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although not treated exactly, were included in the
approximation, A first-order transition resulted.
Experiments of He! !! and He® !? absorbed on
graphite do show a large peak in the heat capacity
at densities of one-third, The evidence appears
to indicate that the transition is of second order.
It must be noted, however, that irrespective of
whether the model considered should evince a
second-order transition, corrections to the exact

results of the classical model due to the inherent
quantum-mechanical nature of the helium system
must be investigated.
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The Brandow boson many-body theory is used to calculate the generalized dielectric con-

stant within the random-phase approximation,

The generalized dielectric constant obtained

this way agrees with the Bogoliubov theory in the high-density limit and thus yields all of the
well-known Bogoliubov results. The momentum distribution function for k=0 is also calcu-
lated. The treatment is fully number conserving.

I. INTRODUCTION

In a previous pa.per,1 hereafter referred to as I,
a study was made on a charged boson gas using the
analogy to a fermion system with high spin degen-
eracy.? The noteworthy feature of the theory is
that one introduces the concept of a hole in the
boson system and thereby treats the dynamics of
the condensate in a proper way. The number of
particles is conserved without the aid of the chem-
ical potential.® The well-known Brueckner-Gold-
stone cluster expansion is directly applied without
any modification to the condensation operators.
The result of I shows an exact agreement with the
Bogoliubov theory of Foldy! both for the ground-
state energy and the condensation fraction.

In this paper, this study is extended to the ele-
mentary excitation with the same Hamiltonian as

used in I. In Sec. II the irreducible polarization
part is calculated and then the generalized dielec-
tric constant is obtained; which agrees again with
the Bogoliubov theory in the high-density limit.
This time-dependent dielectric constant yields all
of the known results of Bogoliubov theory. In Sec.
III we supplement I by ca_lculating the momentum
distribution function for k #0.

II. DIELECTRIC CONSTANT AND RELATED FUNCTIONS
The Hamiltonian is
H=);e(q)adaz +3 Div(g)latabazao+alat asas
+atalazasy+a’zalaga,], (1)

with €(g)=%2¢%/2m and v(q)= (4ne?/Q)(1/4?). Here
2 is the volume and N will represent the total num-
ber of particles. The prime indicates the absence
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FIG. 1. Diagram shown in
- (a) is the simplest possible
0 polarization part —;II;,. For
- example, the diagram shown
in (b) is not considered in this
paper.

(a) (b)

of the term with ¢=0. We regard a% and a; as
Fermi operators with N spin degeneracies, spin
variable being suppressed in 2. Then one can in-
troduce the Green’s function anddraw diagrams to
represent the perturbation terms. For a justifica-
tion of this view, we refer to Appendix A of Ref.
2.

We first need the free-particle Green’s function
GO(E, t) defined in the Heisenberg picture by

Go(k,#) == i(0l T{az(t)ai©)} 10) @)

where [0) is the noninteracting N-particle ground
state and 7 is the time-ordering operator. The
Fourier transform of Eq. (2) is readily found to be

Gall, w)= w—zi(k)na * clo—-?g ’ ©)
with
m=1 if k#0
=0 if k=0

Here & is the usual positive infinitesimal intro-
duced to make the switching of the interaction
adiabatic.

With Eq. (3) let us calculate the irreducible
polarization part —illj(k, w), which is shown in Fig.
1(a). It is given by

—illy(k, w)=— Ni? 234

do'’ o ’ -
X j—Z? Golk +q,w +w")Go(d,w’) . (4)
Here N comes from the sum of the spin coordinate
in the Fermi loop. The integration is performed
easily by closing the contour either above or below.
We find

- 2Ne(R)

w—€(k)+i0][w +€(®) —i5] (3)

Mok, w) = i

Equation (5) is the simplest possible approximation
to the exact irreducible polarization part. Following
the practice in the electron gas, we call it the
random-phase approximation.

