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The many-body perturbation theory of Brueckner and Goldstone has been used to calculate
the total nonrelativistic energy of the CH molecule. We have used a single-center expansion
with a complete set of basis states appropriate to the neutral carbon atom. At the equilib-
rium internuclear separation we calculate the total energy for CH to be —38.482 ~ 0, 02 a. u.
as compared with the experimental value —38.479 a. u. We have also calculated a full po-
tential curve for the II ground state of CH accurate to second order in the perturbation ex-
pansion.

I. INTRODUCTION

Recently attempts have been made to apply many-
body perturbation theory~'~ to molecules using sin-
gle-center wave functions. ' ' These have involved
calculations of the total (nonrelativistic) molecular
energy, and in the hydrides treated so far good re-
sults have been obtained, the errors in the total
energy being 1 eV or less. With this in view, it is
of interest to investigate the usefulness of these
techniques for other properties, particularly those
that depend on the molecular geometry. The choice
of basis set and starting point for the perturbation
expansion critically affect the convergence of the
calculations, which may vary for different molec-
ular properties.

In a previous papers we analyzed the different
types of diagrams that can occur into three classes;
those that contribute solely to the Hartree-Fock
energy, those correlation-energy terms which are
independent of internuclear separation, and corre-
lation-energy terms dependent upon internuclear
separation. This paper will also consider the
separate convergence characteristics of these three
types of diagrams. With these points in mind, we
have performed calculations on CH starting from
a complete set (including continuum) of carbon ba-
sis functions. This set has previously been em-
ployed for a, calculation of the correlation energy
of carbon, ' and thus will allow a comparison of
the two calculations, as well as a direct calcula-
tion of the correlation-energy difference between
atoms and molecule.

In this paper we use the Born-Oppenheimer ap-
proximation and neglect relativistic effects. We
start with a carbon nucleus at the origin, seven
electrons, and a hydrogen nucleus at a distance R
from the origin. The electron states are calcu-
lated in the V" potential appropriate to neutral
carbon, ' i.e. , electron states are calculated in a
potential with a carbon nucleus and six other elec-

trons. Interactions with the extra electron and
with the hydrogen nucleus are included as pertur-
bations along with the usual correlation perturba-
tions. This approach was used successfully in our
previous H20 calculations. ' The success of such
an approach depends upon a reasonable degree of
cancellation between the interactions with the ex-
tra electron and with the hydrogen nucleus. Such
cancellations are expected for CH since the Har-
tree-Fock (HF) single-particle energies of e3 and

&&, are —0.45522 and —0. 41497 a. u. , respective-
ly, as compared with HF &@ for carbon~ which is
—0. 433 33 a. u. In these calculations
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where V(x,. ) is the V" ' for neutral carbon, 7 and the
perturbation

where k is the position of the hydrogen nucleus.
Our unperturbed state C 0 corresponding to the ~g

ground state of CH is then the determinant for the
atomic configuration (Is) (2s) (2pv) (2Pm). Our
unperturbed energy is equal to 6A '+P,

We then use many-body perturbation theory to
calculate the higher-order terms in the energy ex-
pansion. These terms may then be evaluated by
sums over the excited states as described previous
ly. ' We sum over continuum states by numeri-
cal integration and we include the infinite number
of bound excited states by the n rule. Also,
certain classes of terms may be summed by appro-
priate denominator shifts or by approximate geo-
metric sums. ' These methods were also used
in the calculations of Refs. 3-5.

The first-order corrections for the energy are
shown in Fig. 1. The diagram of Fig. 1(d) repre-
sents interaction with the hydrogen nucleus, i.e. ,
matrix elements of —~r, —R ~

'. The second-or-
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FIG. 1. First-order corrections to the unperturbed
energy. Cross represents interaction with minus the
single-particle potential. Circled cross represents in-
teraction with hydrogen nuclei.

(e)

der corrections which involve only single excita-
tions are shown in Fig. 2(a). The dashed line ter-
minated by an open circle represents the net inter-
action with passive unexcited states, minus the
single-particle potential, and the hydrogen nucle-
us. It represents matrix elements of the operator
Q given by
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Third-order diagrams involving Q are given in
Figs. 2(b)-2(k). It may be shown that diagrams
2(a)-2(e) and the inverse diagrams to 2(f) and 2(g)
contribute to the HF energy. Diagrams 2(f)-2(k)
contribute to the correlation energy and are depen-
dent upon the internuclear separation through the
operator Q. In Fig. 3 are shown second- and third-
order diagrams which contribute to the correlation
energy and are independent of internuclear separa-
tion. Diagrams 3(a) and (b) are the usual second-
order pair correlation diagrams. Diagrams 3(c)-

(g)

FIG. 3. (a) and (b) Second-order correlation-energy
diagrams; (c)-(i) third-order three-body correlation-
energy diagrams.

