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Relativistic Corrections to Radiative Transition Probabilities
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The rate of spontaneous emission of radiation by a loosely bound composite system is calcu-
lated from quantum electrodynamics correct through terms of relative order 0.' Z . Recent criti-
cisms by Feinberg and Sucher of the semiclassical method of deriving the higher-order radia-
tion coupling terms are discussed. It is proved that the Breit interaction remains valid in

the presence of radiation emission and that the semiclassical and quantum-electrodynamic
methods of deriving the higher-order coupling terms always yield the same results to relative
order e g . We discuss in particular relativistic corrections to allowed and spin-forbidden
electric dipole transitions and the 1s2s S&-ls '$0 magnetic dipole transition.

I. INTRODUCTION

Although a theory in lowest order describing the
emission of atomic radiation has existed for many
years, recent laboratory and astrophysical ob-
servations of transitions in which relativistic ef-
fects play an important role have stimulated re-
newed theoretical interest. As examples of such
processes, the 1 s 2p 'P, -1s 'So spin-forbidden elec-
tric dipole (El) transition of the heliumlike ions
dominates the allowed 1s2p P&-1s2s So transition
for nuclear charges Zo-5 and the 1s2s'S&-1s 'So

magnetic dipole (M 1) transition determines the
radiative lifetime of the 1s 2s S& state for all the
heliumlike ions. In both cases, the lowest-order
transition integral vanishes exactly due to spinor
or wave-function orthogonality, and it is necessary
to evaluate the O(o. Z ) relativistic corrections (n
is the fine-structure constant e /Ac).

The semiclassical procedure for evaluating the
corrections consists of introducing the vector po-
tential A for the emitted photon as a prescribed ex-
ternal perturbation into the Dirac-Breit Hamiltonian
through the replacement p- p —(e/c) A, and evaluat-
ing the equivalent nonrelativistic interaction opera-
tor of the atom with the radiation field. Feinberg
and Sucher' have criticized this procedure on the
grounds that third-order diagrams contribute and
virtual pair creation in the intermediate state may
not be properly accounted for. Although the results
of their quantum electrodynamic calculation for the
1s2s S& —1s 'So M1 transition are in complete agree-

ment with the semiclassical derivation of Drake, 7

the implication is that the results may not agree
for other transitions. The claim by Feinberg and
Sucher that transverse photon effects are counted
twice in Ref. 7 apparently arises from a misin-
terpretation of the procedure followed.

One could also object that the form of the effective
Breit potential describing the electron-electron in-
teraction may alter in the presence of photon emis-
sion. An assumption in the derivation of the Breit
interaction (see Ref. 9) is conservation of the elec-
tronic energy before and after electron-electron
scattering. Since one of the electrons is in a vir-
tual state as a consequence of photon emission,
energy conservation is violated. Of course energy
is still conserved for the over-all process of inter-
action plus radiation. It is often implied that the
Breit interaction can be used consistently only to
ca,lculate diagonal expectation values, giving the en-
ergy shift and fine-structure splitting through terms
of relative order a Z (see, e. g. , Ref. 10, p. 173).

The general problem of the interaction of a loosely
bound composite system with an external electro-
magnetic field has been discussed by Brodsky and
Primack but they did not consider explicitly the
emission of radiation. In view of the comments by
Feinberg and Sucher, ' we discuss the emission of
radiation by a composite system, starting from
basic quantum electrodynamics and including the
above relativistic effects. We derive the general
form of the relativistic corrections and prove the
following two theorems: (i) The form of the Breit
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interaction is unaltered in lowest order by the
presence of photon emission. (ii) The O(o. Z )

corrections to radiative-transition probabilities ob-
tained by the semiclassical method always agree
with the quantum-electrodynamic results. The
theorem applies whether or not the leading term to
the transition integral vanishes. In proving theorem
(ii), we do not consider self-interaction radiative
corrections, but they are presumably always of
relative order n' inn. Feinberg and Sucher' have
shown this to be true for the 1s2s S-1s Sp M1
transition.

