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The hydrodynamical equations for a system of particles interacting with nonadditive forces
are obtained. General properties of these forces are discussed and explicit expressions for
the contribution of these nonadditive forces to the stress tensor and heat current are given.

I. INTRODUCTION

In the last decades the attention of many authors
has been centered in the development of nonequi-
librium statistical mechanics for dense media.
The aim was to start from Liouville's equation
and develop from it the general description of a
macroscopic system in a nonequilibrium state.
Thus, the equations of hydrodynamics were de-
rived' and expressions for the stress tensor and
heat current densities in terms of molecular vari-
ables obtained. Furthermore, Bogolyubov set
up a program for the foundation of the kinetic
theory of dense gases. In this program a method
was proposed to generalize the well-known Boltz-
mann kinetic equation to describe the approach
to equilibrium of a dense gas. Pursuing this
method, various authors showed that a kinetic

equation can be obtained by a cluster expansion
of the nonequilibrium distribution functions. This
procedure leads to an expansion of the transport
coefficients in powers of the density.

On the other hand, the generalized Boltzmann
equation was solved' without making any reference
to a density expansion, and in this way general
expressions for the transport coefficients were
obtained.

Another method for obtaining transport coeffi-
cients in dense gases has been developed. ' In
this method general expressions for the transport
coefficients are obtained in terms of equilibrium
time-correlation functions. It was also shown
that the results obtained using this method are
equivalent to those obtained using the kinetic
equation.

It should be mentioned, however, that all the
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work done has been based on the assumption that
the potential energy of the system of particles is
pairwise additive, i. e. , is of the form

where p( lq; —q,:I) is the intermolecular potential
between the molecules situated at the points q&

and q&.
The calculation of nonadditive corrections to the

energy of systems of interacting molecules has
been done by several authors. For example, the
He-He-He system was studied by Rosen, ' who
used valence-bond theory, and by Shostak, "who used
a linear -combination -of -atomic -orbitals molecu-
lar-orbital (LCAO MO) analysis. Recent calcula-
tions made by Bader, Novaro, and Beltran-Lopez
and by Novaro and Beltran-Lopez, ' which seem
to be correct to the Hartree-Fock limit, show that
nonadditive three-body effects may be appreciable
for small distances between the molecules.

Therefore, it one tries to develop explicit ex-
pressions for triple collision effects on transport co-
efficients, '4 '6 one has to take into account nonaddi-
tive intermolecular forces between the particles
of a dense system.

It is the purpose of this series of papers to
develop the nonequilibrium statistical mechanics
of systems that interact with nonadditive forces.
In this paper we obtain the corresponding hydro-
dynamical equations. In Sec. II w'e discuss general
properties of the nonadditive forces. In Sec. III
we obtain the hydrodynamic equations, and by so
doing we derive the expressions for the stress
tensor and heat current densities in terms of the
interaction potential. %Ye give the explicit con-
tributions due to nonadditive forces between the
particles.

u = ~(lqi-q~l)+ ~( lii-q~l)

+ &( lqa-qs I)+ (ii, q2, is)

Here y( lq, —q~ t) is the pair potential between
the particles situated at q, and q, , and w(q, , q„
q3) is the nonadditive potential between the three
particles. It is the properties of the function
so(q, , q2, q~) and its derivatives which we now
discuss.

Because of translational invariance, this func-
tion is of the form

~(ii, ia, is) = ~(q2 ql q3 ii) i

i. e. , the function m depends on the vectors

(2. 2)

r=qp —ql, R=q3 —ql . (2. 3)

In fact, it depends on lrI, lRl, and 6, the angle
between r and R. Therefore, we have that

u ( r, R) = su ( R, r) . (2. 4)

Furthermore, we can also write

w( —r, —R) = so(r, R) .

