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to the second line in f3 means an interchange of
identical particles. Therefore the second term in

(Bl) is also symmetric. Thus P is a symmetric
tensor.
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A kinetic equation is set up for a system of particles interacting with nonadditive intermolec-
ular forces. Bogolyubov's functional assumption is used. After linearizing in the gradients,
the kinetic equation is solved by a Chapman-Enskog method. Using the expressions for the
stress tensor and heat current obtained in an earlier paper, the contributions of nonadditive
forces to the shear and bulk viscosities and thermal conductivity are explicitly obtained. The
results obtained are independent of density expansions.

I. INTRODUCTION

In an earlier paper' we obtained the hydrody-
namical equations of a system of particles interact-
ing with nonadditive intermolecular forces. Ex-
plicit expressions for the stress tensor and heat
current were given, in terms of the intermolecular
potential.

It is the purpose of this paper to obtain general
expressions for the linear transport coefficients of
a system of particles which interact with nonaddi-
tive forces. We obtain these expressions making
Bogolyubov' s assumption, namely, that the distri-
bution functions of more than one particle are func-
tionals of the single-particle distribution. Thus,
no expansion as power series in the density is used.
Therefore the results that are obtained are inde-
pendent of whether the density expansions exist or
not. . In this paper we generalize to our case the
method proposed by Garcia-Colin, Green, and

Chaos3 of obtaining linear transport coefficients
without recourse to density expansions.

In Sec. II we start from Liouville's equation to
obtain the generalization of the Bogolyubov-Born-
Green-Kirkwood-Yvon (BBGKY) hierarchy to the
case of systems that interact with nonadditive
forces. Taking the first equation of this hierarchy
and making the Bogolyubov functional assumption,
we obtain the kinetic equation. We then proceed to
linearize the kinetic equation in the gradients of the
system.

In Sec. III we solve the linearized kinetic equation
by the usual Chapman-Enskog method.

In Sec. IV we use the expressions for the stress
tensor and heat current obtained in I, together with
Bogolyubov's functional assumption and the solution
of the linearized kinetic equation, to compute the
transport coefficient of this system, namely, the
shear and bulk viscosities and thermal conductivity.
We find the explicit contributions to these coeffi-
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cients due to nonadditive forces.

II. KINETIC EQUATION

Let us consider a one-component system com-
posed of N particles of mass m enclosed in a vol-
ume V. The Hamiltonian of the system is taken in
the form

g
p

2 1 N 1 g
a=/ ' + —QQ q, + —QQQ su,.„. (2. 1)

m

For the meaning of the symbols the reader is refer-
red to I.

The Liouville equation of this system is

It should be mentioned that in obtaining the hier-
archy given by Eq. (2. 3) we have taken the limit
N- ~, V- ~, N/V finite. In particular for s= 1,
Eq. (2. 3) becomes

+—~f(pq &)

dx V y q —~ ~ V& & p, q, x&,'t

+ dx2dx3 [V, so (qq, q2, q )]

„"=[a;s„], (2. 2)
' [V3f3(P~ q~ x2~ X3i f)] ~ (2 6)

with [a; b] denoting the Poisson bracket of a and b

Integrating this equation over the arguments

x„&,. . . , x~, we find, in the usual way, the gen-
eralization of the BBGKY hierarchy, namely, that

~-s' = [a„.f,]+ ~ Q p( q, —q„, l )
i=1

S1
+2 ++ (qg ~ qg ~ qs+t) i fs+s dxs+ti~j J

+ ~ ~(q, , q„„q„g;f„,dx„,dx..., (2. 3)

with s = 1, 2, . . . . Here the function f, denotes the
reduced distribution function of s particles, and

H„ the Hamiltonian of s particles, is given by

a, (x, , . .. , x,)

«)+6

Now we make Bogolyubov's functional assumption
namely, that the distribution functions of more
than one particle are time-independent functionals
of the one-particle distribution function

f, (x, , . . . , x„ t) =f, (x„.. . , x,
I f, (x; f) ), s - 2.