Theorem (i) implies that one is rigorously jus-
tified in using the Breit interaction as a first-order
perturbation to describe radiative transitions oc-
curring through off-diagonal mixing with inter-
mediate states. The simplest example is the 1s2p
P1-1s Sp transition, which proceeds via the spin-

orbit mixing of the 2 P1 state with all the ~'P,
states. '

The calculation of relativistic effects in atomic
systems has recently been reviewed by Grant' and

by Wadzinski. '

II. BASIC FORMULATION

We discuss in particular the emission of radiation
by a two-electron system. The results can be gen-
eralized to an N-electron system by summing the
transition operator over all electron pairs. Initially
we assume that the electrons are noninteracting and

use as a starting point for the calculation the Dirac
Hamiltonian for two electrons

2
Hp = ~) (ix)' pg + Pg tBc + e Vy)

j=1, 2

where V&= —Z/x, . Ha has well-defined eigenfunc-
tions ((r„r,) = g„(r,) ga(ra), where g„and ga are
hydrogenic four -component Dirac spinors. The
nuclear field is taken as a fixed external potential
and the electron-electron interaction via the elec-
tromagnetic field treated by perturbation theory.

In lowest order, the emission of radiation of
frequency co is represented by the Feynman dia-
gram, Fig. 1(a). Using the notation and conven-
tions of Akhiezer and Berestetskii, the diagram
corresponds to the first-order S-matrix element

S -y = ef Icbm) OB (+2)&by) gA(+1) 48(+2)d

= 2»e&(E Ey ~) f 4c(rs) o.'s' A(r&) g„(r,) dr, .
(2)

In the above, P = g*P, where g~ is the Hermitian
conjugate, A denotes the scalar product A„Z„
(p, =1, . . . , 4) of the vector potential A, and x rep-
resents a four-vector with g(x) = g(r ) e ' '. We have
taken the number of photons present in the initial
state to be zero. The diagram corresponding to
Fig. 1(a) in which electron 2 radiates is taken into
account by multiplying the transition operator by

the symmetrizing operator S =1+(1 2). Finally,

S; f is related to the matrix element U; &
of the ef-

fective interaction energy of the atom with the radia-
tion field by S,.„&= —2~iU; & 5(E,. -E& —ur). The

rate of spontaneous radiation is given by w = 2

x lU, , l

Since accurate solutions to the nonrelativistic
Schrodinger equation are often available, (2) is
best evaluated in the low-energy limit (nZ«1) by

expanding in powers of ag and evaluating the low-
est-order equivalent nonrelativistic operator.
Expressing ( as

where Q and g are the large and small two-compo-
nent spinors, the leading terms in the wave-func-
tion expansion are

X=[(o p)/2mc]g

1 — 4 '

8m c
(4)

4 satisfies the nonrelativistic Schrodinger equa-
tion (H„„-ENa) C =0. Substituting (3) into (2) and

symmetrizing, the lowest-order effective nonrela-
tivistic interaction energy is

U„"'= —(e/mc)& [A p + —o 'K ][1+0(n'Z')] (5)

with the gauge condition V X= 0. K= vxX is the

magnetic field.
Since atomic states are characterized by angular

momentum and parity quantum numbers, it is con-
venient to expand A as a sum over multipoles
A&„' of definite angular momentum L, component

M, and parity (—1) "', where A. =O designates a
magnetic multipole and A. = 1 an electric multipole.
For a given multipole, the transition probability
between two atomic states with total angular mo-
menta J;, J& and parities m, and m& vanishes exactly
to all orders in ~ unless the selection rules

m, = vy(-1) '"', ~Z; —dy
~

& I ~ J;+Jy,

J,. =o~ J, =O,

are satisfied (neglecting nuclear spin). If the
transition is not forbidden and the transition inte-
gral (2) does not vanish in lowest order, then the

transition rate gg is O[(&u/c)az'Z a~] for ELtransi-
tions and O[(~/c)a~'~c aZ z] for ML transitions.

If the transition integral vanishes in lowest or-
der, then it i4 necessary to evaluate the O(n Z )
corrections. These arise from (i) the one-electron
relativistic and finite wavelength corrections to

S; &. The relativistic terms can be obtained for
example, by application of the Foldy-Wouthuysen'
transformation for time -dependent potentials as
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discussed by Drake. ' Finite wavelength effects
are included by expanding beyond the leading term
the spherical Bessel functions contained in AL, ~).

