the terms which
contribute to the first-order relativistic correction
to the energy.

We begin with a derivation of the Pauli approxi-
mation in Sec. II. The relativistic formalism from
which we start is not entirely satisfactory: The
terms for the electron-electron interactions are
not Lorentz invariant, and higher-order quantum
electrodynamical effects, such as those giving
rise to the Lamb shift, are not included. It does,
however, contain all the first-order relativistic
effects, and therefore, suffices for a derivation of
the Pauli approximation. Since our relativistic
formalism treats an arbitrary number of electrons

N, we obtain the Pauli approximation explicitly
generalized to an N-electron system.

Along with such generality, our goal is derivation
of the Pauli approximation characterized by suf-
ficient rigor and attention to detail. In contrast to
pr evious tr eatments, ' ' we do not attempt to
present the first-order relativistic correction to
the energy in terms of an "equivalent Hamiltonian. "
Consequently, we obtain an expression which is
entirely unambiguous and simple to evaluate.

In Sec. III the orbital integrals arising from the
first-order relativistic energy corrections in atoms
are presented. We outline the construction of
multiconfiguration wave functions in Sec. IV and
reduce the single-configuration matrix elements to
simpler forms on the basis of their assumed sym-
metry properties. With these results in hand, we
give expressions in terms of orbital radial integrals
in Sec. V.

Numerical results, obtained by application of our
formalism, are given in Sec. VI. These include
results from Hartree-Fock wave functions for the
ground states of He through Ar. We also give
multiconfigur ation calculations for the lowest ni-
trogen D and I' states. These calculations yield
substantial improvement in the computed fine-
structure splittings in comparison to the Hartree-
Fock results.

II. DERIVATION OF THE PAULI APPROXIMATION

The many-electron Dirac Hamiltonian Q for an
N-electron system is, in atomic units,

& =Z h, + —.
' Z Z i/r~,

P ~&P

where the summations are from 1 to N, r~, is the
distance between the pth and qth electrons, and h~

is the Dirac Hamiltonian of the Pth electron:
2

hp ——c Pp+cuq pq+ Vq
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In Eq. (2) p is the momentum operator, V is the
potential due to the nuclear and external fields, c
is the speed of light, and Z and P are the Dirac
matrices in conventional representation, namely

/I 0
P-~io

(0 o&

where o has as its components the 2 x 2 Pauli ma-
trices and I is the 2x2 unit matrix.

The Breit operator for an N-electron system
is

(4)

where

b2q= ——2'[Z2 2,/~2, +(Z2 r2, )(n, r2, )/r2, ], (5)

and the summations are again from 1 to ¹ we use

r2, for the tluantity (r2 r, ) —Rou.ghly speaking,

b2, is the correction to the interaction term I/r2,
due to first-order magnetic and retardation ef-
fects. '~"

The relativistic one-electron orbitals 8, are
four-component Dirac spinors which we take to
form an orthonormal set:

&e,
~
e, & =5„

Note that the left-hand side of Eq. (6) involves a
summation over four terms as well as integration
over the space coordinates. It is also useful to
write

S= c'OR+ c6'+ U

where [see Eqs. (1), (2)]

stt=g Ie,

(i6)

we assume that 0 is normalized to unity, namely

&0~~ O~& = 1 (i2)

The many-electron generalization of the Breit
equation is

(m+8)Q = zs
where E is the total energy of the N-electron sys-
tem. In view of Etl. (12), we have

z =&Q iu+ mi 8& (14)

The Breit equation yields unsatisfactory results,
a difficulty often circumvented by determining 0
from the equation

g) OH= E~G~

instead of from the generalized Breit equation,
Other modifications to the Breit equation have been
proposed by Brown and Ravenhalllaandby Salpeter. 13

Here we shall proceed from the generalized Breit
equation, pointing out the objectionable terms when
we encounter them. Then the motivation for the
proposal that Eq. (15) be used to determine Q,
instead of the generalized Breit equation, will be
clear.

It is convenient to decompose the Dirac Hamil-
tonian in terms of powers of c, namely

The index I indicates an ordered set of indices
~1& R~ ~ ~ ~ ~ ~N ~

(s)

The ordering of the indices i„i2, . . . , i„avoids
redundancies inthe setof Slater determinants OI.
It follows that

&Q, iO, & =6„ (io)

In general, we adopt a multiconfiguration wave
function 8 of the form

where y, and y, are two-component Pauli spinors:
y, is the large component of H„and y, is the
small component.

From the set of orbitals 8, we construct Slater
determinants SI:

8, ,(1) 8, (1). . . 8(„(1)

) (N), )2 8, (2) 8, (2). . . 8, (2)

8(,(N) 8)2(N) . . 8, (N).

%e introduce orbitals ~, which satisfy the equation

Pv, =m, &u, , m, =el (is)

In case m& = 1, v& contains only a large component
(the small component is zero), and in case m, = —1,
v, contains only a small component. Correspond-
ingly, we introduce the Slater determinant 0, where

n=[,
Then we have

(is)

(2o)

where

M=K m& =2k N, 0&k&N.- (21)

In Eq. (21), k is the number of orbitals with positive
m„ i.e. , with large components only. %e shall
call M the rest mass of Q. There are an infinite
number of 0's with the same rest mass, since Eq.
(20) determines nothing of the space and spin be-
havior of G. In general, a wave function with rest
mass M is a linear combination of 0's with rest
mass M.
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We note that

[on, ~]=o, (22)

where

sn8„„=(M+2m)8 „
where the brackets indicate a commutator. Hence
if 0 has rest mass M, so does UQ. To deal with
6' and , we introduce the matrices e' and n,
where

We also expand E in powers of c 2:

E=c2 7 c 2" E
a~0

(se)

0 Ot - &0 0't
Q

p p )I y Q —l(~ 0)l

We have the relations

Q=Q +Q

[p, n']= ~an'

(23)

(a4)

(26)

We substitute Eqs. (36) and (36) for 8 and E,
respectively, in the generalized Breit equation,
Eq. (13), and apply Eq. (3V). %+1 equations re-
sult: one for each eigenvalue of ~, each equation
containing only functions of one particular rest
mass. We equate powers of c ' in. these results.
From the equation of order c, we find

In view of Eq. (24), we may write

~ =(P +(P

I =z +30+I-

where

(26)

(27)

(26)

(M —Eo)0~00 ——0

while the equations of order c give

(M- ED+2)8„O+&'OHOO =0

and the equations of order unity yield

(M Eo a 4)8~q 0 + (P 8 q 0+ (P O~oo = 0

(so)

(4o)

(41)

go 1+~
P

Zf;, ,
qAP

g~ fO

aQ

(29)

(so)

(M —Eo)80, +s"8,,0+ 6' 8,0+ ('0+ + —Eg)800 = 0.
(42)

From these equations follow

with

y~o = ——,
' {(o.~ ct, + n~ Z;)/r~,

(31)

M=SO,
1

8+1 0 + 2P OOO

8as, 0= 8 (4' ) 800+4' Ooo

(~+ +++ )800=EP00

(4s)

(44)

(46)

(46)
+[(n~ r~, )(n, r~, )+(Z~ r~, )(o~ r~, )]/r~] .

