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Expressions are obtained for the collision cross sections governing the relaxation of angu-
lar momentum polarizations in the molecular hydrogen isotopes, making use of the fact that
energetically inelastic collisions are very infrequent. A number of interrelationships between
the collision cross sections of this type, occurring in NMR and in other transport and relax-
ation phenomena such as the Senftleben-Beenakker (SB) thermal conductivity effect, and de-
polarized Rayleigh light scattering, are developed and comparisons between calculated cross
sections and those obtained from various experiments are given. For example, in n-H2 at
room temperature, the SB effect for the shear viscosity gives a characteristic cross section
of (0.47+0. 05) A to be comparedwithacalculatedcross section of 0.32 A, andacross sec-'2tion of 0.40 A which can be extracted from NMR measurements. A calculated value of ODpp p

0for the cross section determining the width of the depolarized Rayleigh line, in n-H2 of 0.48A,
0

is obtained, to be compared with the experimental value 0.495 A .

I. INTRODUCTION

The kinetic theory of transport and relaxation
phenomena in polyatomic gases, based on the
Waldman-Snider (WS) kinetic equation, 'a has
moved in recent years from a qualitative to a semi-
quantitative stage. For polyatomic molecules, not
only is the number of transport-relaxation phenom-
ena greatly increased but also the description of
such phenomena is complicated by an angular mo-
mentum dependence of the distribution function
density matrix for the gas and by the existence of
reorientation and energetically inelastic collisions.
A number of new phenomena, such as the Senft-
leben3 and Senftleben-Beenakker effects are due
solely to this angular momentum dependence.
Most of the qualitative and some of the quantitative
features of these effects have already been ex-
plained, ' but much yet needs to be done.

One of the steps which has proven to be useful
has been the derivation of a number of interrela-

tions, both exact and approximate, between the
va, riety of collision cross sections which appear
in these polyatomic gas phenomena. Recent
work" has concentrated on obtaining such rela-
tions for (nearly) homonuclear relatively heavy
diatomic molecules where the nonspherical pa.rt
of the interaction potential may be assumed to be
given by a single P2-type term. While the same
is true for the different modifications of the homo-
nuclear hydrogen isotopes, the energy-level split-
ting is so large that the approximate treatment of
energetically inelastic collisional events used in
Refs. 6 and 7 might be expected to break down. A
recent application of the relations given in Ref. 6
to a study of rotational relaxation' has shown, how-
ever, that even for the hydrogen isotopes, the
approximate relations are relatively well obeyed
(within 15%). This has been conclusively shown'
not to be the case for HD; this is not surprising
since for this molecule the assumption of a pure
P2 type potential is cer-tainly invalid.
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One of the results obtained in Ref. 8 is the fact
that collision cross sections depending solely on

energetically inelastic collisions are extremely
small for the homonuclear hydrogen istopes. Be-
cause of this, the contributions from energetically
inelastic collision events to collision integrals
which also containapurely elastic or a reorientation
(i. e. , AJ'=0, bM~k&0) collision contribution may
be safely neglected. With this assumption, it is
possible, for example, to derive explicit expres-
sions for the reorientation collision cross sec-
tions'0 cr(00', 0000) and o (00000000) within the distorted-wave
Born approximation (which should be very good
for hydrogen). Such a derivation is given in Sec.
II. The results of this section allow the tempera-
ture dependence of the ratio of the cross sections
o (00000000) for any two of the modifications of the homo-
nuclear hydrogen isotopes to be predicted. A typi-
cal application of these curves would be the pre-
diction of the position of the low-temperature
Senftleben-Beenakker shear viscosity effect on an

H/P (magnetic field to pressure) axis for any of
the hydrogen isotope modifications from the room-
temperature data.

Section III examines some of the predicted ratios
and compares the theoretical values (at 300 K) with
those obtainable from experiment. Further, two
procedures for obtaining the value of o (0200) from
the experimental data are compared and contrasted.
One of the methods uses only transport data. (and,
in principle, allows an independent determination
of the rotational g factor). This is a. simplification
(due to the fact that energetically inelastic collisions
can be neglected) of a method used earlier" to ob-
tain g„, values for Nz and CO. The second method
makes use of the g„, values as obtained from mo-
lecular beam magnetic resonance experiments.

Section IV discusses nuclear magnetic relaxation
in n-H~ from the point of view of kinetic theory' '
and the results obtained in Sec. II. At 77 K, the
calculated forms of the "transverse" relaxation
times T, and T~ as a function of density are con-
sistent with the treatment of a one-level spin sys-
tem and in agreement with the experimental re-
sults obtained by Hardy. '4 A short discussion of
the room-temperature result for T, found by
Lalita, Bloom, and Noble" is also given and values
of o (0000000), „are extracted from the NMR data both
at 77 and at 300 K.