Since the argument of the Bessel function is (Dy'/c,

only the leading term is ordinarily required in
lowest order. (ii) the third-order diagrams dis-
cussed in Sec. III.

The first- and third-order diagrams generate
all the terms in the transition operator describing
photon emission through terms of relative order
n Z . Higher-order ladder-type diagrams contrib-
ute wave-function corrections to the initial and
final states, but do not introduce further terms in-
to the transition operator. The ladder diagrams
can be summed to infinity by including the elec-
tron-electron interaction in the zero-order Hamil-
tonian HD, as discussed in the Appendix.

III. EVALUATION OF THIRD-ORDER DIAGRAMS

Diagrams 1(b) and 1(c) of Fig. 1 represent the
combined effects of radiation and electron-electron
interaction via the electromagnetic field. The cor-
responding diagrams in which electron 2 radiates
can be taken into account by symmetrizing the tran-
sition operator. Each diagram contains a direct
and an exchange part, which are included by anti-
symmetrizing the wave functions. Leaving aside
for the moment the symmetrization, the third-or-
der S-matrix element is

St f & f gc (x2) (ID(x3) K' '(2, 1; 3) (A(x1) tJrB(x3)

x d'x, d'x, d'x, , (7)

where

X("(2,1; 3) = [y, S'(2, 1)A(l)] [y,]D'„,(2 —3)

+ [A(2) S'(2, 1) y„][y,]D' , (1 —3), .

(7a)

Dc (2 3) It 6 tttt (12 t3)
2milF2-x3l .„

x cos((D" Ir2-r3I)d(D (&)

is the photon propagator, and

Stt (2 1) d ttc'( t2 t(t Q 4-n( 2@n 1)
21(i„„,E„(1—ie)+(D'

(3) 3 p
' (pc (D I & I (r1n (tB ) (gn (B I n, A11 ()A (B )

n~ t. E„-E~+x

Q c ID ~ n1 A1 ~ yn (|D) (tn ()D~+ ~ (CA eB )+ E -E
n c

(10)

where

(1 n—, 'n, )
(8 = COS((CtBD

I
I'1 —1'2 )

lr~ -r2I

(DBD = EB -E» and as before, St „&= —21(i U, '& 5(Et(3) ~ (3)

—E& —(D). Expression (10)bears a, close resemblance
to the corresponding expressions for two-photon
decay, photon-electron scattering, and other two-
photon processes except that in this case, one of
the photons is absorbed by the second electron.
The negative-frequency terms can be interpreted
as virtual-pair creation in the intermediate state.

The above expression cannot be reduced to an
equivalent nonrelativistic operator because the de-
pendence on ~» cannot be eliminated in a general
way, but the terms through relative order n g can
be extracted by a modification of the argument used
by Akhiezer and Berestetskii in deriving the Breit
interaction in the absence of radiation. If the cosine
function is expanded, then

(1 —n1'n2) (EB -ED) i- -
i Ot -4)

~
ri -r2I +

I. ry —rgl
(12)

in the first term of (10), we replace the second
term of (12) by

2p

(E„Ec)(EB-E-D)
I
r1 —r2I /2c'

+(EA-E. -&)(EB—ED) lr1 -r21/2"
= [a(, [H„ I

r, —r2I])/2c'

(EA E (D) [82 I
rl r2I ]/2c'

n, —(n, n)(n, n) (E„E„—(D) - .--2-„' 2':
(13)

n= (r, -r2)/r, 2, 312= Ir1 —r2I,
and in the second term of (10), we replace the second
term of (12) by

(9)
is a spectral representation of the electron propaga-
tor in the external nuclear field. The summation
over g includes both positive- and negative-fre-
quency electron states (denoted by tt+). In (7a),
the first set of square brackets in each product
connects gc with gA, and the second set connects
()tD with $B. After performing the time integrations
in (7), the interaction-energy matrix element be-
comes

2c

(EA E )(EB. ED)
I
r1

+ (E„-E,—(d)(EB —ED) Ir1-r2I /2c

n1'n, -(n, n)(n, n) (E„-Ec—(D)
Q2' n

(14)