(32)
From Eq. (25) these relations follow:

(33)

(34)

(»)

[sn, a']=+as"

[mt, e'] = y4e'

[sn, e']=0 .
Hence, if 0 has rest mass M, so does 0, while
6"0 has rest mass M a2, and '~ has rest mass
M +4.

These relations suggests a partition of 0 into
N+1 component eigenfunctions of ~, each with a
different rest mass, while the decomposition of
5), as given by Eq. (16), suggests a perturbation
expansion in c ' for these components. We expect
the part of 8 of order c to be an eigenfunction of
W with rest mass M, We anticipate that the parts
of o" of order c ' will have rest masses M +2, since
6" and 6' occur in S multiplied by one power of
c less than that multiplying 9R. Similarly, the
parts of O~ of order c 2 will have rest masses M and

M+4, etc. Accordingly, we write
(N-~&/2

c-lm I -2n
O„ (se)

m~-(N+N) /2 n~0

where

801 8 ( + ) 00+801 (46)

We substitute Eq. (36) for 0 in the normalization
condition, Eq. (12), and equate powers of c '. The
equation of order c is

Ooo looo& =I, (49)

while the equation of order c 2 becomes, after the
substitution of Eqs. (44) and (48) for 0~„0 and 0'0„

&8oil800&+&8ool8oi& =0 . (60)

The substitution of Eqs. (44), (45), and (46) for
8~y 0 8~ 0 and 00, in Eq. (36) yields a compact
approximate expression for 9, namely

8= [1+c 'X+-,'c~x'+-,'c '(e -(a')]8

+c '8' +O(c '), (61)

where

3'= 2(6' —s")=~i+p o'p'pp Pp (62)

It is convenient to introduce 80„defined in terms
of 000 and 00, by the equation
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8m, p
= a ((P ) Spp (55)

omitting the term + 4 S'8oo occurring in Eq. (45).
Clearly, Eq. (55) results instead of Eq. (45) if we
start from Eq. (15) instead of the generalized Breit
equation: This is the motivation for the proposal
that Eq. (15) be used to determine 8, instead of the
generalized Breit equation. We conclude that Eq.
(55) is correct and abandon Eq. (45).

Now Eq. (51) is replaced by the equation

We may evaluate E to order c ~ by simply using
Eq. (51) to substitute for 8 in Eq. (14) and enforc-
ing the normalization condition given by Eq. (12).
We compare the resulting expression for E with
that given by Eq. (38) to find

Ei =&oool ~+0+8'I8oo& (53)

which is consistent with Eqs. (46) and (49). Pro-
ceeding with the evaluation of the second-order
energy, we find, after dropping the objectionable
term g(8pp I [+', ] l8pp), '

Ea =(v'8op
I

—'xa8«) +(-'x 8pp lf'8pp)

-(ax'ooo lstt —Eo I
—.
' x'o„& +(ooo I

& + ~
I
'x'ooo&

+&Xeoo
I
v+3

I X8pp) +&-,'X'Ooo
I
~+ dll 8pp&. (54)

The objectionable term does not arise in the
evaluation of Ea if Eq. (45) is replaced by the equa-
tion

(4' 4') =1

X4'= E,4

E, =(@IXI%')

respectively, where

(59)

(eo)

(61)

X=Z [-,'p, '+ V,]+ -,' Z 2 1/r„, (62)
P e&P

with the summations running from 1 to N. X is
plainly the nonrelativistic Hamiltonian, hence 4'

and E, must be the nonrelativistic wave function
and nonrelativistic energy, respectively.

Our expression for E~ in terms of epp likewise
goes over into an expression in terms of 4. We
find

Ea = a gp (pea@ lpga%') +(Di4'I @)+(@
I
Di@')

+(Daq I
4 &+&+ IDaq ) +&+

I
&+ Co+ Ci+ C. I

~&

(63)
where

Opp is zero, and the Breit operator does not con-
tribute to the energy Z, . Since each orbital ~, has
positive m„only the large components are different
from zero. A wave function 4 can be derived from
Opp by replacing each four-component ~, in Opp by
the corresponding large component y„a two-com-
ponent Pauli spinor. Then Eqs. (49), (46), and
(53) go over into the equations

8=[1+c 'X+ ac Xa]8pp+c a8p, +O(c a) . (56)

This equation gives the wave function to order c~
in terms of Opp and ep„ it is one of the central re-
sults of our treatment. Even without an evaluation
of Sp„ it has application apart from the evaluation
of the energy to order c ~. For instance, if one
supposes the large component of a relativistic or-
bital is given by y„ it follows from Eq. (56) that
the small component is given, to order c~, by
—,'c-'e py, .

Since our treatment assumes relativistic effects
are small, we may identify c Ep as the rest-mass
energy. Observable electrons always have positive
rest mass, hence, the rest mass of an N-electron
system should be N, i.e. ,

c, =-.'Z

c, =-,'Z

c, =-,'P
with

~ go.~, ,
qAp

e&P

Zg, ,„
eW

Sp ——
ipse Vp

Sa, =ip~l/ra,

Dy= a Q gap'pp

Da o Q Z 1$pq 'pp
P ~&P

(64)

(65)

(66)

(66)

(69)

(vo)

(71)

(5v)Ep ——N
e

Combining this with Eq. (36), we give for the en-
ergy to order c 2

E=c N+Ej+c E~+ ~ ~ ~ (56)

with E, given by Eq. (53) and Ea given by Eq. (54).
Spp and Opg consist only of Slater determinants

which contain orbitals ~, satisfying Eq. (16) and,
in consequence of Eq. (57), only the possibility
m& =1 may occur for these orbitals. Note that each
term in contains an operator a, which gives zero
when operating on an orbital ~, with m, =1. Hence

fa = —a'(ga xp~) s~ (72)

go, a, = —a [ra,'pa p, +ra,'ra, . (r~ pa)p, ], (73)

gl pa
= a (8pz Xpa) ~ Sa + a (8 zp Xpz ) Sz

+(h~, xp~) . s, +(S,exp, ) sa (v4)

g, = s s,/r —3(s r )(s, r,)/r, . (75)

Here we have used s~= &a~; notice that S~ and S~,
are the electric fields acting on the Pth electron due
to the nuclear charge and the qth electron, respec-
tively.
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Although we have integrated by parts to express
Em in terms of the Hermitian operators f~, go ~„
g, ~„and g~ ~„we have not done so in the case of
the integrals

(D 4
~

4') +(4
~

D 4)
The attempt to find a general expression for the in-
tegral (p~ O'I p~ 4') in terms of the expectation value
of an operator is unprofitable. This rules out the
possibility of expressing E~ as the expectation value
of some operator. The integrals given in Eq. (63),
however, are unambiguous and can be evaluated in
a straightforward manner.