Section V shows how the interrelations between
the various collision cross sections may be ex-
ploited and employed in the calculation of other
transport and relaxation phenomena in hydrogen.
As examples, the collision cross section deter-
mining the width of the depolarized Rayleigh l, ine'
in light scattering and the self-diffusion coefficient
for n-Hz are calculated and compared with experi-
ment.

II. DERIVATION OF REORIENTATION COLLISION
CROSS SECTIONS

The collision integrals which can be associated
with the relaxation of the various angular momentum
tensor polarizations which exist in a gas can be
denoted by [00k0000], having the generic form"0

[Ok00] —(2k+ 1)-1([J](k)O k 6( [J](k)) (2 1)

These collision integrals are density independent,
the trivial density factors in the Waldmann-Snider
(WS) collision term having been removed. Further,
the quantity [J]("' is the kth-rank irreducible
Cartesian tensor" of weight 0 which can be con-
structed from the vector operator J of the rota-
tional angular momentum of the diatomic molecule
and 6(0 is the (positive-definite) lineartzed WS
collision superoperator. The inner product appear-
ing in this equation is defined by

(A, B) = n 1TrJ dp f(0'AtB ( 2.2)

where A and B are single-particle operators, f'0'
is the equilibrium distribution function density ma-
trix for the gas, and the trace is tobe taken over all
internal states of the molecule. It has been shown
in Ref. 7 thatfor the case of a nonspherical inter-
molecular potential which can be represented as
a single Pa-type of interaction, the collision
bracket (2. 1) has the explicit form

[Ok00] (P I ( k& (
.
)

Bj(i+1)}H-(0)
j

1 g ([I(k)(j j ) I (k)(j j)] e-Bj( /+1)H(p)( -

))
1IJ'

(2.3)
where

I-'"(ji ') =~(i, 2j ') ~,"'u'(f, 2j ')fl'"0, k, j)(- 1)"

~ (k) ~ (0) gl/0( k j)
2k+ 1 &&' ' 2j+1

In these expressions j is the magnitude of the
angular momentum of a molecule prior to a colli-
sion while j is its magnitude following a collision,
B is the reduced rotational constant of the molecule,
B= ka/2IkT (I is the moment of inertia), g& is the
nuclear spin degeneracy of the state characterized
by j, and Q is the rotational partition function

Q = g, g;(2j + 1)exp[ —Bj (j + 1)]. The quantities H'0'

and H( )(j,j ) are complicated functionals of the
spherical part of the potential and of the (scalar)
coefficient potential of the P~ term: The first
of these two functionals is independent of j and

j . Of the remaining quantities, g'&'0] is a (6- j)
symbol while the definitions of and explicit ex-
pressions for the quantities Q(j, k, l), n,.( ', and
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TABLE I. Diagonal deorientation collision integrals for
a one-level spin system.

where

S',.''=(2j+1) exp{ B-''j(j+1)} (2. 7)
|0100)&f )/H &0)
0100

0
4/15
4/21
8/45

40/231
20/117

L'0200] tf)/H (0)
0200

0
2/25

34/35
164/75
2e2/77
226/39

[oooo]
"=&i+1)1"'(jj)H"' (2.8)

with Band B equal to 84 8./T and 42. 6/T, respective-
ly 18

For a single-level spin system with magnitude of
angular momentum j, Eq. (2. 3) reduces to

tu(j, k, l) are to be found in the Appendix.
The first term in Eq. (2. 3) represents the en-

ergetically elastic contributions to the collision
bracket while the second term represents the en-
ergetically inelastic contributions. Owing to the
scarcity of inelastic collisions in the homonuclear
hydrogen isotopes, this latter contribution will be
very small in comparison with the former one and

to all intents and purposes can be neglected. An

important property of the simple Ps type pote-ntial
treated in Ref. 7 is the complete absence of the
collision partner in Eq. (2. 3). Because of this
property, the distinction between pure species and

mixtures of different (nuclear spin symmetry)
species is lost insofar as collisional calculations
are concerned: This means that Eq. (2. 3) can be
applied not only to the pure nuclear spin symmetry
species (p-Ha, o-Ha, P-Da, o-Da) but also to the
more commonly occurring equilibrium mixtures
(n-Ho, n-D, ).