Now we consider the time derivative of the total
momentum P of the system, in the absence of ex-
ternal forces. One finds that

& ~ &., ~(lq~ —q~l)
all pairs

— ZZZ v, . ~(q, , q„q,). (2. 8)
all triplets

As is well known, the first term on the right-
hand side vanishes. Consider any triplet of par-
ticles, say, 1, 2, and 3. Then in the second term
on the right-hand side of Eq. (2. 6) there appear
terms of the form

II. NONADDITIVE FORCES

In this sections we present some general prop-
erties of the nonadditive forces. Let us consider
three particles which we call 1, 2, and 3 (see
Fig. l). The potential energy u of the interaction
of these three particles is given by the expression

V sv= —V zv —VRsvql r R

V, sv= V„sv,q2 V, tv= VRze .q3

Vq sU+ Vq s6+ Vq $Uql

But, using Eqs. (2. 3), one finds that

(2. 8)

FIG. 1. Positions of
particles 1, 2, and 3.

Therefore, we see that the terms of the form (2. 7)
vanish. Thus, in the absense of external forces,
the total momentum of the system is conserved.

From Eqs. (2. 8) we also see that the nonadditive
force on any particle of the triplet, say, 1, is equal
to the negative of the sum of the nonadditive forces
on the other two particles:

( —v, so) = —( —v, w —v, nr) . (2 9)

This is a generalization of Newton's third law to
the case of nonadditive forces.
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From Eqs. (2. 8) we see that the forces on the
particles are given in terms of V'„u and WRY. These
quantities can be written in the form

+—QQQ u)(q;, q, , q )=—Q +P,
i&jpk 2m (3. 1)

and

V, n =Rh, (r, R)+rh, (r, R) (2. 10)

V„nr = Rgq (r, R)+ rgb ( r, R), (2. 11)

where h» h2, g» andg2 are scalar functions of
r and R. In Appendix A we calculate these functions
explicitly in terms of the derivatives of sv, and show
that "=? — ' V, E +V,„V V~ E„) (3 2)

where p, is the momentum of the ith particle, U is
the interaction potential of the system, and the rest
of the symbols are defined in Sec. II.

Let E„(x,, . . . , x(((; f) be the distribution function
of our system in phase space. x~-=(q, , p,.) stands
for the momentum p, and position q; of the ith parti-
cle. Then, the Liouville equation of the system is

and

h, (r, R)=gz(R, r) (2. 12) As was shown in Ref. 1, the time derivative of
the expectation value of any dynamical variable
n(x~, . . . , x„) is given by

h2(r, R) =h2(R, r)=g& (r, R) =g& (R, r). (2. 13)

With these properties we can now demonstrate
the conservation of the total angular momentum.
In fact, by taking the time derivative of the total
angular momentum L of the system, in the absence
of external forces, one finds that

8 p.—(a;E„)= r— v, a —v, U v~ n; E ),t

(3. 3)
where the expectation value of n., ( o(; E„), is cal-
culated by means of the expression

—L=- ~& q;«„~( q;-q, l)
al'-k pairs

q, x v, w (q, , q, q, ) . (2. 14)
all triplets

The first term on the right-hand side vanishes.
The second term is a sum of triplets of the form

q, x v, re+ q, xp, u + q 3&& v,

f Q(x11 ' ' ' I xN) +N(xl &
' ' ' xN i f) dx1 dx (((,

(3. 4)
with dx =—dq& dp, .

As is well known, the hydrodynamic equations are
obtained by making e equal to

mQ 5(q, —q),

q, x(V„a+ VRu)+q, xV„~+q,xV

= (q2 —qi) xv„re+ (qs-q, ) xv~ u

= r x(Rg, + rg, )+ Rx(Rh, + rh, )

&p;&(q~-q),

2

~(q, -q)+- zz v(lq; -q, l) f(q& -q)
2m ' 2 'f

+ —Z2 Z ~(q;, q&, q&) &(q —q)

=rxR(g, -h, )=0 .

Here use was made of Eqs. (2. 3), (2. 10), (2. 11),
and (2. 13). Thus, in the absence of external forces,
the total angular momentum of the system is con-
served.

III. HYDRODYNAMIC EQUATIONS

In this section we obtain the hydrodynamic equa-
tions for a system which interacts with nonadditive
forces. We shall follow the method developed by
Irving and Kirkwood.