Integrals involving —(+~v)s~. s, 5~ '(r~, ), which
occur in other treatments, have here been elim-
inated in favor of simpler terms. As pointed out
by de-Shalit and Talmi, ' the integral involving
—(+~v)s~ s,5' '(r~, ) is equal to the integral involv-
ing 2v5'~'(r») whenever the wave function is anti-
symmetric with respect to the exchange of the pth
and qth electrons. Accordingly we have the result

--,'Q Z [((fh„P 4')~s s, ~4)
e8

+&+
~
s, s,

~
(ih„PP) ]

=2[&D +I+)+&+ID +)] (76)

This relation was used in deriving Eq. (63).
Classically, the quantity —-', (p~'4' [p~'4') gives

the relativistic shift in mass of the pth electron due
to its speed. f is the well-known spin-orbit cou-
pling term due to the nuclear charge, coupling the
electron with its own orbital moment with respect
to the nucleus. The first two terms in g& are
similar terms, with the nuclear charge replaced
by that of another electron. The last two terms in
g, couple the spin of one electron with the orbit of
another electron. g~ gives the spin-spin coupling.
The quantities (Dp14') +(@IDp) and (D24'l +)
+(4[ Dz@') have no obvious classical interpretation.

It is worth pointing out that although we have
derived C starting from the relativistic 0, the
starting point of calculations using the Pauli ap-
proximation will be O'. From this point of view,
K rather than M is the zeroth-order Hamiltonian,
since the rest-mass energy is simply a constant.
Then the relativistic effects constitute a simple
perturbation on K (although this perturbation is not
given by a Hamiltonian operator), yielding c Ez
for the first-order perturbation correction to the
energy.

III. ORBITAL INTEGRALS IN TERMS OF RADIAL
INTEGRALS FOR ATOMS

We shall henceforth assume that the nonrelativ-
istic wave function 4 is constructed from two-

component orbitals y& which are symmetry or-
bitals. In lieu of y, we introduce the notation
y&& „the orbitals are defined by

p,„,(r, e, y) =r 'P«(r)Yi (e, f )n. .
Here Y„(e,P) is the conventional normalized
spherical harmonic, and g, is the two-component
spin function with m, =a. The index i now labels
orbitals not distinguishable by symmetry. We also
assume that the orbitals form an orthonormal set;
hence we may write

J dr P„,(r)P»(r) = 6,& (78)

Equation (77) allows us to integrate out the spin
and angular dependence in the orbital integrals
which arise in the evaluation of E~, leaving inte-
grals only over radial functions. The orbital in-
tegrals which arise in the evaluation of the non-
relativistic energy E, will not be treated here.

The radial integrals which emerge from the one-
electron integrals are

v&„& =-,' (- 1, dr [P„",(r) —X(A. +1)r 'P„,(r)]

x [PJ~'(r) —X(x+1)r 'P„,(r)]

+Z[r P «(r)P»(r)]„, 0], (79)

f«& = —,'Z f drr '
P«( r)P»(r) . (80)

The prime indicates differentiation with respect
to r. g&&& is similar to the usual notation for the
single-electron spin-orbit coupling coefficient, '
but it should be noted that the factor c~ is not in-
cluded. All of our expressions will be presented
without this factor. We express the two-electron
integrals in terms of the radial integrals given by

R«» »„,„-f".dr f." ds(rs) 'U„(r, s)

x P„,(r)P„)(r)P»(s)P„(s), (81)

P„,, »,.»„,,„=J dr J dsU„(r, s)

XK«»,„(r)P»(s)P„(s), (82)

I' 'o 00q«». »„i,„=—,j dr ds W„(r, s)

xK„, „&.„(r)K, „,„(s), (83)

D«, »,»,„=—,
' f drr P„,(r)P»(r)P»(r)P„(r}

where

r " 's", s&r
U„(r, s}=

W„(r, s) =rs[U„„(r,s)/(2v+3)

—U„,(r, s)/(2v —1)], (86)
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K„, »,„(r)=k„,„,„P„,(r) —[r 'P»(r)]

with

—k„,„P„(r)—[r 'P„,(r)], (87)

k, , „,, = l[v(v+1)+~(~+1) —u(u+1)l

x [v(v+1)] '; (88)

it should be noted that k),,&,0=0. Under interchange
of shell indices, we have the following relations
for these integrals:

A. One-Electron Integrals

For atoms, we have

VP = —2jra
hence, recalling Eq. (70),

2 8
S~ p~=-imp

exp

Then we easily find

l [-&I,'el...IV~&.~& -&(i&, .IP~1...) v,.ka&

-&q lk„l (iS2.Paly vaa)&]

(98)

(e7)

&xjg —~+f (89) = 5) P5 25aallkll (98)

(90)

Rkl avl lPk ~ al Pal PJskl lPksal'6) Rkl y vgl ly avatar a (91)

Paly';Pk, al;v PJ k;lP,kta;v Pal, PJ; al, Pk'v (92)

'Qkl I PJ IPk l; Iav @Pg y kl; Pk, al lv Qki p Pg; al &aPk g[v

Qkl y Pg ~ Pk p al p[V QPk y al 1kl y Pl;V

4 2 v) 2 PA'2 ol Ng 2 Q s'Pk 2ol

-+PA, u) 2W, el -+Ol, V), Pk, M ~

(93)

Note, however, that there is in general no relation
between R„, »,.»„,„and R» „,,& „~,„, nor between

Pg, 0);Pa, al 'v and PP~ al 2 g] 2 Q);v ~

For the integral over f, we find

&~„..f ~,.»& =5..&~~I~. , l~p&&f ls. . u&~„, ,

(99)
where the only nonvanishing components of l „and
s„are given by

la = la, l„=+(2) 1~ (l„ail„),
(100)

sll=sa, s„=+(2) ' '(s, +is„) .
Hence the angular gart of Eq. (99) is just the ex-
pectation value of 1 s.