(2. 6)

This assumption will be valid only in the so-called
"kinetic stage" of the evolution of the system to-
wards its equilibrium state. By substituting Eq.
(2. 6) into the BBGKY hierarchy, Eq. (2. 3), and
eliminating the time derivative of f, by means of
the equation corresponding to s = 1, one can, in
principle, obtain the explicit form of f, as given by
Eq. (2. 6). This problem and those related to the
existence of the kinetic stage for a system interact-
ing with nonadditive forces will be discussed in a
subsequent paper. For the time being we will as-
sume the the f, are determined

Substituting Eq. (2. 6) into Eq. (2. 5), we obtain
the equation

+ ' ~ f1 dx2I &, ~( I q-q2I)l'[ sf2(x x2lfi)]m J

+ ' dx2dx3 [&,~ (q, q2 q3) ] [+/f3 (x x2 x3 If)) ] =& (xlfg)
4

(2. 7)

This is the kinetic equation for a system of particles
interacting with nonadditive forces. Here we have
denoted x —= (p, q). +(x l f~) is a nonlocal functional
of fg.

By linearizing the functional + one obtains the
following linearized kinetic equation to first order
in the gradients:

'+—&,fi=+(x IA(q))

+ ' dx'+'(x, x' lfi(q)) (q -q)
i' -e
(2. 8)

In this expression @(x if, (q) ) is evaluated for the
local distribution function f& (q), and 4'(x, x' If, (q) )
denotes the functional derivative of + taken at the
point x'= (q', p') and evaluated for the local distri-
bution function f& (q) .

We would like to stress the fact that the linearized
kinetic equation given by Eq. (2. 8) was obtained
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without making any density expansion.

III. SOLUTION OF LINEARIZED KINETIC EQUATION

We proceed now to solve the linearized kinetic
equation that was obtained in Sec. II. We will use

the method of Chapman and Enskog. This method
will be valid only in the "hydrodynamic stage, " in
which the only variables that change in time are
the macroscopic variables that describe the system.
Thus, we make the assumption that the one-particle
distribution function f, is a time-independent func-
tional of the macroscopic variables, namely, of the
average concentration n(q; t), the average local

velocity u(q; t), and the average energy density
&(q I f&). Therefore, one has that

fi (x ' t) =fi (x I
n (q; t), u (q; t), ~(q If~)) (3. 1)

n (q; t)= fA(x; t)dp,

u(q; t)= (1/n) fdp(p/m)f& (x; t),

(3. 2)

(3. 3)

where n, u, and & are given by [see Eqs, (3. 6), (3. 7)
and (3. 27) of I]

&(q lf&) = (I/2m) f dp 6' f& (x; t) + —.
' fdpdp, dR(t)(R)fs(q, q+ R, P, Ps If1 )

+~ f dpdpsdpsdrdRu (r, R)fs(q, q —R, q —R+r p ps ps I fs) (3 4)

fi=fi"'(I+ 4), (3. 5)

Here += p —m u is the thermal momentum.
If the system under consideration is not far from

the equilibrium state, we can write for the one-
particle distribution function

macroscopic variables.
Substituting Eq. (3. 5) into Eqs. (2. 8) and (3. 2)—

(3. 4), we find to zero order in the gradients

(3 6)

where f,' ' denotes the one-particle distribution func-
tion in equilibrium and C' represents the separation
from the equilibrium state. The function 4' will be
taken up to linear terms in the gradients of the and

.(q t)= jdpf'"(; t),

u(q; t) = (1/n) f dp (p/m) f& '(x; t),

(3 7)

(3. 8)

~ (q I f ) = e (q I f l" (q ) ) = (I/2m ) fdp +'f i"' (.; t) + -' J 'P dp d«(R) f ( q, q+ R, P, ps I fl" ( q) )

+6 f dPdPsdPsdrdR~(r, R)fs(q, q-R, q-R+r, 7, Ps Ps lf1 '(q)) (3 9)

In Appendix A we show that the solution to Eq. (3. 6)
is given by the local Maxwellian distribution function

(3. 19) and (3. 26) of I], we obtain the Euler equa-
tions, valid to zero order in the gradients,

2
(o& . t

n (P —mu)fi ("; ')= (2,~e)aia ~*a —
2 e )

n—= —V (nu)e (3. 11)
(3. 10)

Here n and u are the local values of the particle
density and average velocity, respectively. Equa-
tion (3. 9) together with Eq. (3. 10) will give us the
relation between the energy density and the tempera-
ture ~.