The neglect of energetically inelastic collisions
and the disappearance of the collision partner in
the collision brackets results in their being ex-
pressible as a sum of contributions from single-
level spin systems weighted according to the
population of the system as

since Q=g,.(2j+1)exp[—Bj (j +1)]. Making use of
the explicit expressions for the quantities 0 (j, k, l),
a'&"), and tt(j, k, l) given in the Appendix and for
the (6-j) symbol, " the following expressions may
be obtained for the collision brackets having k= 1, 2:

[o&oo]&» 2 j(j+ 1) H(o&
3 (2j —1) (2j+3)

[oooo] i 1 j(j+ 1)(4j +4j —"/)
Hto&

5 (2j —1)(2j+ 3)

(2. 9)

(2.10)

0.25,

These two collision brackets have been singled
out because they appear in the Senftleben-Beenakker
(SB) effects and in the nuclea, r magnetic relaxation
in the hydrogen isotopes Valu. es of [o,'oo]'~'/H'o'
and [ooaooooo]I&)/H'o) have been assembled in Table 1

for j= 0, 1, . . . , 5 while Fig. 1 shows [o&oo] s)/H o)

and [ooaaooooj"'/{ j(j+ 1)H'o'} as functions of j.
Bather than discussing the collision integrals

themselves, it is convenient to discuss the general-
ized collision cross sections' which can be de-
rived from them. The two of specific interest

(2.6)

P,.(P —Ha) = {1+( —l)&}s,/Q, {1+( —1)'}Sq

P, (o -H, ) = {1+(-1)"}S,/Z, {1+(-1)"}S,,

[OI&00] Q p [Qko 0]
Ii)

where [oo",oooo]"' means that the square bracket in-
tegral [oo,'oooo] has been evaluated for a single-level
spin system having angular momentum of mag-
nitude j, andP& is the fractional population of the
spin system. The p,. are, for the various modi-
fications of H2 and Dz, given by

0.20

0.1 5—

0.10—

0.05—

0 0 8 0 8 0 0
0 0

8
0

d
d d d d d d h d d

—asymptotic value—1

5

—-- asymptotic value—1

6

P, (n-H, )={2+(-1)'}S,/g, {2+( 1) &}S, ,
(2. 6)

P, (o —Ds) = {1.+ ( —1)i}S.,'./Q, .{1 y ( —1)&}s,'. I I I I I I I I I I I I I I I I I0
15

P (P - D ) =11+(-1)'"}S,'/Z, {1+(-1)"}S,',
p,.(n —Ds) = {—,'+ —,

' (-1)'}S,'/Z, {-.'+ —,
' (-1)']S,',

FIG. 1. The qunatities [oIIoo]u "/H' and [oooI)o]
& /

JIj(j+1)H' '} as functions of j. n. , [ ]' /H'; Q [ ] & /
Q(j+1)HIo)}.
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here are

oC(o~o) -=3 (&~ &o&2& (&o) [t(oo]

and

(2.11)

o(osoooo) =-15 (2&J (8 —4) &o&t&„,&o) [oooo] . (2.12)

The average relative velocity ( v„,&o appearing
in the definitions of these cross sections is

(2.i4)

Using the definitions (2. 11) and (2. 12) together
with the results (2. 5), (2. 9), and (2. 10) the cross
sections o'(o', oo) and o(oooo) are obtained as

In the case of purely j-dependent a.rguments, the
average &

~ ~ . &o reduces to a. calculation of

(2.is)

to be taken as 0„' ' for the hydrogen modifications
and as eD

' for the deuterium modifications. It
shouM not be assumed that these latter two quan-
tities are equal. Since o(oo', oooo) shows up only in the
nuclear magnetic relaxation measurements while
o(ossoooo) shows up not only in the NMR measurements
but also in the SB-effect shear-viscosity measure-
ments and in the closely related thermomagnetic
torque measurements, it will be expedient to
concentrate more on the latter cross section.

Once the ratios between the cross sections
o(oooo) for the various modifications are known,
the measurement of any one will allow the pre-
diction of the relevant effects for any other iso-
tope. ' Figure 2 gives plots of five ratios of "re-
duced" o(oossoooo) cross sections as functions of the
temperature T. Specifically, the ratios appearing
in these figures are defined by

o(o(o~o) =, & j (j+ 1)(2j- I) '(2j+ 3) '&o(j (j +1))o' o'" K (g II) (o. (0200 ) o (0 &]/(o(020~0) o (o& (2.IS)

a,nd

o(oooo) =
& j(j+ 1)(4j'+ 4j —7)(2j —1) '(2j+ 3) '&o

(2.16) where A and B are any two of the homonuclear
hydrogen isotope modif ications.

III COMPARJSON WITH SENFTLEBEN-BEENAKKER-
EFFECT MEASUREMENTS

x & j(j+1)(j'+j ——,')& o'", (2.16)

where 0' ' is given by

o(o& o K(o&/& (2.iv)

1.8

1,4

1.2

1.0

0,8- RCo-H, n-H )2' 2
R( P- D,n-D2)

I I I I I I I I

30 90 150 210 27Q 330 390 450 51Q

TC K)

FIG. 2. The ratios R((&-H2, n-H2), R(o-H2, n-H2),
R(n-H2, n-D2), R.(o-D2, n-D2), R((I-D2, n-D2) as functions
of the absolute temperature; the ratios RQ, , B) are de-
fined in the text.