B. Two-Electron Integrals

For g2 we have, from the results of Innes" (or
the equivalent results of Horie' ),

&~l~.(I)~k...(»I~2.121~i.aa(»«. ~(»& =C(1, 1, 2;f —u, d-c)&f lsa. l~&«I" lc&

xg„(—1) [2 lu(lu+ 1)(2lu —1)(2lu + 1)(2&u+ 3)] ~ [C(cpu+ 1, lu —1, 2; 12 —p, p+b +d —l2 —a —c)&Ale
I
C~ 1 a 2 I p p&

x& pyl C„,,2Pa~-a~-, «&Rkl, vq;Pk, al;~ +C(lu —I lu+2 2; 12 —p, p+b+d —12 —ll —c)&&12I C~ 1, N-2 I up&

x&iyIC-1. 8+aud ala5&R, k „.kl „,J, (101)

where C(Apv; 12, P) is the Clebsch-Gordan coef-
ficient in Rose's notation, ' and C), is the unnor-
malized spherical harmonic:

&+ j1& lu+ I &

p+o&lu-1&lp —oI .
(103)

C~(e, e) = [4~/(»+ I)]'"I;.(e, e) . (102)

The summation over lu in Eq. (101) may be taken
to run over all positive integers, but only terms
in which the angular integrals do not vanish are
different from zero. Hence, only values of (d for
which both of the quantities A. + p, +or and p+a+co
are odd integers contribute to the sum. It follows
that the entire integral in Eq. (101) vanishes unless
X+ p. +p+ vis an even integer; in other words, the
matrix elements of g2 are diagonal with respect
to parity. The values of co for which R),&,».» „.„
occurs in Eq. (101) are further restricted by the
conditions

g12 12 g1212 ++1221

where

(104)

+1 12 2 12( 12 Pl) (sl + s2)

Then the results of Blume and Watson20 yield

(105)

The values of co for which R» „,„, »,„occurs are
restricted by conditions similar to those given in
Eq. (103), with A. and p interchanged and p, and a

interchanged. Note that the range of ~ for which
R pp g )t) p) may occur can diff er fro m the range
of co for which R)g gg pQ g may occur.

We write
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(1)&bo~ (2)lg[, s«Itd~«b(1)tbebd(2)& = «(3) '
(5dd&bIs~, „«b Ia&+26db&dfIs~ b-«-«Ic&)

x) „(—1) & pyI C„„,I«& ((2v+I)' 'C(vvl;y —5, o. —p)&zo
I C„, «I pp&P« „.„„.„

(2v+1)(2&@+1)'~ C(v&@1;y —5, o. —p) &Xn IT"„,~ «I lbp&
f«l~V+1

0) yP+1 « ~ » )Pll ~ ol Ihl 5(yqp ]RPb ~ (g[ « ~ » Pg ]], (106)

T„=Z«C(vie; o. —P, P)C„, «l« (107)

hence"

&~~ T-".I} p&

= 5~ « „(—1)" "(2p, + 1)[(2(o + 1)p (p + 1)/(2X + 1)] '~ «

x C(}dv&;00)C(p, &uX; P, cd —P), (108)
p,

where

is the 6 —j symbol. ' Nonzero terms in the sum-
mation over v in Eq. (106) occur only when both
X+ p. + v and. p+ o + v are even integers, hence the

Here we have introduced the operator T"~n, which
operates on the angular coordinates 8 and P; it is
given by the equation

integral for g„ like the integral for g„vanishes
unless X+ p, + p+o is an even integer. The range
of nonzero terms in the summation over v in Eq.
(106) is further restricted by the conditions

A, + p, +p+ A. —p,

p+o&v& p —oI
(109)

Note that the nonvanishing terms in R„&».» „.„
occur only for values of &u satisfying Eq. (103) and
that a similar situation holds for the terms in

~»,el;4, ~j;~
In place of our integral P)t]»» ) Blume and

Watson 0 use an expression which contains divergent
integrals when v =A. + p, (unless X= p, ). The inte-
grals diverge because P«(r) and P»(r) are propor-
tional to r "and r"", respectively, in the neigh-
borhood of r =0. A similar situation arises in the
expressions given by Beck. In the integral
P)t] ~ »» ) no divergences occur .

The general expression for the integral of go is

(1)P " (2) Ig«, 12 I m»»")v~ «")& = —'b'" ~ [&~~
I
c„, «} P p& &«}c„«}py& q«

+(2v+1)(v+2) '&&o} T"„+&„«}pP&&«} T„"„,, «}py&(R«, »;»„&;„+R,b„~;«,&d;&)]

the summation over v proceeds as in Eq. (106). In case «i = pj = pk = af, Eq. (110) gives Yanagawa's result.
Beck's results imply Eq. (110)when the divergent integrals in his expressions are eliminated.

An integration by parts yield

d(&[i8,«p, y, «„,(l)yb, „,(2)] } p»«b(1)plabd(2)& +&V, „„(1)qrbpyd(2) }iS&«. pied ~«b(1)y„bd(2)&)

6 b6bdD«, », pb, f + (2v+1)&&n} C., «} Vp&&«} C.,a «} py&

where the summation over v proceeds as in Eq.
(106).

IV. REDUCED-MATRIX ELEMENTS

Since the radial function P«(r) introduced in Eq.
(77) is the same for all values of o. and a, there
are 4X+2 orbitals y, ), characterized by the same
radial function P«(x). This set is an electron
shell, labeled by the combination index Xi.

From the available orbitals, one can construct
N-electron Slater determinants (SD' s); each SD
is completely characterized by the particular or-
bitals used for its construction, which are called
the occuPied orbitals in that SD. The number of

occupied orbitals of a shell in a particular SD is
called the occupation number of the shell in that
SD. Obviously, the occupation number of the shell
Ai in any SD is 4K+2; when the equality applies,
the shell Xi is called a closed shell of the SD,
otherwise an open shell. An electron configura
tion is the collection of all SD's which have the
same shell occupation numbers. Hence, a set of
occupation numbers defines a configuration com-
pletely, although in general it only partially char-
acterizes the SD's of a configuration.

An electron configuration can be resolved into
N-electron functions which belong to definite sym-
metry species and subspecies. These N-electron
functions are linear combinations of the SD's of a
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configuration; we call them configuration state
functions (CSF's). ' We introduce for the CSF's
the notation 4»~ J». Each CSF is an eigenfunc-
tion of O', L', J', J'„and & (parity). The operatorsJ, J„and & commute with the relativistic Ham-
iltonian & (and with the Breit operator ), hence
J, M, and P are "good" quantum numbers. The
operators P and L only commute with the non
relativistic Hamiltonian, hence S and L are,
strictly speaking, not good quantum numbers. The
index A labels CSF's not distinguishable by their
values of S, L, J, M, and P. CSF's with the same
values of S, L, J, M, and P, but from different
configurations, have different values of A; so do
different CSF's arising from the s@me configura-
tion with the same values of S, L, J, M, and P,
when this is possible.