If we now substitute Eq. (3. 10) into the hydro-
dynamical equations obtained in I [see Eqs. (3. 5),

+u
nm = —V~P, (3. 12)

= —PV iu (3. 13)

In these equations we used the fact that p =nm. The
local equilibrium pressure, denoted by P, is

P=nB — o fdpdpsdRR (t)'(R)fs(q, q+ R, p, ps~ f q (q)) — (') fdpdpsdpsdrdR R ~ [&Rsv (r, R) ]

+fs(q q+» q+R —r p Ps ps If' (q)) . (3. 14)
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In equilibrium, the equation of state has this form.
The contribution of nonaddit. 've forces is given by
the last term on the right-hand side. This expres-
sion for the equation of state may, of course, also
be obtained directly from the partition function of
the system in equilibrium.

Substituting again Eq. (3. 5) into Eqs. (2. 8) and

(3. 2)-(3.4) and keeping terms that are linear in
the gradients, we obtain the equation

gg (0)
+ p v, j,'" dx'w'(x, x'~f, (o)(q))

„(-. -) ('fi"'(~'))

dx'+' x, x', "'
q q'-q

J

&o) -i(p), (3. 21)

A( )
f1 (p) 6)o s)
me

' dx' @ (x, x'~f1"'(q)) S'Sf1 (p )8„
(3. 22)

&(p) = I f1'" (p)

and the subsidiary conditions

J dp»"' (p) 4'(p) = o, (3. 16)

dp'+'(x p'I»"'(q))»'"(q, p ) C (q, p')

(3. 15)

dx'~'(x x'lf1'"(q) ) 5'(q'-q) f1"'(p')

(3, 23)

In these expressions we have set

(3. 24)

„dp —f1"' (p) 4 (p) = o, (3. 17) (3. 25)

dp'"(q, p'If1"'(q))f1'"(q, p ) @(q p')

+ dx & (q, x if&' '(q))

(0)

x(q -q) -', =0 . (3. 18)

and

V gg

(p (p = (p6' —&(p I
p

(3. 26)

(3. 27)

(3. 28)

Equation (3. 15) is an inhomogeneous integral
equation for @'. The solutions of this integral equa-

tion must satisfy the conditions given by Eqs.
(3. 16)-(3.18).

One can eliminate (~f, ' '/St) in the left-hand
side of Eq. (3. 15) by means of the Euler equations.
This is a well-known procedure and we just quote
the result (see Ref. 3):

S S= —'[q' —q) (p'+ (p'(q' —q)] ——,
' v'(q' —q) 1

(3. 29)

are symmetric traceless tensors. Here I is
the unit tensor.

Due to the fact that we are dealing with a one-
component gas, no diffusion is present. There-
fore, the coefficient of V, inn must be equal to
zero, i. e. ,

D (p) ~ V, 1ng+ G(p) ~ V, ln8+ A(p) ~ V,u+&(p) V, ' u D(p)=0 (3. 30)

= J dp'@'(x, p'lf1"'(q) )

' f1"'(p') C'(p'), (3. 19)

D(5).fi"'(5)( (—,)—

(o)-
G(p) = f1 (p)

dx' 4'(x, x
I f1 (q)) ( q —q) f1 (p )

~I

(3. 20)

This is discussed in Appendix B.
In order to obtain the solution of the integral

equation, Eq. (3. 19), we mention the following
properties of the nonsymmetrical kernel
@'(x, p'

~ f, ' '(q) ) (the proof for our case is exactly
the same as the one given in Ref. 3): (a) The
right eigenfunctions with zero eigenvalue of the
kernel are 1, p, and p . (b) The left eigen-
functions with zero eige'nvalue of the kernel are
1, (P, and E'(x'

1 f, 'o'(q) ). This last quantity is the
functional derivative of the total energy E,evaluated for
the local Maxwellian distribution function f, (o) (q).