3(i) are the third-order three-body diagrams

II. RESULTS

Figure 4 shows the results of our second-order
calculations which contribute to the HF energy and
also the HF curve of Cade and Huo for comparison.
As expected, at large distances the convergence is
slow, and the errors are relatively large. How-
ever, even in second order the calculated inter-
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FIG. 2. Second- and third-order diagrams involving
the net interaction with passive unexcited states, minus
the single-particle potential, and the hydrogen nuclei.
This sum of operators is represented graphically by a
dashed line with an open circle at one end. Graphs (f)-(i)
can be inverted, and the exchanges of graphs (h)-(k)
should also be included. The inverse of graphs (f) and

(g) contribute to the Hartree-Fock energy.

FIG. 4. Hartree-Fock energy of CH as a function of
internuclear separation. (a) Second-order single-center
calculation, this paper. Diagrams of Figs. 1 and 2(a) are
included. (b) Accurate linear-combination-of-atomic-
orbitals Hartree-Fock calculation from Ref. 8. As de-
scribed in thg text, calculations of third-order diagrams
at R = 2. 12 a. u. bring our results into excellent agree-
ment with curve (b).
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TABLE I. Results of third-order Hartree-Fock cal-
culations (in a.u. ). Diagrams of Figs. 1 and 2(a)-2(e)
and the inverses of Figs. 2(f) and 2(g) are included.

First order

Second order

R=2. 12 a.u.

—0.471530

-0.236254

R = 2. 92 a. u.
—0.389771

—0.227160

Diagram 2(b)
2(c)
2(d)
2(e)
2 (f)'
2(g)'

—0. 063524
—0, 006602
+ 0. 016988
—0. 008779
—0. 008494
—0. 003058

—0. 019402
—0. 064815
+ 0. 024841
—0. 016236
+ 0, 012421
—0. 004850

Total third order —0, 056571 —0. 068041

HF energy through
third order

Exact HF energy

Inverses only.

—38, 2792

-38.2794

—38. 1947

—38.2236

"References 8 and 12.

nuclear distance 2. 10 a. u. is close to the experi-
mental value" of 2. 116 a.u. The second-order
curve is by no means parallel to the HF curve and
the calculated vibration frequency is rather dif-
ferent (4078 cm ' vs the HF values of 3108 cm ').
Whether this is a general phenomenon or peculiar
to CH only, further calculations can tell. However,
the effects of the perturbation would be expected to
be the same for all diatomic hydrides.

We can improve the results of the second-order
calculations by going to higher orders, and Table
I shows the results of the third-order HF calcula-
tion at two distances, 2. 12 and 2. S2 a. u. Iwe in-
clude diagrams 2(b)-2(e) and the inverses of 2(f)
and 2(g)]. At the experimental distance our result
through third-order is within 0.0002 a. u. of the
HF value. ' While this very close agreement may
be somewhat fortuitous, it does demonstrate the
rapid convergence of the perturbation series at
the experimental internuclear distance. At 2. 92
a.u. , the convergence is somewhat slower, and
our third-order result is still 0.03 a. u. away
from the HF limit value. In previous papers '

some of the contributions from higher orders has
been approximated by geometrical summations.
If we do this here, we find energies of —38. 2969
and -38.2246 a.u. for the two distances under con-
sideration. While this gives almost exactly the
HF value at 2. 92 a. u. , it is 0. 017 a. u. lower than
the corresponding value at 2. 12 a. u. This suggests
that such a simple geometrical approximation can-
not be used along the potential curve with consis-
tency. We estimate the error in our third-order
HF calculation to be +0.005 a. u.

The lowest-order diagrams corresponding to the

TABLE II. Second-order pair-correlation energies
(a. u. ) [see Figs. 3(a) and 3(b)].