It is to be understood in Eqs. (2. 16) and (2. 16)
that the averages are to be taken with the relevant
weight factors for the hydrogen isotope modification
being considered [see Zqs. (2. 6)] and that v(o& is

There are two methods for obtaining the collision
cross section o(oossoooo) from experimental data on

the SB effects and the thermomagnetic torque. The
first of these'" uses only transport data, namely,
the field-free thermal conductivity coefficient )(o,
the field-free shear-viscosity coefficient t)o, and

the values of the magnetic field to gas pressure
ratio (K/P), where the SB effects b &),/&) o and 6)(„/)(o
reach half thei. r saturation values. The second of
theseoa uses only the (K/p), qs „value together with
the value of the rotational g-factor as obtained from
molecular beam magnetic resonance experiments.
Inherent in the first method is a, number of exact
and approximate relations~ between collision
cross sections. Two essential types of approxi-
mation were utilized in Ref. 7 in deriving the
a.pproximate r elations: The first approximation
was that of nearly classical collisions and the
second involved making a Taylor series expansion
in the parameter 4E/kT (the ratio of the change
in the total internal energy of the colliding pair of
molecules to kT). For most homonuclear diatomic
molecules, such as N~ and O~, the effects of these
two types of approximation cannot be unraveled
and it is therefore not possible to test the approxi-
mations separately. However, in the case of the
homonuclear hydrogen isotopes, since energetically
inelastic collisions (those for which EEc0) may
essentially be neglected, it is useful. to compare
the two methods of calculating o(oossoooo) as a means
of checking the approximation of nearly classical
co1.lisions.

The required transport data, expressed in terms
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TABLE II. Relations bebveen collision cross sections.

Cross section

~(1010)

(1010)

«iooi)1001

&0(12oo)
1200

Expression for Ref. 6

p. 2000 5 0010
3 +(2000) 'f (0010)

& «(uuio)
0010

37l 0
2 R2g tie I) +

+
'I

(0010)
4 0010

Cint

Expres s ion if 0 (0010) = 00010

I ~(2000)

37I' 0
2 R2g tie 1)*

0 (1001) 6 0 (0200)
1001 7 0200

of the generalized collision cross sections defined
in Ref. 10, are given by"

5kay o(1001 )+ 2~1 o(1010)+ ~ 2 e(1010)

1)0 ( 1010) (1001) + (1001 )

[o-l(1010)i 1,-2 0 l(1001 )]
5k T
( ) 1010 1001 r

rel 0

up k~~l(~ 1)0 +(2000) j

(3.1)

(3.2)

(H/P)1/2, „lP)1/ aea 0 1200)/+(0200)

(3.3)
where 1 = (5k/2c, „„)'~awith c,„,being the internal
heat capacity per molecule. The second (approxi-
mate) equality in Eq. (3. 1) is obtained upon ne-
glecting o (,'00, ), a purely energetically inelastic
collision cross section. Those relations between
collision cross sections in Eqs. (3.1)-(3.3) which
are required from Refs. 6 and 7 are given in
TaMe II together with the simplified expressions
obtained when energetically inelastic collisions
are neglected.

Using the first entry in Table II, Eqs. (3. 1) and

(3.2) may be solved to give o (',00', ) in terms of
o( 2000 )

&(,'0000', ) =4(10e —15) '(c,„,/k) o'(2000) (3.4)

o(0200) (~ ~)-1 o(1001 ) (3.5)

The data needed for the calculation of o(00220000) in this
manner are collected in Table III for p-H2, n-H2,
o-D2, and n-D2. Measurements of both the SBshear-

where e is the Eucken factor e= 2mkp/(5kqp). Using
the final entry in Table II, Eq. (3.3) allows the
exgression of &x(00220000) as

viscosity effect ' and the thermomagnetic torque
may be used to obtain (H/P)»2 „. While the data
of both Ref. 24 and Refs. 25, 26 are rather un-
certain due to the extreme smallness of the ef-
fects being measured, the data of Refs. 25 and
26 are more to be trusted2' since it is easier to
determine the position of a maximum than the
position at which an effect reaches half its sat-
uration value. For all gases so far considered38
it has been found that the thermomagnetic torque
attains its maximum at an (H/p) value equal to
one-half of (H/P)»2 „and it will be assumed that
this is also the case for the hydrogen isotopes.
The resulting values of o(00220000) are given (in the
fourth column of) Table 1V together with cr(10000', )
alld vp ( 120~0 )

For the second method of calculation of o(00220000)

only the value of (H/p)»2 „ is needed in addition
to the value of the rotational g factor since

1200

(H/p) +(Ure 1)p+(1200 )
1/2, g3 =

p gkrg~t
(3.5)

where p,„is the nuclear magneton. The values of
o(0200) obtained from Eq. (3.6) using Ramsey's
valuesap of g„, and the (H/p)«2 „values derived
from Refs. 25 and 26 are also listed in Table IV.
A similar calculation of op(,'zpt) can be performed
by using the relation between this cross section
and (H/P)»a, 1„:

(
H @(~,.1)0 oo(lapo )

p 1/22K(i I '+ grot
(3.7)

Comparison of columns 4 and 5 and 6 and 7 of
Table lV shows that the agreement between the
values of o(oaoo) and oo(lapoo) calculated by means
of the two methods is quite good. From this, it
is possible to conclude that the approximation of
nearly classical collisions is a good one and it
allows the use of the interrelationships between
the collision cross sections with some confidence.