'these two properties of the kernel establish as
consequence the existence of a solution of the in-
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tegral equation, Eq. (3. 19), and the fact that this
solution is undetermined up to an arbitrary linear
combination of the five solutions to the homogeneous
equation . However, this undeterminacy is re-
solved with the aid of the subsidiary conditions
given by Eqs. (3. 16)-(3.18). Therefore, we may
write the solution of the integral equation, Eq.

(3. 19) as follows:

C (p) = 8 ( S")6'. V, Ine + a ( 6") 6"(P: V,u

+ S ((P2) g, (3. 31)

The scalar functions 8, @, and satisfy the follow-
ing integral equations:

dp'+'(x, p'I fi'" (q) ) 6 'f~'"(p') ~(6'"), (3. 32)

(0)
6"6' —— dx'e'(x, x'If, "'(q)) S'Sf,")(p') = dp e (x, p'If, '"(q))6"'6'f '"(p') e(6'") (3 33)

&A'"(p)- — dx'@'(x, x'If&'0) (q)) 6" (q'-q)fg'0)(p') = dp'+'(x, p'IA'"(q))f)'"(p') & (6'") .
(3. 34)

Also, the functions g, 8, and 8 must satisfy the following subsidiary conditions in order to ensure unicity
of the solution:

Jdpf '"(p)s" & (6")=o,

f dpf (0)(p) ~ (6)2) 0

(3. 36)

(3. 36)

dp'~'(q, p'I f~'"(q))f&'"(p') (+") = —— dpdI)~dRdx' V(I~)f2 (q, q+R, I), p2, x'I fi'"(q))

x a" ~ (q' —q)f ~ '(p') — d p d pz d p~ d r d R d x' m(r, R)

xf~' ( q, q —R, q —R+ r, p, pa, p~, x'
I f, ' '(q)) g

'
~ (q' —q)f, ' '(p') . (3. 3'7)

For our purposes, we will assume that the scalar
functions 8, @, and are determined. Thus, the
solution to the linearized kinetic equation [see Eqs.
(3. 5) and (3. 31)], which depend on 8, 8, and sl

will be considered as known.
It should be mentioned that the g, 8, and

functions that we defined above, are not the same
g, 8, and functions defined in Ref. 3. In fact,
although the integral equations which the functions
satisfy have the same formal structure, the kernels
are not the same. In our case the kernels take in-
to account the nonadditivity of the intermolecular
forces.

In Sec. IV we will obtain the transport coeffi-
cients of the system.

IV. TRANSPORT COEFFICIENTS

We are now in a position to evaluate the transport
coefficients of the system. We will start with the

P =Pq +Py+P~,

with

(4. 1)

P
m

dp 6' 6'fi(q, p I
~, u, ~), (4. 2)

RRP„=—~ dpdpzdR y'(R)

+f&(q q+»p p~ If», (4»

P = ——' J dpdpzdpsdrdRR [Vs'(r, R)]

expressions for the stress tensor and heat current
obtained in I [see Eqs. (3. 20) and (3. 28) of I].
Using Bogolyubov's functional assumption [see Eq.
(2. 6)] and Eq. (3. 1), these quantities take the fol-
lowing form.

The stress tensor is
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For the heat current we have

(1) g (2) g (&) + g (2)
ao (4. 5)

xf3(q, q —R, q —H+r p pa pa lfl)' ( '4)
dpdpadH (()(R)fa(q q+H p pa I fl)

, (4. 7)

dp dpa d H q'(R) ' — +

Xfa(q q+R p pa Ifl) (4. 8)

with

(p (p,2

8 ~ =, dP fl(q, p I
n, u, a), (4. 5)

d p dpa dpadl'dR —z()(l', R)

xf3(q, q —R, q —H+ r, p, pa, P3 fl) (4. 9)

dpdp dp, drdRR[v„a((r, R)] —+ + —f (q, q —R, q —H p p p I f ) (4. 10)