Let us consider a one-component gas consisting
of N molecules of mass m enclosed in a volume V.
The Hamiltonian of this system will be taken in the
form

N p 2

&=& 2-'—+-, ~p ~(lq;-q, l)

successively. The first equation, the equation of
continuity, is obtained by setting e equal to
mg;5(q, . —q) in Eq. (3. 3). The result is

—p(q; t) = —V, [p(q; t)u(q; t)], (3. 5)

where the mass density is

p(q; t) = m f dp f (q, p; t), (3. 6)

and the local velocity u at point q is given by

p(q; t) u(q; f) = fdp pf, (q, p; t) . (3. 7)

Here we have used the following definitions of the
reduced distribution functions in phase space

Z,(x„.. . , x„t)

= V'J dx, , dx„Z,(x„.. ., x; f), (3. 8)
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and in p space

f,= (1/v')E, ,

with v= V/N.
Next, we take in Eq. (3. 3)

a=5, p, &(q; —q),

(3. 9)

(3. 10)

obtaining

—[ u(q; )Iu(q; )I)= —V, E u'q'q(q, . —q); 5„)
i m

v, , qr;;+qEZ v, , ur;;, Il(q; —q); F„).
jA

jAi j~&~i

(3.11)

Here y;&=-y(lq; —q~!) and se;»---s)(q;, q&, qR). The first two terms on the right-hand side of Eq. (3. 11) have
already been worked out, so that we will just quote the result [see Eq. (3. 20) below)]. The last term of Eq.
(3. 11) is

I(=-- EZZ (V, . ur„,) I!(q; —q); F„)
iw j&k

BEE[(V„. ; ) u(q, —q)+ (V, ur. ..) q(q —q)+(V, u, , ) u(q —q)l; R„)
i& j&k

=-- ELK[(v„, ur, ,.,) [u(q, —r() —u(q; —q))+(v, u, ,, ) [q(rj, —q) —q(r), —q)I[;& ) .
i& j&k

(3. 12)

Here we have symmetrized in the second line, set

(3. 13)

and used Eqs. (2. 8). Expanding the differences of 5 functions, which appear in Eq. (3. 12), as Taylor ser-
ies in powers of q~; and q, ;, we find that

1 ~ IA= —v, ——) rZ q„(v, ur;, ,) ( ——, q„. v, +. . . + (-q„.. v, )" +. . .
) u(q, -q)

n v

+q, , (v, ru. ..) (( ——,'q, v ~. . . —(-q, , . v )"'+ . .
) u(qr —q);5'„)}

= —~, [P("(q; t)+P("(q; t)]. (3. 14)

The tensors P ' and P ' are the contributions to the stress tensor due to the nonadditive forces. Introduc-
ing two 5 functions, 5(q„;—R) and 5(q, ; —r), and two integrations in the definitions of the P tensors, and us-
inqg the property given by Eq. (2. 2) of the nonadditive potential, we obtain

P"'(q; f) = -—ZZZ t dr dR &(q„; —R) 5(q, ; —r)
6

xR[v ur(r R)](( ——,
' R v+. . . + (-R 'v )" '+. . .) Il(q, —q)R )n u

1

=-
l

( d-. RRR(q„u(RR)) (-;-R V,. ., ~
' (-R, V )-".")z!

—QQQ 5(q„;—R) 5(q„—r) 5(q„—q); I'„

- -,
~

l~

dr dR dp 42 dps R[&. ~(r, R)]

x l--,'H, v + + -R &, "'+ 3q, q-a, q-R+r, p, pa, ps ~ .
n!

(3.15)

Inu obtaining this last expression we used the defini-
tions given by Eqs. (3.8) and (3.9).