The energy terms multiplying n2 n in (13) and (14)
cancel with their respective energy denominators in
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(10), and the sum over 31+ can be carried out exact-
ly by closure. Collecting the results and defining

Bv=e /r13 —(e /2r12) [nl' n 2+ (nl' n)(n2 n)]
= Vg2+B, (16)

U; y
—- [-e/(2mc )](gc (Dl Bv A nl' A,

+ nl A1A BvI )4) )N. (18)

The above is in harmony with the corresponding ex-
pression obtained by Feinberg and Sucher in their
discussion of M1 transitions. Introducing approxi-
mation (3) for the small components of the wave
functions, the expression becomes

U,",' = [-e'/(4m'c')](ycyD
~
&[(o, p, ), r,— ( 12',)],

—[(C2' p3), [(cl Al), B.].].
—(ol A»[(» pl), r12].}l&~&N ),

where

B, = [1/(2r, 2)] [o'1 ' c2+ (ol ' n ) (o 2 n )],
and [, ], denotes the anticommutator. In the effec-
tive nonrelativistic form of the Breit interaction
(B»), the orbit-orbit, spin-spin, and that part of

where B is the Breit interaction, the expression for
U .'z becomes

U(3) )~ ((CADI Bvl („(N ) ()t„()3 I n, Al I )I)A ala )
E„-E&+x

(0 0' I a, 'A, l 4„4)(g„g IB lg„g )
)E„-E,—~

+ (1/3c) (gc )t)D
I
[nl Al n3 n ] I C. )r). )

The last term of (16) is the additional contribution
due to nonconservation of energy in the virtual-
electron state. The extra term vanishes provided
that A& and n commute. No approximation has been
made other than truncating the retardation expan-
sion (12). Since B in (15) is the Breit interaction,
theorem (i) is established.

The next step in the reduction of (16) is the evalua
tion of the sum over negative frequencies, which we
denote by U,.'„&. In the low-energy limit, we can
assume cu «yes, I E& —~ I «me, and I Ec —v I

«me 2. Since E„--mc, the denominators in (16)
can be replaced by —2rnc to the required degree of
accuracy. If we introduce into U, „& the negative-
frequency projection operator

2ac —Hg
2 =2[1 —Pl —n, p, /(mc)]mc -E„

with the properties A g„=tt)„,A („,=0, then the
sum over n- can be extended to a sum over yea

without altering the value of U;"& . The sum over
v+ can now be evaluated by closure with the final
result

the spin-other-orbit terms arising from B, are
obtained by calculating the nonrelativistic equiva-
lent to [-e /(4m c )] [(o3' p3), [(o, p, ), B,],]„with.
allowance for the 5(r,3) singularity in the spin-spin
term (see, e. g. , Ref. 9, pp. 517-521). Since the
form of the nonrelativistic, equivalent operator is
invariant under the replacement of pj by z&= p&
—(e/c) A, , provided V' A=O, the nonrelativistic
equivalent to the symmetrized terms [e3/(4 m c3)]
x& [(o, p, ), [(o, A, ), B,],], of (19) can be obtained
by the semiclassical procedure of replacing p by
p —(e/c) A in the above parts of BNR. When the
other two terms of (19) are added, the symmetrized
interaction-energy operator is

UN'R' = [e /(2m c'] 8[-r13(el+ o'2) r, 2xA,

+ r12 Al p2 + r12 (r12 Al)(r12 p2) ]
The above contains all the corrections of relative
order n Z which depend explicitly on the z» co-
ordinate. The result is valid whether or not the
leading term vanishes and applies to all multipole
transitions since no assumption is made about the
nature of A&, other than the Coulomb-gauge condi-
tion V ~ A=O. The corresponding part of the inter-
action operator derived semiclassically is exactly
the same as (20) for arbitrary potentials, thus
proving theorem (ii).