From the values for the cross sections &(00220000)

given in Table IV, three ratios may be constructed
and a comparison made with the corresponding
theoretical values obtained from Fig. 2 for
T= 300 K. Both sets of values are tabulated in
Table V. The two explicitly known ratios compare

TABLE III. Data on the homonuclear hydrogen isotopes at 300 K.

Gas

p-H~
g-Hp
o-D~
n-D2

Qo

(p,P)

88.2
88. 2

123'
123'

0 (oooo)

(A')

18.4
18.4
18.7
18.7

X{)

(erg/cm sec K)

19200
18250
13100
13100

2. 11
2.00
2.06
2.06

1.09
0.96
1.00
l.00

(@/p) 1/ p,~3
(kOe/To rr)

0.114b
0.092
0.180
0.180

e/p) „,,„,
(kOe/To rr)

2 ~ 7
3 3
4 8c

4.3'

23. 6
35.9
26. 6
23. 9

~Data from Ref. 46.
"Data from Ref. 25.

'Data from Ref. 30.
~Data from Ref. 26.
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TABLE IV. g~ t values and some digonal cross sections [all errors have been calculated assuming a 10' error in the
(H/p)(/2 values onlyj.

Gas Prot

&(ioo 1)

(0200) (A2)

From trans-
port alone Using g~t

~ (1200) (A'2)

From trans-
port alone Using g

P-H2
n-H2
0-D2
n-D2

0.8787
0.8787
0.4406
0.4406

13.2
14.1
13.4
13.4

0.59+ 0.12
0.41+ 0.08
0.53+ 0.11
0.59 + 0.12

0.61+ 0.06
0.47 + 0.05
0.66 + 0.07
0.66+ 0.07

14+ 2
15+ 2
14+ 2
14+ 2

15+ 2
17+ 2
18+ 2
14+ 1

Data from Ref. 29. Data from Ref. 30.

very well with experiment. Moreover, the final
entry in this table allows the determination of the
ratio oD(0)/o„(s) as 2. 2.

IV. NUCLEAR MAGNETIC RELAXATION IN n-Hp

Nuclear magnetic relaxation in gaseous hydrogen
has been and still is of considerable interest. Two
reasons for this are that the collision dynamics
for molecular hydrogen offer some hope of clearly
defined collisional calculations being performed
and that molecular hydrogen is also one of the few
gases in which two different relaxation mechanisms
play an important role in the NMR measurements.
The first experimental verification of this was
given by Hardy'4 in his measurements of the "spin-
lattice" and "transverse" relaxation times T, and

Ta as functions of density at VV. 5 K. More recent
measurements by Dorothys have been concerned
with the determination of the T, minimum at room
temperature while Lalita has made a careful
study of the temperature dependence of T, .

Of the hydrogen modifications, only o-H~ has a

resultant nuclear spin (I =I) and hence, as opposed
to the SB-effect measurements, onl~j the influence
of collisions on the ortho molecules can be detected
Because of this, the cross section o(tassot) entering
into the NMR measurements at ordinary tempera-
tures will not be quite the same as that entering
into the SB-effect determinations. This deviation
of the two cross sections from one another will
become increasingly obvious as the temperature
is increased and more and more rotational states
of molecular hydrogen are populated. For heavier
homonuclear molecules, such as N&, where the
various spin symmetry modifications are unde-
tectable to all practical purposes, the cross sec-
tions entering into the two effects will be in es-
sence equal. The same is true for hydrogen at
77 K since neither the NMR nor the SB shear-
viscosity experiment detect the j= 0 state; the

j= 1 state is the only nonzero j state sufficiently
populated to be detectable.

For a multilevel spin system Bloom and Oppen-
heim and Chen and Snider have derived the
following expressions for Tj and T~..

s . . l 1 2
' j(j+ 1) p 3 ss 1 42( =s a (j(j+1))aa

1 s 'a +
23 3 1 2 3

(2l —1)(21 3)d ara s s + d~ "a)1+T 1+4 (4.1)

and

2(r =, a (j(j+1))aa 1 ~ a .a + — . . (2l-1)(2l+3)d ara 3+1 a „a+ 3 s a).j (j+1) 5 2
I+o) 7 V5 2j —1 2j+3 1+~ v 1+4& ~

(4.2)

In these expressions c and d are the (nuclear)
spin-rotation and dipolar coupling constants, re-
spectively. The quantity (d is given by Ratio Theory Transport alone Using g~t

TABLE V. Ratios of 0(020&) cross sections at 300 K.