In many cases, a CSF arising from a particular
configuration is uniquely specified by itspvalues
of S, L, J, and M (the value of P can always be
deduced from the set of configuration occupation
numbers). Important examples are configurations
which have at most one open s and/or one open

p shell. On the other hand, for multiple open p
shells and for open d or f shells this is no longer
always the case. A simple example is the configu-
ration 2p 3p. All of the CSF's fromthis configuration
have P= —1. The CSF's arising from this configur-
ation are uniquely determined by the specification
of S, L, J, and M for the cases where S and L
indicate S, S, P, D, or F. On the other hand,
there are three independent 'P CSF's, with the 2P
orbitals coupled to form a 'S, 'D, or 'P function;
similarly there are two independent D CSF's,
with the 2P orbitals coupled to form a P or 'D func-
tion. In these cases the index A for the CSF
C ggg Jg+ not only indicates the configuration 2p SP,
but also serves to distinguish between the three
possible P CSF's, or between the two possible
D CSF's.

The use of CSF's that are eigenfunctions of L
and P allows an application of the Wigner-Eckart
theorem: ' The dependence on J of the matrix
elements with respect to the SCF's may be factored
out in terms of a single 6 -g symbol, allowing
us to write, for instance,

(ASLMPIPIA'S'L J M P') =5''t. t'„„.ttt. ( —1)t" 't I, , 1}(ASLPIPIA'S'L P)'
The quantity (ASLP]F (A'S'L'P ) is the reduced matrix ele-ment of E. As our notation suggests, it is in-
dependent of the values of J and M, although it still depends on other details of the construction of the two
CSF's, including the values of S and I and of S' and L'. In similar fashion, we write

I 2
() ~D ( pg ASL j'NP pP A S l, ' JNP ) +( 1 A'SCAMP ~ A S I, g u P') +( Agltt'NP ~ D1 A' g Igu p'),

=5~~.5„S.5PP.5ss. 5II.(ASLPlII1IA'SLP), (113)

(Ds4 Aggroup [ @At gt gt gtSst pt) + (4Agg&igp ) Ds@At gt 1 t gtutpt) —5&g 5uu 5ppt 5g g 5gl5(ASLP ( Hs ( A SLP)

(ASLJMP} Go)A'S'L'J'M'P') = 5~~ 5uu 55pp 55ss 55ql, (5AS LtP] G() ) A'SLP)

(114)

(115)

(ASLJAJPIG, IA'S'L'J'M'P') litt il„„ttt ( —1) ' '.=tI., , }(ASLPIG, IA'S'L'P)

(ASLJMPIGtiA'S'L'J'M'P') = il, t„„,litt ( —1)t' 'tI, , }(ASLPI GtlA 5 I.'P)

These relations constitute a considerable simplifi-
cation, allowing the matrix elements to be com-
puted for all values of J with little more effort
than that required for a single value of J.

The matrix elements given in Eqs. (113)-(115)
vanish unless L =L and S=S . However, non-
zero matrix elements of F, G&, and G2 for which
L'xL and/or S'eS do exist, hence an accurate
wave function describing an atomic state is not in
general an eigenfunction of L and P. For a large

number of cases, however, wave functions with
definite L and S provide excellent approximations
(Russell-Saunders coupling), and the matrix ele-
ments with L wL' and/or S'eS may be neglected.
Then the relativistic corrections simply remove
the degeneracy with respect to J of the nonrela-
tivistic energy. This case is our primary concern
in this paper.

In this case the wave function 0 is an eigenfunc-
tion of TP and S; we append the quantum numbers,
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+sLzzzp ~A @A s jzgp ASLp (118)

We can always choose the CSF's such that the ex-

8, L, J, M and P, writing 4si~». Our expansion
of the wave function in terms of the CSF's may be
written

pansion coefficients become real; we assume this
to be done. Note that the expansion coefficients
Cgsgp do not depend on the quantum numbers J
and M.

We combine our expression of 4s«» in terms
of the CSF's with our previous results to find

E z+s+z L 8 J
zzp = g, gzp+( ) L I (( szpl FI +szp) +( szp I Gz I+szp) )

+ ( —1) '
L 2 (+sLPI Ggj+SLP)

L 8 J (119)

where

E = 2 C„((ASLPIII,IA'SLP) +(ASLPI II IA'SLP) +(ASLPIG IA'SLP))C„ (120)

(@szp I Fl Izszp) = ~ C„szp(ASLPI F IA'SLP) C„r szp (121)

(@srp I Gi j@szp) = Z C~szp(ASLP I G, IA'SLP) Cg. szp (122)

(Pszp I Gg I @szp) = 5 Cgszp(ASLP I Gg I A 'SLP) C„.szp (123)

The entire dependence of Eg, sz, zp on J is contained in the 6-j symbols in Eq. (119). Hence, from the prop-
erties of the 6-j symbols, we find the relation

Eg, szp = [(2S+1)(2L+1)] ' Zz (2J+1)Eg, szzp (124)

so E 2 8gp is the average first-order relativistic correction to the energy of the J multiplet, as was suggested
by our notation.

In the case of Russell-Saunders coupling, where Eq. (119)holds, Eg, sz, zp would follow the Lande interval
rule with respect to J if the term proportional to (kszp IGgj+szp) were absent, since for L 40 and S +0,

( z s,z L S J 1 J(J'+1) —L(L+1)—S(S+1)
S L 1 2 [L(L+1)(2L+1)S($+1)(2S+1)]zzg

As pointed out by Araki, the terms proportional to (@szp IGg I+szp) cause a deviation from the Lande
interval rule even in the case of Russell-Saunders coupling, as may be seen from the relation

L S J 3[J(j+I)—L(L+1)—$($+1)][J'(J+1)—L(L+1)—S(S+I)+1]—4$(S+1)L(L+1)
S L 2 2[L(L+ 1)(2L —1)(2L+1)(2L+3)S($+1)(2S-I)(2$+1)(2$+3)]'z

for S=1 and L=1.
V. MATRIX ELEMENTS OF THE FIRST-ORDER RELATIVISTIC CORRECTIONS TO THE ENERGY IN TERMS

OF RADIAL INTEGRALS

The matrix elements and reduced-matrix elements with respect to the CSF's arising from the first-order
relativistic correction to the energy can be expressed in terms of the corresponding one- and two-electron
orbital integrals. %e have dealt with these orbital integrals in Sec. III. In accord with our results there
we write

(ASLPI II, IA'SLP) =Z sgszp, g szp;z~z&z~z (126)

(ASLPI Fl AS'L P) = 2 t~szp, x's's; p;uz~i&z (126)