As mentioned previously, the one-electron rela-
tivistic corrections to U,."& can be calculated rig-
orously by application of the Foldy-Wouthuysen
transf ormation. Using the results derived in Ref.
7, the total "direct" part of the interaction operator
is

+NR ~NR + ~NR

=[—e/(mc)] S [A, p, +-2v, K, ]

+[e /(2m c )]S(-v, V, V1&A,

1 2 ~ ~ 1~
+2 [Ply Al pl+ 2&1 +1)

+ 3[)t)1» ol ~ Rl+ 23A1 ' olxp, ] }+U„"„' (21)

correct through terms of relative order n Z . To
obtain the above, the factor of lD in Eq. (28) of
Ref. 7 is dropped, and the operators it multiplies
are replaced by the commutators of the operators
with the zero-order nonrelativistic Hamiltonian
BNR ——L (- —,

'
V&+ U&). Terms arising from the e /r12

interaction are already included in Eq. (20).
The remaining part of (16) containing the sum

over positive-frequency states is denoted by U,.".&'.

To the desired degree of accuracy, it can be written
in terms of nonrelativistic two-electron eigenfunc-
tions C of HNR as

(3) P (4gl BNR I e„)(4„IUN R I@i )
Ey -E„
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(C ~UNa~c. )(O. ~& )C;)

where E, and E& are the exact nonrelativistic two-
electron initial- and final-state energies, and UNR

is given by (5). The e /r, z term is no longer treated
as a perturbation, but is included in H» by sum-
ming the ladder diagrams, as discussed in the Ap-
pendix. U,.'„&' then represents first-order wave-
function corrections to the initial and final states
due to the Breit interaction B„„,and is to be added
to the matrix element (C &

I U~'„'14, ) to obtain the
total transition integral U; &

correct through terms
of relative order n Z . In the nonrelativistic limit,
the states 4,. and 4& are strictly LS coupled. High-
er-order effects such as spin-orbit mixing are ac-
counted for by (22).

The results can be expressed more compactly
by introducing the first-order corrected functions

(C'; ~ &NR ~ @ ) @
(23)E] -E„

and similarly for 4&. C is an eigenfunction of
IH» =H»+B» through terms of relative order

o Z . U, „& can then be written

U -y= (C'y
~

UN a~ C') (24)

provided that only terms up to relative order n Z
are retained. For Ml transitions, Vga reduces to
the expression obtained in Ref. 7.

IV. APPLICATION TO ELECTRIC DIPOLE TRANSITIONS

P&a = —(e/mc) S (Aq' pq) —[e'/(2m c )J

x s [ o' ' g& V| xAg +ry2 oy' r&2xA&] (26)

for spin-forbidden E1 transitions. Since
—i(&; -&g)(2&v/3c)'~'(e~~ k, ' (r, + r2)

~

C', )
= -i(2~/3c)'"&4,'~ [ir, (r", +r",), a„'„]C',)
= (C, i

U„"„'
I C,.), (27)

Spin-forbidden E1 transitions have been exten-
sively discussed from a less fundamental point of
view and reviewed by Goodman and Laurenzi. " The
present analysis is more general in that it applies
also to allowed transitions and considers the ex-
plicit two-electron effects given by U"' [Eq. (20)].
Since these terms are symmetric in 0, and 02, they
do not contribute to transitions involving a spin
change. For the case A. = 1, L = 1, and M = 0, A~~
is given by

AID'= (2(u/3c)' '[k, +0((u'r'/c')], (25)

and BC,"~' = —(~'/2c2)rxA', a. In the above, $, is a
unit vector in the z direction. The term ——,'0 X
in (21) then becomes (&u /4c ) o" r&&A~»'. lf we re-
place the co r factor by the double commutator
[H„„,[H», r, ] ]= (e /m)(VV, —r, 2/r&2) and omit the
spin-symmetric and spin-independent terms, then
UN'a reduces to

the transition integrals are correctly calculated in
the "dipole-length" form as shown also by Goodman
and Laurenzi. " The above argument can be ex-
tended to higher electric multipoles since A~~& and
HN~ commute to the necessary degree of accuracy.