We now substitute in these expressions f, = f,'"x(1+4'), expand in powers of the gradients, and use the
re lat ion s

f*( lf3)=f;& "Ifl"'(q))+ dp'f~'(, p'if('"(q))fl"'(p')C'(q, P')

n 'f'(" *'li~'"(n))(n'- n)(~ ~ ~ ~

Bq
i=2 3 (4.11)

(0) 2

-. — =f~n'(j) v, inn+ ——
) v, inn

Bq 2~~ 2

1

dpdp, dRdx — [R (q —q)R (P
'

+ — v, u, (4. 12)

and Eq. (3.31), to find the following results for the
stress tensor (see Appendix C for the details):

P = pl —2ql(D ——3V, u I ) —2qaV, u I

(4. 13)

The local equilibrium pressure p is given by Eq.
(3.14), and the deformation tensor D with compo-
nents D;; by

(4. 14)

—3J)"(q '-q) (P']f3("(p')

xfa'(q q+R, P, Pa, x'Ifl"'(q)), (4. 19)

q"('l, =fa fdpdpadpadp drdRgl(r, R)

x [(R 6 ')' - -,
' Z'(P "]f "'(p ') a ((y ")

fa (q, q - R, q - R+ r P P2 P3

(4. 19)

dpdp, dp, drdRdx'gl(r, R)

X[R (q' q)R (y' 3&'(q'-q) (P']fl" (I)')

The coefficient of shear viscosity g1 is
(1) (1) (1) (1) (1)

01 Rtc + 0(p(1) + 1(p(2) + OM)(1) + OM)(2)

with

(4. 15)

f3(q q-» q-R+r p p2 p3 x'I.fl (q))
(4. 20)

In these expressions g, (r, R) is [see Eqs. (2. 11)
and (A13) of I]

(4. 15)
( ~) cscg Bw

g1 0 g~ gg
(4. 21)

(l) 1 - - -) -V'(&)I

'g& (1)= + dpdp2dp dR

X [(R ~ (y ')'-

aftra(P"]

fl"'(P ')(t ((y")

xf2(q& q+R p& Pa& P
I
fl"'(q)), (4 I'7)

where 8 is the angle between the vectors r and R.
The contributions to the shear viscosity due to

nonadditive forces is given by Eqs. (4. 19) and

(4. 20). There will also be contributions due to the
nonadditive forces to the other terms of the shear
viscosity, because the kernel of the integral equa-
tions [Eq. (3.33)] that the function 8 satisfies con-
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tains the nonadditive forces. Moreover, the func-
tional derivative fa will also contain contributions
of nonadditive forces.

The coefficient of bulk viscosity g2 is given by

Here

).=-
8 a8 dp(P'fI"(P) &(&P'),

1
(4. 30)

(2) (2) (2) (2) (2)
12 Ox + 0(p(l) + Oy(2) + OM)(1) + OM)(2)

with

(4. 22) f
dp dpadp' dR p(R)&P &P' f, (p')

m 4

dpa 'f.'"(p)&8(&P'),
4

'/&I&&) =
&a J dp dpa dR dp R (&) (R) f) (P ) (B(&y )

(4. 23) x~((P )fa(q q+»» Pa P'If&"(q)) (4 3I)

a8a dp dpa dR dx' (&&(R) (p ~ (q' —q)a'

xfa(q, q+R, P, pa, P' If&o'(q)) (4 24)

(a) dp dpa dR dx' R 9 '(R) a" (lq' —q) f~"(p')

A=-XV, 8, (4. 28)

where the coefficient of thermal conductivity X is
given by

(1) (1) (2) (2)
~k + ~y(1) +~y(2) + ~v(2) + ~e(2)

m(1) + tu(a) + ~us(l )+ ~gu(a& (4 28)(1) (1) (2) (2)

x fa(q q+R p pa x'lf& (q)) (4 25)

0 "&'» = —', jdp dp, dpa dp' dr dR R' g, (r, R) f,"'(p')

&& a)((P' ) fa(q, q-R, q —R+r, p, pa, pa, p'
I f& '(q)),

(4. 28)

n "&'a& =
a7 Jdp dpa dpa dr dR dx' R g&(r, R) &P' (q' —q)

x f& '(p') fa(q, q —R, q —R+r, p, pa, pa x If& (q»

(4. 2V)

The contribution to the bulk viscosity due to non-
additive forces is expressed in Eqs. (4. 26) and

(4. 27), and is also present in the function a&, and in
the functional derivative fa.