(ASLPIII IA SLP) =~~~ +dAszp A sip'M llz pg LLxl z pA, l
pg pk ot

(12 I )
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(ASLP ] Gp IA SLP) = Xi ~ Zi ~ (2 'rQ;Ast«P A scP;t«t, t«J'P tt, «; Rxt ~ tlt;t«tl «;««I
wg pk el

+ '7«t SIP«A' SI tI«At t««J I it««««' «@«t«t ~ t«J ti«t««««»)
V

(ASLP) G1)A S L P) =~~ ~~ ~~ (~„X1;ASLP,A's'L'P;x&)up;pk, foal;~ Rqf „J,pk

foal

Xf vg pk el

+~ PASLP«A'$«L«Ptt«t « t«J «Pl! ~ ««t t««Pt«t « t«J ti«l«««t««) «

(ASLP) Gs]tA S'L'P) =Z Z Z ~+ Pi t'$;asst', ~«s«z«t';~t, t j;ta,«;„Rtt „i,,t «,„
pk el

(130)

The radial integrals appearing here are defined in
Eqs. (79)-(84); the summations over ~ and v

proceed as in Eqs. (101) and (106), respectively.
The coefficients sAsLP A sLP'4, tA$LP A's L'P;~f J

A SLP)A SLP)4 ~ Pg ~ Pk) ok & OyASLP yA SLP y~f ) Pg ypk) foal y&

+1;A$LP, A S L P;Xf, g);pk, al;fits) +2'ASLP;A SLP')(f Pg'Pk ~ ffl'&)

~ASLP'A'SLP'&f ) 0) 'pk foal;»

pA $Lp A $ L p $f p g pk foal
characterize the angular

and spin parts of the various relativistic correc-
tions to the energy. They depend only on the details
of the construction of the CSF's from Slater deter-
minants. For simple cases, their derivation,
with the help of the results given in Sec. III, is
usually not a difficult matter; however, general
formulas for them, particularly the coefficients
originating from the two-electron integrals, can
be only obtained by an elaborate analysis involving
Clebsch-Gordan and/or Racah algebra, and this
will not be attempted here. Note that the nonvanish-
ing coefficients for any particular case are actually
rather sparse. For example, in the case ASLP
=A S L P, sAsLP AsLP', wg and tAsLP AsLP'~&g vanish
unless i =j, while dAsLP, AsLP'gg f,g, pk l

rnid AsLJ«,

A$LI«hatt

t«t, i«t««, „(n =0, 1, 2),
aASLP, AsLP; f, g' k; a ~A L,A$Lp; ', y;, l;
all have nonzero values only in case 4 = pj, pk= ol,
or in the cases 4= pk, pj=ol, and Xi=o.l, pj= pk.
Note also that SASLP, ASLP;)t" is simply the occupa-
tion number of the shell Xi in the CSF indexed by
ASLP.

We note also the relation

+0;ASLP, A'SLP;~f, yg; k, l; +0;ASIP, A'SLP;pk, al;&f, g);~

(131)
which follows from Eq. (109). However, no sim-
ilar relation exists in general for
+1,A$LP, A'$'L'P;)tf, py;pk, foal;fsi or for
+2'ASLP A S L P '4 Wg'pk el '&

In practical calculations, CSF's with closed shells
are a frequent occurrence. Simplifications then
apply which we give here. We suppose that there
is some shell pk for which

SA$IP A$LP i«tttt $«4 $ t; ~ t««4 $ ~ J t«pt«t« =4P+ 2; (132)

that is, that some shell pk is a closed shell in both

the CSF labeled by ASLP and the CSF labeled by
A'S'L'P (the case ASLP=A'S'L'P is not excluded).
Then we have '

ASLP A S L'P 'Pkk

and, in accord with Elliott's results,

2ASLP A' S'L P;&f, g; k k;

+2 &A SLP,A' S'L'P; pk pk 'W

2;ASLP A' S'L P '&f k' J' k

(133)

(134)

for all values of ~i, pj, and ~. From the results
of Blume and Watson and Beck,

~ASLP A S L P'M, V)'pk, pk'v

+1;ASLP'A S L P'4 Pg'pk Pk'fits

1
4««««, 1 ASLP, A'S'L'P;t«ty(4P+2)

(135)

1 ASLP)A S L P' pk pk;Xf, gg;eo

~ASLP)A S L Pelf ) pk) g)) pk fv

1—~ ~&utASLP, A' S'L'P;Wg

x (4p+2)3[X(A +1)] tk~ .„x»„
+1 ASLP, A SLP'4 k'

(138)

when X+ p. +v is an even integer; x»„vanishes if
X+ p, + v is odd. Also, we have used

vt, „„=—,
' [td(&d+1)] '(A. + p, +a)+1)(X+p, —(v+1)

x («t +&d p )(iJ +~ ~)xt«t««4-1 (138)

For the orbit-orbit coupling coefficients, we find

+0;ASL P,A '$LP '&f wg
' pk Pk '&

+O'ASLP, A SLP;4, k;
1
4 4t«$A $LP, A«IP l $j(4'«t+ )»«««

4 ~ t«t«f A $ LP«A' $' L«P; t«t J (4& + 2 )3 I ~ (~ + 1 )] 'v»«««

Here kt, „.„ is given by Eq. (88) and xt,„„is given
by

xt«t«v = s t«4t«-««»««-t« t«4«« t«/ [(X+ i +-v+ 1)B~4t«4««] '

(137)
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TABLE I. Fine-structure splittings in cm i.

Blume and
Watson

This work,
Malli Hartree-Fock Experiment

B( P3/2 P1 /2)

C(3P, -'P, )

C('P, -'P, )

N( Ds/2 —D3/2)

N( P3/2 P1/2)

O(3p, -'p, )

O(3P2-3P, )

F( P3/2 —Pf/2)

Al( P3/2 Pf/2)

si('p, -'p, )

sl('P, -'I, )

s('p, -'p, )

s('P, -'P, )

Cl ( P3/2 P1 /2)

14.6

15.8

25. 8

—13.6
—5.5

72 ~ 7

—162

—397

90.8

64. 5

128

—183

—369

—818

16.17

26. 59

-73.69

—163.94

66.17

129.03

—181.89

—366.95

15.16

16.18

26. 56

—12.97

—5.09

—73.62

—163.83

—402. 2

92.72

65. 10

128.95

—181.61

—366.35

—822. 9

16

16.4

27. 1

—68.0

—158.5
—404. 0

112.04

77. 15

146.16

—176.8

—396.8

—881

See Ref. 32. See Ref. 33.