We recall the general screening effect of the
many-body medium. The interaction between two
particles of the system is not simply the direct in-
teraction force. One has to also include the
virtual-polarization effect of the medium. In this
fashion, one can introduce a time-dependent effec-
tive potential and thus a time-dependent dielectric
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We proceed to calculate the effective
potential V,,, first. The perturbation expansion
is shown in Fig. 2. It satisfies a simple Dyson’s
equation.® Consequently, Veer Can be expressed in
terms of Ty(k,w):

Verr (b, w)=v(k)/ (1 +0(k)I(k,w)] . 6)
The generalized dielectric constant €(k,w) is
given by
1/elk, w)=Vey(k,w)/v(k)

w? - (k) [ 1
= 2[62(k)+wf]”7 w - [ez(k)+wi]1/z+i5

constant,

1
- w+[€z(k)+w§]”z—i6}

(7a)
2

wi-€ek)-w
€k,w) = ——my——‘a

1 1
x[w—é(k)+i6_w+e(k)—i5] » (7b)

where w, = [2Ne(k)v(k)]*/? = (4mpe®®/m)'/?, the
classical plasma frequency (with Z=1)., Important
properties of Eq. (7) are shown in Fig. 3, which
should be compared with a similar figure for the
electron gas that appears in Ref. 6.

It is interesting to calculate the ground-state
energy from the dielectric constant given by Eq.
(7). The result should be equal to the ground-state
energy obtained by evaluating the sum of the ring
diagrams.! This expectation is borne out as fol-
lows. The ground-state energy E is given by6

e ’2 :
E=- %grz“)[zﬁ v(V:O;elz)
o

2 da de 1
+2f @ 2r ™ e(q,w)]
(8)

On the other hand, from Eq. (7) and using the rela-
tion

1 P _.
=—%
w+id W id@) ,
1 w3 2

" @ @) 2[E(q) + 272 {8(w~ [(g) + 2] 1/2)

+6(w +[E(@) +3]VE . (9)

- Q +__Q'O

FIG. 2. Perturbation expansion for the effective

potential.
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FIG. 3. Here ¢, is the
real part of e(q, w), while
€, is the imaginary part.

Substituting Eq. (9) into Eq. (8) and writing v(r=0)
as [2/(27)°] [ ddv(g), one can quite easily carry
out the e’? integration and obtain

1 dq_ 4me®
E/N=-3 f(zma ra

- J' (CZI?T)S ~215 {[(q) +4mpi®e? /m "2 - e(q)}.
(10)

Now by writing the momentum variable ¢ in the

unit of (4mme®p/7?)'/* and the density p in terms
of 7, which is defined by p=(3/4m)(r,7%/me?)®,

we find

E 2 1/4,.-3/4
NTa3 T

had 4 1/2 2
q q 1
Xf dqqz[<‘—+1> ———T]Ry , (11)
0 4 2 q

which agrees with the earlier mentioned result
of I.
The condition €(k,w)=0 yields

w, = [E(k) +2]Y2 (12)

which represents the excitation mode, the plasmon.

Equation (12) is the well-known Bogoliubov spec-
trum” and obeys the Feynman relation.®

Equation (7) agrees with the Bogoliubov theory
of Pines® in the high-density limit., Thus it will
sufficient to remark that Eq. (7) yields all the
related functions S(k,w) (dynamic form factor),
S(k) (static form factory), x(k,w) (linear density
response function), etc., in agreement with the
Bogoliubov theory.®® We will just write the re-
sults:

S(k, CU)Z [NE(k)/wk] 5((.0 - Wy ) ’
S(k) = e(k)[€?(k) + 3] /2, (13)

B 2Ne (k)
x(k, @)= (0 = wp, +18)(w +w, —10)

The static screened interaction! is

Vere(k, w=0)=v(k)e*k)/ [€2(k) + w}] (14)
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FIG. 4. Diagram series represents the perturbation
expansion for the expected number of particles with

momentum %Zk. The dot represents the single particle
vertex of a{a;.

and the average induced density fluctuation in the
system because of a static impurity of charge —e
brought to the origin is!