For the heat current g we find the following re-
sults:

xfi"(P')fa(q, q+R, P, Pa, x' lf&"(q)), (4 32)

X«» —
I

dp dp, dp' dR R ((P+&Pa) 5 &P'
(a& (&)'(R)

xfI"'(P') ~(")f'(q q+R P Pa P'lf&&"(q)),

(4. 33)

(2) (R)~,&a&
=

24 a8a dP dpa dR dx' — — R ((P+&Pa)
24m 6

&&R (q' —q) a"f,"'(p')

x f'(q, q+ R, p, pa, x'
I f& '(q)), (4. 34)

dp dpa dpa dr dR dp' &0(r, R)tg(1) . /8m 8

x a (P'f,"'(P') S(a")

)&fa (q, q —R, q —R+ r P Pa Pa P I
f&"(q» (4 35)

(a) ——
a8a dP dpa dpa dx' dR dx &&)(r» R)

xa (q'-q) &P"f&"'(p')

xf,'(q, q-R, q-R+r p pa pa x lf& (q)), (4. 38)

&&&= av J dp dpa dpa dr dR dp [V~ 'w(lp R)] ((P +(Pa+(Pa)

&&r a" f,"'(P') 9(&P")f,'(q, q —R, q —R+r, P, Pa, Pa, P' f&"(q)), (4 37)

X'('a)--a7 JdP dPa ddpa dr dR dx' [V„«&(r, R)] ((P+a a+&Pa)

&&r (q' —q) (P' f,' '(p') fa(q, q —R, q —R+r, P, p, pa, x'I f& '(q)) . (4. 38)

The contributions to the thermal conductivity due to
nonadditive forces is given by Eqs. (4. 35)—(4. 38),
and is also manifested in b and in fa.

It should be mentioned that the expressions ob-
tained above for the transport coefficients are gen-

eral, in the sense that they are valid independently
of density expansions.

In a forthcoming publication we will discuss the

density expansions of the transport coefficients, and

obtain the effect of the nonadditivity on the triple-
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collision part of these quantities. In doing that we
will solve explicitly the integral equations, Eqs.
(3. 32)-(3.34) for the scalar functions g, g, and s.
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APPENDIX A

In this Appendix we show that the local Maxwellian
distribution function given by Eq. (3. 10) is the solu-
tion of Eq. (3. 6).

fs(x x2 x3
I fl (q» = A".l(p) fI (p&) f&

x G,(qa- q, q~
—q), (A2)

where G~ and 63 are the pair- and triple-correla-
tion functions, respectively, and fP', is the true
equilibrium distribution function. Substituting these
expressions into the left-hand side of Eq. (3. 6), and

using Eq. (2. "l) we find that

- y'R
@(

l f,"'(q))= dp, dR R [v f,",', (p)] f,"„'(p,) G(R)

dp dp, dRd [Rg (,R)+ g (, R)] [v f,",', (p)] f,',', (p, ) f,",', (p, ) G,(,R) . (AS)

In this expression we also used Eqs. (2. 8) and

(2. 11) of I.
The first term in Eq. (A3) vanishes because the

integrand is odd in R. In the second term of Eq.
(A3) we note the following properties of Gs:

G~(r, R) = G,(- r, —R) . (A4)

The same relations hold for the g functions [see
Eqs. (2. 6), (A13), and (A14) of I]. Therefore, the
two remaining integrands in Eq. (AS) are odd in R
and in r, respectively. Thus the right-hand side
of Eq. (A3) vanishes.