We consider also allowed E1 transitions in which
the principle quantum number does not change, such
as the 1s2p P-1s2s 'S transition of the heliumlike
ions. Since the nonrelativistic transition frequency
increases only as Z while the relativistic correc-
tions increase as Z, the corrections may become
large, even for small Z. If we assume that the
"long-wavelength" approximation is still valid
(pro/c «I, where ro is the atomic radius), then the
major part of the relativistic correction to the tran-
sition rate is obtained by replacing the nonrelativis-
tic energy difference by the relativistically cor-
rected (or experimenta. l) one. Since the equivalence
of the length and velocity forms of the transition
integral holds also for Dirac wave functions, i. e. ,

f (2 o''k(&dr= —i(&; —Ez) 1 (,*r k(, dr, (28)

a large part of the relativistic correction to the
velocity form of the transition integral on the left-
hand side of (28) is expressed simply as an energy
difference multiplying the length form on the right-
hand side. It is physically reasonable to suppose
that the integral on the right-hand side is less sen-
sitive to relativistic corrections because r weights
the parts of the wave functions far from the nucleus.
Thus, the length form is the correct one to use in
applying the above procedure. For the 1s2p 'P~
—1s2s 'S, transition of heliumlike Ar xvn (Z = 18),
the relativistic energy correction increases the
transition rate by nearly a factpr pf 2. '

V. DISCUSSION

We have obtained from first principles all of the
radiation coupling terms correct to relative order
n2Z' and have shown that the semiclassical and
quantum electrodynamic derivations will always
give exactly the same results to this order. Thus,
the semiclassical derivation of the M1 transition
probability presented in Ref. 7 is as well founded
as quantum electrodynamics itself. It is interest-
ing that the summation over negative-energy states
(virtual-pa, ir creation) leads to exactly the same
coupling terms as those obtained by the semiclas-
sical procedure applied directly to the Breit inter-
action.

The development of high-energy beam-foil ex-
periments has made possible the accurate measure-
ment of radiative lifetimes in highly ioni'. zed sys-
tems such as Ar xv[I. Fpr the 1s2s S, —1s SOM1
transition of this system, Schmieder and Marrus'
have measured a lifetime of 172+30 nsec, which is
slightly below the theoretical value 212 nsec. The
10-20% difference, if real, can perhaps be accounted
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D =

FIG. 2. General ladder-dia-
gram contribution to the spontane-

~ ~ous emission of radiation by a
~ ~ ~

two-electron system.

FIG. 1. First- and third-order contributions to the
spontaneous emission of radiation by a two-electron sys-
tem. The solid lines represent electrons and the wavy

lines represent photons. Each diagram has a partner
in which the other electron radiates.

for by the next correction of relative order nZ
to the two-electron terms U"' . ln addition, there
is a small one-electron Lamb-shift-type correc-
tion of relative order n inn. ~ The presentanalysis
lays a firm foundation for the evaluation of these
terms.
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APPENDIX

In deriving the O(o! Z ) corrections to the photon
transition operator, we have treated the entice in-
terelectronic interaction, including the V= e /r, 2

term, as a perturbation. However, the eigenfunc-
tions of HD [cf, Eq. (1)] form a complete set, and

antisymmetrized linear combinations can be formed
which are eigenfunctions of the total atomic Ham-
iltonian Ht„Hz&+ V+B, u-—p to terms of 0(o' Z2). It
then seems likely that the same transition operator, where

PA(xl) NB(x3) «ly ' ' '
y «5 ) (A1)

when expressed in a form independent of the initial-
and final-state frequencies, applies also to transi-
tions between states described by eigenfunctions of

Ht„, provided that corrections of higher order than
n Z are discarded.

The above proposition may be proved as follows.
Assume throughout that terms of higher order than
&'Z are discarded. The diagrams shown in Fig. 1

are the leading terms in an infinite sequence of
ladder-type diagrams of the general form shown in
Fig. 2 with all possible time orderings. The sum
of all the 2n+ 1 order diagrams yields exactly the
same photon transition operator in each case, in
addition to all the eth-order wave-function correc-
tions arising from the perturbation V+ B. The
sum of all the ladder diagrams includes the e2/r»
term to infinite order as a Z expansion-perturba-
tion series and the &2Z corrections to first order.
Diagrams with crossed quantum lines introduce fur-
ther corrections of relative order & and are not
included.