(dj = ('YZ- 'yr)&0 (4.3)

with y~ and yr the gyromagnetic ratios for the ro-
tational angular momentum and for the nuclear
spin angular momentum, while HD is the strength
of the constant magnetic field.

The coupling constants c and d have, for molec-
ular hydrogen, the values

0200

~|0200&. H,
0200

0200
0~0200& D2

02000 &0200~~D2

0200
+~0200~gg H2

0200
+~0200~fg D2

1.27

1.03

1 52&H2~0'D2

1.4

0.9

0.7

1.3

1.0

0.7
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c = (4. 4967 x 106) rad sec ',
d = (34. 151 & 10 ) rad sec ' .

(4. 4)

pTj —3 cl p cp +q5 Q71+ 7'

4
„a -a +1 4„ar-2 (4.1)

g 2 C 1 Il
Tp =3 c 7 1+ 2 cp +Isod1+& 7

5 4
3+ p ccp + p clp ~ 4e 21+ v 7 1+4 7'

At 77 K, molecular hydrogen can be treated as a
one-level spin system with j=1; moreover, the
o-H& molecules which contribute to the nuclear
signal have an I value of 1 resulting from two
coupled spin- —,

' nuclei. For such a system al = —,
'

so that, at 77 K, T-, ' and T2' are found to be
given by

At room temperature, it should be sufficient to
include, in addition to the j=1 level, the j=3 and
j= 5 levels, giving rise to a three-level collision-
ally decoupled system (see, however, Ref. 23).
If this is done, Eqs. (4. 5) and (4. 6) reduce to

I/r =0. 236nH' ', 1/7' =0.131nH' ', (4.10)

which gives the value 0. 553 for the ra.tio r /r
This result shows that there is not a strong tem-
perature dependence of the ratio of the correlation
times. The influence of the ratio 7 /r will have
its maximal effect at low densities where T, passes
through its minimum while at higher densities (in
the region where T, = Tz) Eqs. (4. 1) and (4. 2) can
be approximated as

1/T, =1/T2=~+ d r [1+34.0 (c/@ (r '/r")].
(4. 11)

From this equation and the result T, =1msec at 10
amagat given by Lalita Bloom and Noble "11'~)

can be calculated to be

0100 (j)Zp [o oo] (4.5)

The relaxation times 7' and v are, for the cases
considered in this paper, given by

H'0'= 1.418 &10~ sec-' amagat '

= 5. 27 &10-" cm sec-' (4.12)

1 15 1
2 (i (i+ 1)(i'+i l)&o-

(4.6)
For the one-level j=1 system for o-Hp at 77 K,
these quantities reduce to

I/r' = a np, H' ', I /r "= ~ np H (4.7)

Note that the ratio r /r = 0.6, in agreement with
the prediction of the correlation function theory
of Bloom and Oppenheims '" and within the experi-
mental range of agreement 0. 6 & 7'/r" & 1 found by
Hardy" as best fitting his experimental results

In order to determine II'o', a fit must be made
to any point on the T, or T2 plot. This is con-
veniently accomplished by choosing the extreme
narrowing or high-density limit where Eqs. (4. 1)
and (4. 2) reduce to

T, = T, =nP, H"' [~ic'+ —,', d'] ' . (4.8)

At a density of 8 amagat, the common relaxation
time as determined by Hardy" and Lipsicas and
Hartland" is T& = T& = 1 msec. This, together
with the values for c and d, gives for P,H' ' the
value

p, H'0'= 1.239 X10' sec-' amagat ' (4.9)

Using this value of P,H' ' and the values of r and

&, T& and Tz for n-Hp at 77 K have been calculated
using Eqs. (4. 1) and (4. 2). Agreement between
theory and experiment is quite good for Tz and

quite reasonable for T, .

This leads to a value of 0'„' = 3. 15 A, to be com-
pared with the value oz+'=10. 8Aa at 77 K [obtained
from Eq. (4. 9) and the value P, =0.495].