Electron pair

1s/1s
1s/2s
1s/2P
2s/2s
2s/2p
2P/2p

Total

CH

—0. 04036
—0. 006 45
—0. 009 66
—0. 040 75
—0. 093 14
-0, 053 19

—0.243 55

—0. 040 66
—0. 006 48
—0. 00645
—0. 042 30
—0. 07237
—0. 01069
—0. 178 95

Difference

+0, 00030
+0. 00003
—0. 003 21
+0.00155
—0, 020 77
—0. 042 50

—0. 06460

correlation energy are shown in Figs. 3(a) and
3(b), and Table II shows the results for these con-
tributions to the pair-correlation energies. Since
we start from an atomic basis set, many of these
terms are exactly the same as in the atom, and
Table II also shows the differences between atom
and molecule. Since we have not yet considered
diagrams such as Figs. 2(b)-2(k), these differences
do not correspond to the effects of molecular po-
tential, but solely to the presence of the extra elec-
tron. Thus the differences are due firstly to the
extra pair energy PQ„„,(n, 2P0), and secondly to
the fact that excitations to 2PO particle states are
no longer possible. We must now consider the ef-
fects of molecular potential and of higher-order
diagrams. A large part of the effect of the molecu-
lar potential is given by the sum of diagrams 2(f)
and 2(g), 0. 005436 a. u. Diagrams of Figs. 2(h)-
2(k) were calculated for HzO and found to be quite
small; furthermore, they cancel among themselves
to give a final result of approximately 10'10 of any
one diagram.

We have calculated the magnitude of diagram
2(k) (omitting 2P particle states) to be -0.00468,
and thus the net effects of these four diagrams to
be a maximum of 0.001 a. u. However, these dia-
grams are not small when the particles are 2p
states. To take proper account of these diagrams
and their higher-order counterparts, as well as the
third-order correlation diagrams shown in Fig. 3,
shifted denominators may be used. These result
in a reduction of the 2s/2s pair-correlation energy
by 0.0045 a. u. and of the 2s/2P pairs by 0.0011
a.u. We must also include the fourth-order re-
arrangement diagrams which couple the pair ener-
gies together. 7 These reduce the total excess
pair-correlation energy by 0.001 a. u. Lastly,
three-body effects must be taken into account. The
previous calculations on carbon7 demonstrated that
the important three-body effects were those involv-
ing 2s and 2p electrons. There are ten such triyles
in CH compared to only six in the atom, and we
estimate the contribution of these terms to the ex-
cess correlation energy to be 0. 005 a. u. The
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TABLE III. Contributions to the correlation-energy
difference. All these results are the differences between
the corresponding effects for CH and C.

Pair difference
Change in 2s/2s
Change in 2s/2P
Diagrams 2(f) —2(g)
Diagrams 2(h) -2Q)
Pair coupling
Three-body effects

—0. 06460
+0.00450
+0.001 11
+0.00544
+0. 001
+0. 001
+0. 005

Total —0 0466
Inclusions of denominator shifts to account for effects

from molecular potential and other higher-order dia-
grams.

"Estimated.

contributions to the correlation-energy dif ferences
are summarized in Table III. Our final value of
the correlation-energy difference is —0. 047 a. u. ,
and we estimate the error limits, which arise
largely from fourth- and higher-order diagrams
to be + 0. 006 a. u. , about 10/o of the total value.
The correlation energy of CH has been determined
by Liu and Verhaegen' as —0. 199 a. u. , giving an
"experimental" correlation-energy difference of
—0. 043 a. u. Thus our calculated value of the
correlation-energy difference between CH and C
is only 10% in error, which reflects the fast con-
vergence of the perturbation series at the equilib-
rium internuclear distance. This fast conver-
gence arises because the effects of the extra elec-
tron and the hydrogen nucleus almost cancel.

An analysis of the various contributions to the
correlation-energy difference gives some insight
into different methods that have been used for its
calculation. Diagrams 2(f)—2(k) represent the
change in pair-correlation energy owing to the
molecular potential; that is, they correct for the
use of atomic orbitals instead of the molecular HF
orbitals. The changes in 2s/2s and 2s/2P pair-
correlation energy in Table III, and of the 2s/2s
in Table II, are closely analogous to the "near de-
generacy effects" of Clementi and Veillard, "ex-
cept that small higher-order terms have been in-
cluded.