As a specific example, consider the fifth-order
diagrams shown in Fig. 3. The contribution to

(5)S] y ls

S, '~g" "=—e'fg (x )g (x,)K""(4,2, 1; 5, 3)

K '(4, 2, 1; 5, 3) = [y„S'(4, 2) y S'(2, 1)A (1) ] [y~S'(5, 3) yq ]D'„(4—5) D' (2 3)

+ [y„S'(4, 2)A(2) S'(2, 1) y ] [y~S'(5, 3) y, ]D'„~(4 5)D'„,(1 3)

+ [A (4) S'(4, 2) y„S'(2, 1) y„][y,S'(5, 3) y, ]D„'„(2 5) D'„(1 3)

Equations (8) and (9) are substituted for S' and D', and the integrations over f&, ~ ~ ~, t2 carried out. A fur-
ther integration over the virtual-electron and -phononfrequencies is performed by evaluating the integrand
at the poles of S' and using the residue theorem. After some algebra and several operator replacements
similar to (13) and (14), U,".

&
" "becomes

U;"&" "———es(CD ~(V+B)G2n(V+B)G2 &, X, +(V+B)G2 &q AqG2 (V+B)+&& ARGO (V+B)G~ (V+B) ~AB)

where

+ [es/(ic)](cD (v+B)G0 [n2. n, o'& A, ]+ [o'2 n, o'~ A, ]G22(v+B) ~IAB), (A3)

G AB 5 I nln2) (n1n2 I

Go E~+&a -E~ -En, (A4)

and similarly for G2 . Equation (A4) is a spectral representation of the resolvent operator (E~+Ea HQ)
The summations over negative-energy states n& or n, occurring in matrix elements of the form

(CD I (V+B) In~ n2) (n~n2 I &&. A& In2n2) (n2n2 I (V+B). . . IAB )
(E c+ Ea —E„& —E&) (E„+Es —E„& —E„2)
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FIG. 3. Fifth-order ladder-diagram contributions to
the spontaneous emission of radiation by a two-electron
system.

can be carried out by introducing the negative-fre-
quency projection operator A and using closure in
the same way as described in Sec. III. The result
is again the operator U given by (20). Equation
(A3) can then be written

2

= —e& E (CD ~A, ct, A)A, ~AB)2
5), ladder

m=0

U,","'"—e Q &CD~ —SA, n ~ A A, + U s' ~AB)„.

(A6)
The Breit interaction B is to be included once, in

(CD ~U
~' ~AB), „, (A6)

m=0

where lAB) = [GP(V+B) ] lAB). For brevity, we
have dropped the commutator term in (A3) since it
will not normally contribute, but it can be carried
through by adding it to U' ' .

Since the ladder diagrams beyond fifth order just
contain further ladder extensions to those shown in
Fig. 3, they serve to extend the perturbation ex-
pansions of the initial and final states in powers of
Z ' without contributing new terms to the transition
operator. The infinite sum of all ladder diagrams
is then

all possible ways, in evaluating the first term of
(A6) and not at all in evaluating the second term. If
we neglect for the moment the initial- and final-
state level shifts, then the quantity g„",0[GO (V+B)]"
IAB ) is just the perturbation expansion for the
eigenfunctions of Ht, & with V+B acting as the per-
turbation. 8 is of course retained only to first or-
der in evaluating the eigenfunctions of Ht, t.

The electron-electron interaction is a mutual self-
energy effect and the resulting level shifts to the
bound initial and final states can be included formal-
ly by introducing the level-shift operator & defined
by

&= Z ~ngn ) &„,„(ngn2~,
tt[ y 02

where

(A7)

&1&2 &1 &2 ( &1 "2) &

HD~n, na) = (E„+E„)~ngn2),

and E„,„ is the corresponding eigenvalue of Ht, t.fly tl2

(V+B) is then replaced throughout by (V+B —r),
and HD is replaced by H~+ ~. The rest of the anal-
ysis is unchanged except that additional terms ap-
pear in (A3) and the subsequent equations as a re-
sult of the perturbation corrections to the initial-
and final-state energies. Also the singular terms,
such as E„,=E„, E„=Ee in (A6), are subtracted
out of the perturbation expansions.

Thus, to relative orders & Z, one is fully justi-
fied in including the e /r, z term in the zero-order
Hamiltonian and evaluating matrix elements of the
transition operator [or its equivalent nonrelativistic
form as in Eq. (24)] between eigenfunctions which
take into account the e'/r, 2 interaction exactly and
B to first order.
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