APPENDIX 8

In this Appendix we will discuss the vanishing of
D(p), given by Eq. (3.20). It can be shown that

D(p) can be written in the form~

g(0)
D(p) ="

6
+

dp, dx' +'( „'
l
f"'(q))

xp. (q -q) f,"'(p)

dx' 0"(x, x'
l f,"'(q)) (q' —q) f,"'(p') . (Bl)

=aR+bp+cp ~, (B4)

where a, b, and c are scalar functions of 8, p, pa,
n, and 8. Using the same argument we obtain

fdx fs (» x2 x3 x'ly~"'(q))(q —q)f~ (p )

=dp+ep2+fp, +jr+OR . (Bs)

Here d, e, f, j, and b are again scalar functions of
R, r, P, Pz, p3, n, and e. Therefore,

I

G =~i dp2dR (Ra R+ pb+c zp)8

2 (dp2dp3drdR(Rg&(r, R)+rgb(r-, R))

—2)t dp, dj,dr"dRdx'[v„w(r", R)](q'-q)

x f3 (x, x„., x'lf~"'(q))fi '(p ) (BS)

By the argument given in Appendix A of Ref. 3, we
have

fdx'fq (x, x~, x
l f, ' '(q))(q' —q)f, ' '(p )

By substituting the explicit form of the functional 4'

[see Eq. (2.V)] we find that the integral

fdx'4"'(x, x'lf,"'(q))(q' —q)f,"'(p')= v, G,
(B2)

where the tensor 6 is given by

G =~ dp2dRdx R(q
' —q)R

xf', (x, x„x'l fg"'(q)) f'g"'(p')

x (dp+epa+ fp, + jr+yP) (B6)

Here we used Eq. (2. 11) of I.
The first term of Eq. (B6) was worked out in

Ref. 3, so we shall just quote the result. %e pro-
ceed to analyze the second term. For this purpose
we consider the following integral:

M = fdrdRRRE( Rr),

with E having the properties

E(r, R) =E(R, r), E(r, R) =E( r, —R) . (B8)-
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Integrating in (BV) first over r, we find that

H(R)=- J'drE(r, R)= fdrE( r,-—R)

Here X,z, are arbitrary functions of their argu-
ments such that

Thus

= J dr E(r, —R) =H( R)-.
f dp, dRRq'(R}6c(R, p,) ~O,

f dp, dp, dr df [R'gg, +y'zg, (816)

a(R) =a(lRl) . (BO) +5 r(gg, +gg, )]~0.
Therefore,

M= J'«&R&(l&l)= -'f dRR'H(IRl)I

= —', fdrdKR E(r, %) I . (810)

Here I is the unit tensor. Analogously, we find
that

(812)

where the scalar function G(p)' is

G(p) = 3 f dp2dRRp (R) a(R, p, pz)

- -', f d p~ d p, d r d 5 [R kg&+ r jg~

+& r (kga+igi)]. (813)

Therefore, combining Eqs. (81), (82), and (812)
we find that

5(p)=+ ' p — dp, G(p, )+v,G(p). (814)

We now prove a theorem which is a generaliza-
tion of the theorem given in Appendix A of Ref.
3. The theorem is 5(p) =0 if

a(R, P, p) = 6C(R, pa)fi' (p),

k(p, p„p„-,&)=~ (,~, p„p,)f,'"(p),

j(p,p2, ps, r, &) = &(r, &,pa, p3)fi"'(p)

(815)

J d r d 1TKr E(r, 0) = —,
' J d r d R 5 ~ r E ( r, 0) I .

(811)
Using these results, we can express G in the fol-

lowing form:

G= G(p) I,

In fact, if Eqs. (815) hold, we have from Eq.
(814) that

D(p)- (
— dp~dP ((((R)R(R, ('s)

4

dpp (fpsdr dg[R Qgg+ f/''3.

+ v,f(') (p) = o, (Biz)

because the last bracket vanishes.
The reciprocal of this theorem is given in Ref.

Thus, it is enough to show that a, k, and j are
proportional to f (0)(p) in order to prove that 15(p)
=0. Without a density expansion of f~ and f~ we
have not been able to show these properties of a,
0, and j. In a forthcoming paper, in which we
discuss the density expansions of f2 and fs, we will
show that a, k, and j are proportional to f,'0'(p),
and thus, that 5(p) =0.