The function f~(q, q —R, q —R+ r, p, pz, ps; t), con-

l

sidered as a function of the coordinates q, R, and

r, is a slow function of q but a sensitive function of
the relative coordinates R and r. Thus, we may
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write

P "'(q; t) = —+ f dr dR dp dpa dp R[V 1(&(r, R)]

x f1(q, q —R, q —R+r, p, p p;t) . (3.16)

(g) (a)P~ =P„
Thus the total contribution P„to the stress tensor,
due to nonadditive forces, is

(3.17)

In an analogous way we can obtain an expression~(
for P, which turns out to be equal to P

In this equation, the energy density s(q; t) is given
by

&(q;t)=(I/2m) fdp(p'f, (q, p; t)

+ —,
' f dp dp~ dR cp(R) fa(q, q+ R, p, p 1; t)

+ 6 fdp dpa dpi' dI' dR (6(r, R)

xf1(q q —R, q —R+ r, p, pz, p„ t) . (3. 27)

The heat current g is given by

P„=2 P"', (3.18) g ~(1&
~

(8& ~(1) ~(R) (3. 28)

with P ' given by Eq. (3.16).
The equation of motion, Eq. (3. 11), may then be

written in the form

with
2

g.(q;t)= dp ——f1(q, p;t), (3. 29)

(3.19)

P= P„+P„+P„, (s. 2o)

where the total stress tensor P(q; t) is given by

8„"'(q; t) = — dp dp() d R —
q (R)f,((q, q+ R, p, pa', t),

(s. so)

g „"'(q; t) = —— dp dp~ dR (p' (R) ~ —+ ~
with

P,(q; t) = (1/m) f dp a'+f (q, p; t),

P, (q; t) = —
~ fdp dpi' dR(RR/R) 9&'(R)

(3. 21)
xf,(q, q+ R, p, p, ; t ), (3. 31,)

g„' '(q; t) = — dp dp, dpi' dr dR —s)(r, R)

D 8—= —+u V
Dt et (3.23)

x f,(q, q+ R, p, p„ t) . (3. 22)

The total derivative D/Dt operator in Eq. (3.19)
is given by

xf, (q, q —R, q —R+ r, p, p~ p„ t),

9 ' ' ( q; t) = —— d pd pz d p1 d r d R

x R [ Y|')1((&(r,R)] ~

m sl rn

(3. 32)

and the thermal momentum by

p =p —flu . (3. 24)

+—ZEZ ~„, &(q, —q) . (s. 26)
6 gk

After a lengthy, but straightforward, calculation
analogous to the one made in obtaining the equation
of motion, one finds the equation of energy in the
form

p(q;t) D
'. , =-~, a(q;t)~(q; t)

Dt pq;t

- P(q; t):v,u(q; t) . (3.26)

In Appendix B, we show that the tensor P„ is a
syrnrnetric tensor. Thus, the total stress tensor
is symmetric.

To obtain the energy equation we put in Eq.
(3. 3)

gl

' —&(q; —q)+ —ZZ (t&;, &(q, —q)
2 pe 2

x f, (q, q —0, q —0+ r, p, p„p„ t) . (3.33)

The contribution to the heat current is given by the
expressions (3.32) and (3.33).

To summarize, we have obtained the hydrody-
namical equations of a one-component system of
particles that interact with nonadditive forces. The
explicit contributions of these forces to the stress
tensor and heat current were obtained.

In the following paper'7 we set up a kinetic equa-
tion for this system and by solving it we obtain the
contribution of the nonadditive forces to the trans-
port coefficients.
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APPENDIX A

In this Appendix we calculate explicitly, in terms
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] 8~ cot8 Bgg - csc8
&t r 88 Rx 88

Analogously,

1 8ze cot8 B'av csc6 8zv

eR 8 ee ~A a8

(A 9)

(A10)
Comparing Eqs. (A9) and (A10) with Eqs. (Al) and
(A2), we see that

1 ~so cot8 ergt, (r, R)=- (A11)

(~ ~) csc8 B1u

yA 88 ' (A12)

FIG. 2. Nonorthogonal base (r, H) and orthogonal base
(", 8).

CSC8 Bgo
g1 1,R

1 Bw cot 8 Bw
Br z B8 . (A14)

of the derivatives of u, the functions h„ha, g„
and ga given in the expressions

Using the property given by Eq. (2.4) we readily
obtain Eqs. (2. 12) and (2. 13).