V. DISCUSSION

From the value of H 0' obtained from Eq. (4. 9)
and Eqs. (2. 15) and (2. 16) for j= 1, the cross
sections o(oo,'oooo), „and a(ooz~oooo ), „are found to have
the values 2. 89 and 1.73 A, respectively. From
this latter value and Fig. 2, the cross sections
o(0~00) for all other homonuclear hydrogen isotope
modifications may be read off, assuming ono'/o'~'"2
to be the same as at 300 K. These results are
collected in Table VI. A partial check on these
values may be had by calculating oo(,'~&oooo) at 77 K
from these values using the last of the equations
in Table I and the value of a(~P~t,') at 77 K [which
may itself be calculated from o(',tooI) as found in

Sec. III by using the expression in Table II and
the tables of Q~ integrals given by Hirschfelder,
Curtiss, and Bird"]. Hermans et al. ' have also
obtained oo(',~zooo) from their measurements on the
transverse thermal conductivity effect at low

temperatures. Their values, obtained at 85 K,
are given in the final column of Table VI. The
agreement is seen to be reasonable.

Although the value extracted for o(ooaz0000) from
the room-temperature T, measurements should not
have exactly the same value as that found from SB
measurements, it should be close. Using the fact
tha. t g(0200)„a = 0. 103 ga~ at room temperature, a
value of rr(ozto)„a2 of 0.32 A is obtained from the
T, data, to be compared with the value o(0',oo)„~



TRANSPORT AND RELAXATION PHENOMENA. . . 2007

= (0.47 a 0. 05) A found from the thermomagnetic
torque measurements. ' Similarly, o(oge~c)
=0. 50 A~ which should be compared with the value
0. 608 A obtained by Gioumousis in an analysis
of the room-temperature T, data of Johnson and
Waugh. 4o

Two final applications of the present theory can
be made. These are to a calculation of the cross
section entering into depolarized Rayleigh light-
scattering measurements and to a calculation of
the self-diffusion coefficient for n-Hz. In the first
case, Hess'6 has shown that the cross section
determining the half-width at half-height of the
depolarized Rayleigh line in light-scattering ex-
periments in gases is given by I ooooo ( I00~0) g( 001) (5.4)

agreement with the value calculated above.
The self-diffusion coefficient in a gas is given

by
kT

Do —
( ) gi(1000) (5.3)

where p is the mass density and o (,'eeoooo) is the cross
section governing self-diffusion. The prime in-
dicates that only that part of the collision integral
not containing the variables of the collision partner
is retained. [o(Ioco) is zero because "1000"repre-
sents a summational invariant. ] It has been shown
in Ref. 7 that in the absence of energetically in-
elastic collisions g (,'scoot) is related to o(,'oooo,') by

+ g

2 2(2+ ) (5 1)
+~ ~ 0

Under the same assumptions as were made in the
previous section, this may be expressed as

4 i(i+I)(4i+4i-'I) i(i+I) ye)
(2i-I)(2~+3), (»- I)(2~+3),

(5.2)

For n —Hz at 300 K, it is found that O'Dpp = 0, 1520H
'.

From this and the previously determined value
of II' ', o»R is found to be 0.48 A . The
only experimental value presently available in the
literature is that of Cooper et a/. ,

"who found

on~ tobe (0. VV+0. 15)A . Thesetworesultsarein
strong disagreement. Recently, however, the
depolarized Rayleigh light- scattering experiments
have been carefully r edone by Gupta. ~ "3 In this study,
Gupta was able to show that there had been sig-
nificant extraneous contributions to the width of
the depolarized line from three sources, viz. ,
photomultiplier dark counts, parasitic scattering
of las er light by the cell, and polarized Rayleigh light-
scattering from the gas. -When these were elim-
inated, the true depolarized Hayleigh linewidth
yielded a value of 0~ of 0.495 A, in very good

from which the self-diffusion coefficient is given
as

kT
i&o po(ieN)

(5.5)

For n-H~ at room temperature and 1 atm, kT= 4. 14
& I0 '4 erg, p = 9. 03 & 10 '

g cm 3, (v~, )0
= 2. 48 & 10'

cm sec ', and o (', eeoc,
' ) = 14. 1 A2, so that De = 1.31

em~sec ' which should be compared with the value
Do = 1.34 cma sec ' measured by Harteck and
Schmidt. "

The results obtained in this paper can be sum-
marized as follows: (i) The approximations used
to obtain Eqs. (2. 5), (2. 9), and (2. 10) for the re-
orientation cross sections for the homonuclear
hydrogen isotopes, viz. , the distorted wave Born
approximation and the neglect of inelastic colli-
sions, have been shown to be good. (ii) The good
agreement found between o(cos2~ee) calculated using
only transport data and that obtained by using the

g factor as determined from molecular-beam ex-
periments gives a particular indication that colli-
sions between two hydrogen molecules may be
treated as nearly classical in the same sense as
was done in Refs. 6 and 7 for heavy diatomic
molecules. (iii) Ratios of reorientation collision
cross sections may be obtained as functions of
temperature, using only the distorted-wave Born

TABLE VI. Predicted values of o (o200) and o'0(I2po) in A .