2
<p(k,w)>=g(§mzwa(w) ) (15)

As Pines has discussed in several places, the f

sum rule is exactly satisfied and so is the conduc-
tivity sum rule.'? The perfect screening effect in
the long-wavelength limit is obvious from Eq. (7).

IIl. MOMENTUM DISTRIBUTION FUNCTION FOR k+0

In I, we calculated the expected number of par-
ticles in the condensate at the ground state. The
result shows

fo=No/N=1-0.2114»3* . (16)

That is, in the high-density limit, the majority of
the particles are in the condensate. Nevertheless,
it is interesting to find the fraction of particles
above the condensate. The expected number is
given by

Ng=(alaz) . a7

The expectation value is obtained by the sum of
all possible Goldstone ground-state energy dia-
grams which in addition to the particle interaction
in the perturbation include a%a;. The single-par-
ticle vertex due to a§ a;, however, should appear
only once.'® The single-particle vertex cannot ap-
pear in the diagram before the particle interaction
produces an excited particle of momentum 7k,
The perturbation expansion is shown in Fig. 4.
One can sum these terms using the same trick as
used in I, The result shows

3/4 2 2
R k2/2 +1/k >
Fi=Ne/N= gt (B 1) . a®)
It is interesting to note that

fo+Zk fi=1

follows naturally.
I am indebted to Dr. R. P. Roger for his gen-
erous aid in preparing this manuscript.
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The quantum theory of interference effects is given. Three experiments of particular inter-
est are treated: (i) Young-type experiments, (ii) production of beats in photocurrents, and
(iii) optical modulation of electron beams. These have been of considerable interest in recent
experiments using lasers. We show that they can be accounted for by the same simple quantum-
mechanical principle. In the first case, we include the effect of interference in single-photon
processes and correlations in multiphoton processes. Here the method of Weisskopf and Wig-
ner is used, and useful distinction between the concept of interference and correlation is pro-
posed. We further emphasize the dynamical aspect of the theory. In the last two cases, we
use the standard method of quantum electrodynamics. Here we view the actual experimental
setup as being described by a single dynamical process. The description involves the use of
nonstationary states as the relevant states to describe the successive excitation. It is shown
that all the three phenomena analyzed are closely related.

The term “interference” was probably introduced
into physics by Young' in the discussion of his
famous two-pinhole experiment, although the con-
cept was known earlier in connection with surface
waves on water. Since Young, interference in the
sense of the superposition of electromagnetic waves
has played a central role in optics. With the in-
troduction of wave mechanics, the application of
the concept of interference has been greatly widened,
and effects which can be accounted for by the su-
perposition of quantum probability amplitudes are
included in the roster interference effects. This
widened use of the term interference leads to am-
biguity in applications to optics, because probabili-
ty amplitudes exist in the configuration space of a
system which can be many-dimensional in contrast
to light-wave amplitudes which exist in three-
dimensional physical space. As one would expect
from this dimensional distinction, the ambiguity
comes in when processes involving more than one
quantum of the relevant field are in question; a
single quantum is described in three-dimensional

physical space while two or more quanta require
a higher-dimension configuration space.

It is our aim to analyze the experimental and
theoretical aspects of optical phenomena from the
quantum-mechanical point of view. In this way we
hope to show how some previously unrelated effects
are really closely related, to make a useful dis-
tinction between the terms “interference” and
“correlation” in optics, and to point out the use-
fulness of considering free particles which are not
in eigenstates of energy and momentum as con-
stituents of optical systems.

In Sec. I the original form of Young’s experiment
is reviewed in both classical and quantum terms.

In Sec. II similar experiments, called pseudo-
Young experiments, in which the illuminated slits
are replaced by atomic sources, are analyzed when
the final state contains one, two, or very many
photons. In Sec. III the production of beats in
photoelectron is described in completely quantum
terms showing that there should be a beat compo-
nent of the photocurrent proportional to the over-