It should also be possible to calculate correla-
tion-energy differences along the potential curve
by considering the diagrams of Figs. 2(f)-2(k).
It is well known that HF wave functions dissociate
to mixtures of atoms and ions and thus the correla-
tion energy increases at first as the internuclear
distance increases from the equilibrium distance.
We have calculated the correlation energy (CE) at
R= 2. 92 a.u. using the same approximations that
were employed at R= 2. 12 a.u. The difference
between the two results, CE(2. 92) —CE(2. 12), is
—0.0002 a. u. This result is smaller than the

Our results for the HF energy of CH at the equilib-
rium internuclear separation, —38. 279 a. u. , and
for the correlation-energy difference between CH
and the carbon atom, —0.047 a. u. , are both in
reasonable agreement with experiment. Our total
energy of -38.482 a. u. for CH compares favorably
with the value —38.440 a.u. obtained in a configura-
tion-interaction calculation by Bender and David-
son. ' The convergence of the perturbation series
appears to be rapid at the equilibrium internuclear
separation, but this does not seem to be true at
larger values of R. The reasonable degree of con-
vergence is indicated in Table IV which lists re-
sults of various calculations on molecules using
single-center basis sets and many-body perturba-
tion theory of the equilibrium internuclear separa-
tion. At larger values of R the single-center func-
tions should become less valid for the unperturbed
wave function.

Since the second-order HF potential curve of
Fig. 4 gives an equilibrium separation close to the
experimental value, this indicates the possible use
of such calculations for those cases where the po-
tential curve is unknown. Such calculations could

TABLE IV. Molecular energies (in a. u. ) from many-
body perturbation-theory calculations.

Molecule

CH
HoO

HF
H2

Calculated

—38.482+ 0. 02
—76. 48 + 0. 07~

—100.4186
—1.176'

Experimental

—38.479 "
—76. 481

—100.4485
—l. 1745

Nonrelativistic total energy calculated at the equilib-
rium internuclear separation

"Reference 11.
Reference 12.
Reference 5.
Reference 4.
Reference 3.

higher-order terms that have been neglected, and
much smaller than the approximate "experimental"
value of —0. 013 a. u. obtained by using a Morse
curve. This reflects the slower convergence of
all diagrams involving 0 that was also observed in
the calculation of the HF energy at R=2. 92 a. u.
In fact one of the most important effects that has
been neglected is the effect of molecular potential
on the three-body terms. At large internuclear
distances, when one of the orbitals is almost en-
tirely H(1s), the three-body terms will be very
much the same as those in the carbon atom. Since
our estimate of the excess three-body term in CH
over carbon was 0.005 a. u. , this represents an
appreciable part of the correlation-energy change
along the potential curve.

III ~ CONCLUSIONS
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be carried out for the ground state and excited
states. Energy differences between the potential
curves could then be obtained. The rapid conver-
gence of the perturbation expansion confirms the
acceptability in this case of using carbon rather
than nitrogen, the united atom, as a starting point.

We plan to use these methods to calculate many ad-
ditional properties of CH.
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It is shown that the conventional application of the Pauli principle to the qualitative esti-
mation of the relative distributions of electrons with parallel and antiparallel spins is wrong.
The Pauli principle induces a local reduction of the probability of finding electrons with
parallel spins close together. However, for neutral atoms at least, such electrons have a
considerably higher probability of being found at moderate separations and an accompanying
reduced probability of being found at higher separations, relative to electrons with antiparallel
spins.

The Pauli principle is usually invoked to argue
that in atoms and molecules electrons with parallel
spins tend to stay essentially further away than
electrons with antiparallel spins. This argument
should lead to expectation values of 1/r, 2 being
lower and of ~» and x» being higher for the higher
multiplicity terms. The interpretation of Hund's
rule in ter ms of the diff er ent contributions to the
total energy has recently been attempted. ' It
has been noticed that, contrary to the customary
assumption, the interelectronic repulsion in the
higher multiplicity terms is higher than that in the
lower multiplicity terms. ' This has been shown
to be generally valid for light neutral atoms; for
sufficiently highly charged isoelectronic ions the
conventionally expected ordering of interelectronic
repulsions is generally observed. It has been
argued' that higher (1/x, 2) for the higher multi-
plicity terms does not exclude the possibility of

(r») being higher for them, and that it is this latter
value which measures the average interelectronic
distance. Very recently, accurate calculations
for the ' P terms of the He isoelectronic sequence
have become available. They indicate just the
trends discussed in Ref. 4. In particular, the
values of ( C — C)//(3L —~L), where C denotes the
interelectronic repulsion and L the nuclear attrac-
tion, are observed to increase from a negative
value for the neutral He atom to positive values
for the higher members of the isoelectronic se-
quence. The asymptotic behavior expected on the
basis of a perturbation-theoretic argument,
namely, AC/AL =1 —o./Z, n being a constant, is
confirmed by these values, presented in Fig. 1.
A further check of the results presented in Ref. 5
reveals the hitherto entirely unexpected ordering
of (r,2) and (r,z) . Whereas (1/x, 2) becomes lower
for the triplet at Z=4, (r,2) persists in being