Uggler
= R egg (r, R) + r hg( r, R) (Al) APPENDIX B

and

v,ge=lg, (r, f)+ rgg (r, K). I'A2)

with R a unit vector in the direction of R. We have

h= cos8,

Consider three particles 1, 2, and 3 as shown in

Fig. 2. The vectors r and R are also shown. They
form a nonorthogonal base in the plane. The gradi-
ent V'„zv is

8% . 1 8/0
V„u = 7+ — 5',

&r y ~8

where f and 8 are unit vectors, forming an orthog-
onal base in plane polar coordinates. Therefore,
to express V„sv in the base (r, R) we have to change
the expression (A3) to that base. From Fig. 2 we
see that

8=nr —PR,

In this appendix we show that the tensor P, the
contribution to the stress tensor due to nonadditive
forces, is a symmetric tensor.

From Eqs. (3. 16) and (3. 18) we see that

&.(q;t )

= —
3 JdrdRdp dpgdpgR[ Virgo(r, R)]

xf3(q, q —R, q —R+r, p, pg, p3 t)
= ——, fdrd RdpdpgdpgR [ Rh, (r, R)+r Igg(r, R)j

x f3 (q q —R, q —R+r p pg p3 t )

(»)
Here use was made of Eq. (2. 10). The term con-
taining h, is obviously symmetric. The other term
1s

—3 f dr dRdpdp, dp, Rr hg (r, R)

x f3(q, q-R, q —R+r, p, p„p3 t )

and therefore

n= —= cot8.h
tan8 cos8 (A6)

and interchanging the integration variables r and
R, and using Eq. (2. 13), it is found that this term
is equal to

Also,

P= n cos8+sin8=csc8.

Thus

8 = cot8 f"- csc8R.

Finally,

(A6)

3 fdrdRdpdp, dp3 rR Ag ( r R)

xf (q, q —r, q-r+R, p, p„p„.t)

—,
' fdrdRdpdpgdp, r RIgg (r, R)

xfg(q, q —R, q —R+r, p, pg, pg;t)

because the interchange of r and R from the first
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to the second line in f3 means an interchange of
identical particles. Therefore the second term in

(Bl) is also symmetric. Thus P is a symmetric
tensor.
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A kinetic equation is set up for a system of particles interacting with nonadditive intermolec-
ular forces. Bogolyubov's functional assumption is used. After linearizing in the gradients,
the kinetic equation is solved by a Chapman-Enskog method. Using the expressions for the
stress tensor and heat current obtained in an earlier paper, the contributions of nonadditive
forces to the shear and bulk viscosities and thermal conductivity are explicitly obtained. The
results obtained are independent of density expansions.

I. INTRODUCTION

In an earlier paper' we obtained the hydrody-
namical equations of a system of particles interact-
ing with nonadditive intermolecular forces. Ex-
plicit expressions for the stress tensor and heat
current were given, in terms of the intermolecular
potential.

It is the purpose of this paper to obtain general
expressions for the linear transport coefficients of
a system of particles which interact with nonaddi-
tive forces. We obtain these expressions making
Bogolyubov' s assumption, namely, that the distri-
bution functions of more than one particle are func-
tionals of the single-particle distribution. Thus,
no expansion as power series in the density is used.
Therefore the results that are obtained are inde-
pendent of whether the density expansions exist or
not. . In this paper we generalize to our case the
method proposed by Garcia-Colin, Green, and

Chaos3 of obtaining linear transport coefficients
without recourse to density expansions.

In Sec. II we start from Liouville's equation to
obtain the generalization of the Bogolyubov-Born-
Green-Kirkwood-Yvon (BBGKY) hierarchy to the
case of systems that interact with nonadditive
forces. Taking the first equation of this hierarchy
and making the Bogolyubov functional assumption,
we obtain the kinetic equation. We then proceed to
linearize the kinetic equation in the gradients of the
system.

In Sec. III we solve the linearized kinetic equation
by the usual Chapman-Enskog method.

In Sec. IV we use the expressions for the stress
tensor and heat current obtained in I, together with
Bogolyubov's functional assumption and the solution
of the linearized kinetic equation, to compute the
transport coefficient of this system, namely, the
shear and bulk viscosities and thermal conductivity.
We find the explicit contributions to these coeffi-