~ASLPSA'SLPf&$ SPk; PJ fPk fv

1
4 Xv A SLP,A'

SLP;keg�

(4P + 2)&kp, , (139)

except in case Ai = pj = pk; in that case we find

+0;A $LP 'As $ LP ' Pk Pk 'Pk Pk '
fA1

2 SAsLp, A'sLp;pkk(4p+ ) pp& ' (140)

Equations (139) and (140) are consistent with the
results of Beck. ' Note that the occurrence of the
factor —,

' in Eqs. (136) and (138) compensates for
the fourfold occurrence of such terms in the sum-
mations given in Eqs. (128) and (129). Finally,
we have

dASLP, A SLP;W, P),Pk, Pk

1 I'1= 2 L6 6kllSASLP, A'SLP;XlJ(4P+ 2)1 ~ (141)

unless ~i = pj = pk, where we have
1

dASLP, A'SLPIPkykk Pk, Pk 4 ASLPpA'SLP;Pkk(4P+ )

(142)
The factor 6 in Eq. (141) compensates for the six-
fold occurrence of such terms in Eq. (127).

VI. NUMERICAL APPLICATION

A. Hartree-Fock Results

We have computed the first-order relativistic
corrections to the energy for the ground states of
the atoms He through Ar, and for the two lowest
excited states each of C, N, and O. The analytic
Hartree-Fock wave functions of Cohen were used
for He through Ne and IVialli's wave functions"
were used for Na through Ar. In Table I we present
our results for the fine-structure splittings and
compare them with the previous results of Blume
and Watson and Malli, and with experimental

TABLE II. Average relativistic corrections to the energy
in a.u.

He('s)
Li( s)
Be('S)
B('Z)
c('p)
c('a)
c('s)
N(4s)

N( D)
N(2J )
0('~)
o('D)
0('s)
F('~)
Ne('S)
Na('S)
Mg(is)
Al (2I')

si('s)
p(4s)
s('~)
cl('P)
Ar('s)

Nonrelat1v1s t1c
energy

—2. 861 680
—7.432 726

—14.573 02
—24. 529 06
—37.688 61
—37.631 32
—37.549 60
—54.400 92
—54. 296 15
—54. 228 07
—74. 809 38
—74. 729 26
—74. 61101
—99.409 34

—128.547 0
—161.858 84
—199.614 61
—241.876 64
—288. 854 29
—340.718 71
—397.504 72
—459.481 97
—526. 81744

Average relativistic
correction c"282

—0.000 064 842
—0.000 052 552
-0.002 1148
—0.005 893 3
—0.013343
—0.013359
—0.013369
—0.026 545
—0.026440
—0.026 432
—0.047 540
—0.047 576
—0.047 534
—0.079 573
—0. 125 67
—0. 19187
—0.283 12
—0.403 40
—0.56000
—0.759 52
—1.009 57
—l.31804
—1.69400

aFrom H,efs. 30 and 31.

values. " In Table II we present the parts of the
relativistic corrections to the energy which do not
contribute to the fine-structure splitting. These
are the quantities c E„where Z2 is defined in
Eq. (120).

Essentially the same formalism was used for all
of the computed results in Table I, but different
wave functions were used in each case. The analytic
wave functions we have used are characterized by
carefully chosen basis functions and should prove
quite accurate. The close agreement between our
results and Malli's results, based on numerical
wave functions, confirms this. [Note that Malli's
results omit B, N(2D), N( P), F, Al, and Cl. ]
The earlier r esults of Blume and Watson ar e based
on analytic wave functions of poorer accuracy.

Our results in Tables I and II were all computed
with wave functions which exactly satisfy the cusp
condition. " Additional computations were made
using wave functions' in which the cusp condition
was relaxed, but were otherwise of comparable
accuracy. These resulted in virtually the same
values for the fine-structure splittings as those
we have given. There is, however, a difference in
the computed value of c Z2 of about 2% or 3% for
atoms in the first row of the periodic table; for
exa, mple, for N( S) we obtain c 'Z2 = —0. 026926,
while the value from the exact cusp wave function
is —0. 026545. This difference comes mainly from
the different values obtained for the integrals m„,.



PAULI APPROXIMATION IN MANY-E LECTRON ATOMS 2025

He
Be
Ne

Ar

See Ref. 38.

Relativistic
Hartree- Fock~

—2.8617
—14.5752

—128.6753
—528. 5513

This work
Eg+ c E2

—2. 861745
—14.57513
—128.6727

—528. 51144

TABLE III. Total Hartree-Fock energies in a.u. provide a good testing ground for multiconfigura-
tion results for the fine-structure splittings.

The wave functions used here were computed
using a multiconfiguration self-consistent-field
(MC-SCF) formalism of the type put forward by
Hinze and Hoothaan, in which the orbitals and
CSF expansion coefficients are simultaneously
optimized. The radial functions P„(r) are expan-
sions in terms of normalized Slater-type basis
functions, namely

[defined in Eg. ('7S)] for the orbitals of s symmetry,
which seems to be caused by different behavior of
these orbitals near x=0 in the two cases. It is the
exact cusp wave function that gives the more ac-
curate description near x = 0, and hence the more
accurate value of c Z2.

When relativistic effects are small, there should
be good agreement between our Hartree-Fock re-
sults and results from relativistic Hartree-Fock
calculations of the type outlined by Kim. In
Table III we compare our results for the sum
E, +c E& with the total energy, including the Breit
correction terms, obtained by Mann and Johnson, '
for the atoms He, Be, Ne, and Ar. It should be
noted that their relativistic Hartree-Fock results
include energy corrections of order c, c, etc.
which come from the Dirac Hamiltonian and the
Breit operator, while our results omit such terms.
Since their calculations omit other higher-order
energy corrections (e.g. , the Lamb-shift correc-
tion), it is not at all clear that their results actually
improve on ours.

B. Multiconfiguration Results for Nitrogen

For most of the atoms in the first row of the
periodic table, the Hartree-Fock results given in
Table I are in good agreement with experiment.
The most noticeable discrepancies occur for the
nitrogen D and P states. Hence these states

P„.(r) =), a„(r)c„,
(&) [2g )2n yp+1/(2& )]1/ 2&n&P e

(143)

The basis functions were taken from the results
of Bagus and Gilbert for the nitrogen D and P
states; the g's were not reoptimized. The radial
functions for our wave functions are given in Table
IV, together with the nonrelativistic energies and
the values for c Z3.

The CSF expansion coefficients are given in
Table V. The nitrogen D wave function consists
of CSF s from the configurations ls 2g 2P,
1s 2s 2P 3P, and ls 2s 3P 2P. The nitrogen P
wave function contains CSF's from these configu-
rations and also from the configurations 1s 2p'
and 1s 2s'3s'2P. Note that only P CSF's arise
from the last two configurations. Since we have
required that the D wave function be orthogonal
to the D function

ls 2s (1/v 2)[2P ('P)3P —2P ('D)3P]

the five CSF expansion coefficients provide only
four independent variational parameters. The sub-
stitution 2p- 2p+&3p yields

2P D-2P D+v 3e(1/v2)( [2P (3P)3P D)

—[2P'('D)3P 'D] )+O(e'),
hence our constraint on the D wave function cor-
responds to the exclusion of the function coming

TABLE IV. Energies and radial functions for MC-SCF N(D) and N( P).