Gas

P-H2
g-H2
0-D2
n-D2

(f00i)

(at 300 K;
from XO, g0)

13.2
14.1
13.4
13.4

(iOOi)

( t 77 K;
predicted )

18.1+ 1.8
19.3+ 1.9
18.3+ 1.8
18.3+ 1.8

+(0200)
(at 77 K;
calculated)

1.68.
1 e 73
3.67
3.56

+0(i200)
(at 77 K;
calculated)

20.0 + 1.8
21.3 + 1.9
22. 6+ 1.8
22. 4 + 1.8

+0(1200)
i200

(at 85 K;
measured")

(15)
O.8)

20+ 5
18+ 4

~An error of 10% has been assumed for
potential.

"Reference 38. The values in brackets
assumed.

approximating the spherical interaction potential by a Lennard-Jones 6-12

are rather uncertain. For the last two entries an error of - 25% has been
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approximation and the neglect of inelastic collisions.
At 300 K, reasonable agreement has been found be-
tween theory and experiments on the SB effects,
NMR, depolarized Rayleigh light-scattering, and
sound absorption measurements. '

APPENDIX

The defining relations and explicit expressions
for the quantities Q(j, k, l), o.'I", and p(j, k, l)
entering into Eq. (2. 4) are given in this Appendix.

Q(j, k, l) is defined in terms of Cartesian (3-j)-
tensors as"

Iwhere r and r are unit vectors and 6'& is the pro-
jection operator onto the subspace of constant j.
The explicit form of n',."' has been shown to be'

2'(2j+1)!!(2j —1)!!., J(-,') ~ ~ k even
47r(2j —k) t ) (-')'~" ~~ k odd

(A4)
Finally, the p(j, k, l) are defined by

f Ch[r]"' [r]'"'[x]'"-=p(j, k, l)T (j, k, l), (A5)

so that p(j, k, l) is explicitly given by
0 (j, k, l) =—T (j, k, l) T (j, k, l) (A1)

where a bar over an index (which denotes an ir-
reducible set of indices) means that this set has
to be contracted with the corresponding set in
the adjacent (3-j) tensor. Coope has given an
explicit form for Q(j, k, l) as

if J=j+ k+ / is even;

p, (j, k, l) = 0, if J is odd. (A6)

(J+ 1)! (J-2j)! (J-2k)! (J—2l)!
(2j)! (2k)! (2l)!

1, J even
2, J odd (A2)

The required (6-j) symbols have been given by
Edmonds'~ as

2 j j 3[2j~(j+1)~—13j(j+1)+21]—2j (j+1)2
~

~

~

~ ~

~

~ ~

~ ~ ~

~ ~

2jj (2j —1)(2j+ 1)(2j+ 3)j (j + 1)
with J= j+ k+ l.

The n', ~' are defined by'

(tI(p&[J] '(p&!x)—:n& [x] ~ o~T (j, k, j)o ~[r'] ~

(A3)

and

~

~ ~

~

~
2j j j+j—3

j (j + 1)(2j+ 1)

(A7)

(As)
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Hyperfine and Zeeman Interactions in the Metastable, e 3 II„,State of H2
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The magnetic hyperfine and gz constants were calculated for the c II„(1s,2p) metastable
state of Hq using wave functions determined from the optimal-double-configuration model.
The hyperfine constants differ by as much as 24% from previous values obtained using a single-
configuration electronic wave function. The hyperfine constants are a =21.98 MHz, b =471.14
MHz, c = 59.37 MHz, d = —12. 87 MHz, where a and b are the orbital interaction of the elec-
tron with the nucleus and the Fermi contact interaction, respectively, and c and d arise from
the dipolar interaction of electron and nucleus. With these values for the hyperfine constants,
along with the experimental fine-structure splittings and a matrix-diagonalization procedure,
the g~ values were calculated and found to be in better agreement with experiment than the
earlier theoretical values.

I. INTRODUCTION

Some experimental evidence as to the existence
of the metastable state, c 'II„(ls, 2p), of molecular
hydrogen was first reported by Lichten' on the
basis of a molecular-beam time-of-flight experi-
ment, and the first vibrational level of this elec-
tronic state was firmly established to be metastable
by Lichten with a magnetic-resonance molecular-
beam experiment. The fine structure in the N = 2
rotational state of parahydrogen has been measured
by Lichten, ' and the fine-hyperfine splittings have
been determined experimentally for the N = 1 ro-

tational state of orthohydrogen by Brooks et al, .
The theory of the fine-structure splitting in the
metastable state was first worked out by Fontana
who used the united-atom approximation and found

good agreement with experiment. However, Chiu
found an error of a factor of 2 too small in his
expression for the spin-spin interaction, and when
this is properly accounted for the simple united-
atom approximation fails. The fine-structure con-
stants have been calculated by Chiu' using a sim-
ple single-configuration wave function that is a
linear combination of a Heitler-London-type wave
function and an ionic type. She obtained fair agree-