APPENDIX C

In this Appendix we will sketch how one can ob-
tain the contribution to the transport coefficients
labeled in the text with the index zo [see Eqs. (4. 19),
(4. 20), (4. 26), (4. 27), and (4. 35)-(4.38)]. The
other contributions to the transport coefficients are
formally obtained in Ref. 3.

I.et us consider first, the tensor P . Substituting
Eqs. (4. 11), (3.31), and (4. 12) into Eq. (4. 4) we
find that

dpdp, dp, drdIIR(& ~) fs( "lf,"'(q})+ dp fs ( p le '(q))fi' (p}

x[9(6"~)6' ~ V, ln8 + 6l(6' )O' O6': 0,u+6)((p'~)))) . „]
12 I I

' dg'f~' (. . ., g
l

f~o)(q)} (q'-q) f( '(p ) ~ p', inn+ — —— V, ln8+ —~ O, u ~ (Cl)
2mB

The first term in (Cl) gives

——,
' f dpdpzdp, d deaf ~ (&~ )f~( ~ ~

l f,'"(q)) I,
(C2}

and this is the contribution to the local equilibrium
pressure [see Eqs. (3. 14) and (4. 13)].

The second term in Eq. (Cl) vanishes. In fact,
if we use Eq. (2. 10) of I, one obtains that this term
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is of the form

[fdpdpadpsdrd5 ( ~ ) RlT(P ] ~ 0, ln8. (C3)

However, the bracket must be an isotropic tensor
of order three. Thus, it must be of the form of a
scalar times the tensor &;,.„which is an antisym-

metric tensor in the first two indices. But the in-
tegral is symmetric in the first two indices. There-
fore the only solution is a scalar equal to zero.
Using the same argument, the coefficients of V, inn
and V, ln8 in Eq. (Cl) also vanish.

The third term in Eq. (Cl) is

[ ——, f dPdPadPadrdRdP fa ( ~ ~ P
~
f,' '(q))ft '(P') @((P' )g (r R)if% 6' (P ] V u (C4)

If we make

5K = RoA+ —,'8 I, (c5)

~~i j~ lk+ t ( ik i/+ ~il~jk )

In the usual way, we find (see Ref. 3) that this
term is

where A R is a traceless symmetric tensor, we
find that the part containing 38 I must vanish.
Therefore, we are left with

[ —
~ 1 dpdpadp~drdRdp ( ~ ~ ~ )If 8 (p (p ]:V,u

and the tensor in the bracket must be a symmetric
isotropic tensor of order four, i. e. , of the form'

—2&I ('t& [D —3V ~ ul ],

with )I'„('t
&

given by Eq. (4. 26).
In the last term of Eq. (Cl) we use Eq. (C5) and

(q' —q)(P =SaS+ —,
'

(y ~ (q —q)I+A, (C9)

where SaS is a symmetric traceless tensor [see Eq.
(3. 29)] and A an antisymmetric tensor. Thus, the
last term in Eq. (C1) is

with )i"('» given by Eq. (4. 19).
With the same argument it is found that the fourth

term in Eq. (Cl) is

2g &y&
&&

' uI (C8)

f —(2/38) f d p dpa

dpi'

d r d R dx fa (. . . , x
~
f,' ) (q))g, (r, R)f,' '(p ) (8 8+ —,'A I)(S S+ —,

' (p ~ (q —q) I+A)]: V,u .
(C10)

The contribution of A vanishes. The contribution
of the term containing R R I is of the form

[ f dpdp dpadradR dx ( ~ ~ ~ ) RaR] V ~ u.

Thus the bracket must be an isotropic tensor of
order two. But the only isotropic tensor of order
two is proportional to I. Therefore the bracket
must vanish. By the same argument the contri-
bution of S S I vanishes. The contribution of the
term containing I I is

—2 tl~(g ) Vq u I
~

with )I'('a& given by Eq. (4. 27). Finally, the con-
tribution of the term containing R 8 8'8 must be an
isotropic tensor of order four, which gives

—2)I(&(),) [D ——,'V, u I ],
with )I"(a& given by Eq. (4. 20).

The explicit expressions for the heat current are
obtained using the same arguments as those given
above.
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