Nitrogen D: Eo= —54.31429, c E2=-0.026914
c2s C2p C3p

10.595
6.026
7o 332
2. 528
1.586

0. 110750
0.929 642

—0.042 260
0.002 159

-0.000 088

0.001 260
—0.266426
—0.030 465

0.539 124
0.554662

7.693
3s 272
1.877
1.168

0.008 103
0.225 920
0.438 952
0.414 068

0.025 191
-0.682 047
—0.774 379

1.430 358

Nitrogen P: Eo= —54. 28665, c E2 = —0.026 943

10.592
6.022
7.323
2.527
1.589

cps

0.111253
0.932 954

—0.042 279
—0.005 195
—0.007302

C2S

0.002 583
—0.255 389
—0.032453

0.550 576
0.544 268

c3s n

0.010 633
—0.338 239
—0.239 912

2.512475
—2.251 829

7.748
3.275
l. 865
I.131

C2p

0.007 716
0.226 397
0.451 033
0.405 991

C3P

0.024 814
—0.613019
—0.825 028

1.432 865
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TABLE V. CSF expansion coefficients for MC-SCF
N(D) and N(P).

s2 2s~ 2p3

1s' 2s' 2p'('~) 3p

1s 2s 2p'('D) 3p

s 2s 3p (3&)2p

1s2 2s~ 3p2(1D)2p

0. 995 871

0.014 176

0.014 176

—0.051 748

0.071 852

1s 2s 2p

1s 2s 2p~(~S) 3p

s' 2s' 2p'('~) 3p

1s 2s 2p (D) 3p

1s 2s 3p (S) 2p

1s' 2s' 3p'('&) 2p

1s 2s 3p (D) 2p

1s 2p

1s 2s 3s 2p

0.978 718

—0.028 881

—0.024 768

0.006 861

—0.064 996

0.051 006

0.054 263

0. 174 074

0.023 747

from the "single replacement" of a 2P function by a
3P function in 2P D. For the same reason, we have
required the P wave function to be orthogonal to
the P function

—,
' (1/v2)1s 2s (2[2p ('S)3p] —3[2p ( P)3p]

—&5(2p'('D)3p]];

hence the nine CSF expansion coefficients provide
only eight independent variational parameters.

Our wave functions for the nitrogen 'D and P
are much too crude to be considered accurate de-
scriptions of the electronic states to which they
pertain. Accordingly, our results must be regarded
as only preliminary, to be confirmed by calcula-
tions with more accurate wave functions. Still, the
fine-structure splittings for the nitrogen D and P
states computed with these wave functions are a
substantial improvement over the Hartree-Fock
results, as may be seen from Table VI. This is
perhaps not unreasonable, in view of the quite good
agreement with experiment already obtained with
a Hartree-Fock wave function in the case of the
carbon fine-structure splitting.

The situation can perhaps be made more plausible
by observing that in carbon the addition of the CSF

TABLE VI. Nitrogen fine-structure splittings in cm" .

2 2»(2- D3(2
2 2
PBy) —Pg(2

Hartree-Fock MC-SCF Experiment

—12.97 —9.23

—5.09 —0.34

The author is greatly indebted to Professor
C. C. J. Hoothaan for suggesting this problem, and
for his encouragement and helpful advice. The
author would also like to thank Dr. Y. K. Kim for
many useful suggestions. The availability of the
MC -SCF program written by Professor J. Hinze
and Z. Sibincic, and Z. Sibincic's helpful advice
in the use of this program were indispensable for
the successful completion of this work.

from the configuration (1s) (2s) 2p3p does not im-
prove the wave function, since a version of Bril-
louin's theorem applies. This argument breaks
down in nitrogen, since there is more than one D
or 'P CSF which can come from the configuration
(ls) (2s) (2p)'3p. The addition of such a CSF can
influence the one-electron nuclear spin-orbit con-
tribution and the contributions from the two-electron
integrals containing 1s-shell and 2s-shell functions
(which behave in many respects as corrections to
the one-electron integral P~, &). Ordinarily, these
contributions to the fine-structure splitting are
the major part, although the remainder is not
negligible; for example, in the carbon Hartree-Fock
calculation for the 'P2-'P& splitting these two parts
amount to 32. 36 and —5. 80 cm ', respectively.
Thus, the addition of such a CSF can have a much
greater influence on the calculation of the fine-
structure splitting than would be the case for most
CSF's. In fact, our calculations indicate that the
major part of the difference between the Hartree-
Fock results and the MC-SCF results presented here
may be attributed to the addition of CSF's from the
configuration 1g 2g 2P 3P.
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The fine-structure constant can be determined to high accuracy from precise measurements
of the fine structure of the 2 3P level in helium. One of the necessary calculations is to com-
pute the contributions from the six Breit operators and the mass-polarization operator in
second-order perturbation theory. The eighteen spin-dependent perturbations from inter-
mediate 3P states are calculated by solving an inhomogeneous Schrodinger equation for the
perturbation of the wave function by the variational method. The second-order contributions
are then given by a single integral. These corrections are calculated using standard Hyl-
leraas expansions with up to 165 terms for the perturbed wave functions, resulting in contri-
butions to the two fine-structure intervals of the order of 10 4 cm ', but only four of the re-
sults are sufficiently accurate.

I. INTRODUCTION

Today there are several accurate values of the
Sommerfeld fine-structure constant n= e /Kc =+,
obtained from high-precision measurements of the
atomic energy levels of hydrogen and deuterium.
These levels can be calculated to any desired ac-
curacy (in principle, at least) from quantum elec-
trodynamics (@ED) as a power series in n (and
logn), and thus n can be determined experimenta-
ly. The classic results are those of Lamb and
co-workers, who measured the 2P&»-2P3&& fine-

structure separation in deuterium. Using their
value and a theoretical formula by Layzer,
Cohen and Du Mond obtained n = 13'7. 038&(6)
for their tabulation of the fundamental constants.
The most widely used value of a today is probably
the one given by Parker, Taylor, and Langenberg
in their tabulation of the fundamental constants.
They obtained n ~ = 137.03602(21), i. e. , an ac-
curacy of 1.6 ppm, from measuring 2e/h by the
ac Josephson effect. '

Helium is better suited to high-accuracy experi-
ments than hydrogenic atoms, because the 2 P


