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The planar triangular lattice gas with repulsive nearest-neighbor and attractive second-
nearest-neighbor interactions is solved in the Bethe-Peierls approximation. The maximum
temperature of transition between disordered and ordered phases occurs at a density of one-
third. All transitions are first order with a discontinuity in the order parameter at the transi-
tion. Deficiencies in the approximation are noted and discussed.

I. INTRODUCTION II. BETHE-PEIERLS APPROXIMATION

As a model of physical absorption of gases on a
substrate providing a triangular array of absorp-
tion sites, we study the planar triangular lattice
gas. Graphite is a paradigm of a substrate pro-
viding such an array of sites. The interaction be-
tween absorbed noble gases is approximated by as-
suming an infinite repulsion between atoms on the
same site, a large but finite repulsion on nearest-
neighbor sites, a weak attractive interaction be-
tween atoms on second-neighbor sites, and no in-
teraction otherwise. The problem is isomorphic
to the planar triangular Ising model with finite
antiferromagnetic nearest-neighbor coupling, and
weak ferromagnetic second-neighbor coupling.

The triangular Ising problem with antiferromag-
netic coupling only has been solved exactly' in zero
external magnetic field, which corresponds to a
density of one-half in the lattice gas. The result
is that there is no transition to an ordered state
at any finite temperature. The lattice gas with in-
finite nearest-neighbor repulsion has been studied
by transfer-matrix methods, ~ by Kikuchi approxi-
mation, and by series expansions. This model
does show a transition with density to an ordered
state, but there is disagreement as to whether the
trar~isition is first~'3 or second order. 4 Lastly, the
Ising model with antiferromagnetic coupling only
has been. studied in the Kikuchi approximation. '
A maximum transition temperature is found at an
average magnetization per site equal to one-third,
but it is unclear whether the difference of sublat-
tice magnetization changes discontinuously across
the transition (first order) or continuously (second
order).

The approximation method we apply to the model
with the structured interaction described above is
that of Bethe and Peierls' which we formulate in
Sec. G. A search for continuous second-order
transitions to an ordered statewhich need not, how-
ever, be the state of lowest free energy, is carried
out in Sec. III. The results of the approximation
are presented in Sec. IV, and are discussed in
Sec. V.

The Hamiltonian of the lattice gas model we con-
sider is

(2. l)0= 2 ~ v])n( n),
i~/

where the n s are either zero or one and v,.&
is in-

finite if i is equal to j, equaI. s v if i and j are near-
est neighbors, equals —v if i and j are second
nearest neighbors, and vanishes otherwise. The
quantities v and v are positive. Because of the in-
finite repulsion between particles on the same site,
the above model can be easily related to a,n Ising
model of a spin system in an external fieM gov-
erned by the Hamiltonian

If= —,'QZ„o, o,.-X,P o, , (2. 2)

where the o., 's are either plus or minus one, J;, is
equal to J if i, j are nearest neighbors, is equal
to —E if i, j are second nearest neighbors, and
vanishes otherwise. The quantities in the two
Hamiltonians are related by the equations

0't= 1 —2n] p
v= 2J) v= 2K. (2. 3)

In addition the external field of the magnetic sys-
tem is related to the chemical potential p. of the
lattice gas according to

X, = —,
'

(vy —Gy —2 p,), (2. 4)

fMAo = P& ~8[ 4 9 (Uy ~y)l (2. 5)

with a the area of the cell absorption site. We find
it convenient to perform the calculations using the
magnetic description but will present our results
in the language of the lattice gas.

The order parameter of the antiferromagnet is
related to the difference in sublattice magnetiza-
tions and is uniquely defined only when a choice
has been made as to the number of sublattices into
which the system will be divided. We choose a

where y and y are the number of nearest- and second-
nearest-neighborpairs and are equal to six in the
triangular lattice. The magnetic free energy per
spin is related to the pressure of the lattice gas
according to
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division into three sublattices as shown in Fig. 1.
With this choice there are three order parameters
of which two are linearly independent. The three
order parameters may be taken to be

where the brackets indicate ensemble averages
and the subscripts now refer to the particular sub-
lattice. There are also three distinct phases pos-
sible, a disordered and two ordered phases. In

the first state all three order parameters vanish,
in the second state one vanishes and the other two

are of equal nonzero magnitude and opposite sign,
while in the third state all are distinct and nonzero.

The Bethe-Peierls approximation may be formu-
lated in one of two ways. The first and probably
most familiar method is to view the approximation
as an extension of simple mean-field theory. Ne
consider a cluster of particles and take account of
the interaction of the central spin with its nearest
and second nearest neighbors exactly, but treat
the interaction of the other spins in the cluster
with each other and with other spins in the system
by a mean field. Thus, considering a cluster with

a spin on the ith sublattice at the center (i equals

1, 2, or 3), and labeling the 1th spin on sublattice
i 0;, we may write the Hamiltonian of this cluster
in the form

ff,. = o,. (-,'Z g o,'+ —,'Z Q o,' ——,'Z Q o -Xo)
/=1 l=1 l =1

6 3 3

-Se, , g o,'-X,, Z o,'-X,,g o,', (2. 6)
l=1 l=1 3=1

where the $C, , are nine mean fields which must be
deter mined self —consis tently.

Def ining

(2. 9)

A useful relation between the external field, the
average value of the central spin, and the unknown

mean fields is obtained by performing the indicated
differentiation in Eq. (2. 9) and combining with Eq.
2. 8). The result is

(1+ (o; &) S (x, ,u) S (x;,t) S (x, f)
(1 —(o;&)S'(x;; u ') S'(x;,f ') S'(x;„t ') (2. ia)

where i=1, 2, 3 and i 4j 4k. The nine mean fields
3.';„or equivalently, the nine quantities x;,. are
ancillary unknowns and may be eliminated from the
calculation by solving for them in terms of the un-
known spin expectation values in the following way.
From the form of the Hamiltonian of Eq. (2. 6) it
follows that

81nZ;
&o, &= —,

' x„
~x] ~

The equation which results on differentiation may
be solved for x;; and yields

(2. 11)

x';; =g(&o; &, (o; &, u), (2. i2)

g(a, b, v) —= 2(1 —b) [(b —a) v + (b+ a)v~+ r(a, b; v)] .
(2. iS)

x(a, b; v) = r(b, a; v) =[(b —a)~ v + (b+ a) v

S(x) = x+ x ',
one obtains for the partition function of this cluster

Z, =sS (x„u )S (x, t )S (x;, t )

+s 'Se(x;;u) S3 (x;,t)S (x;,f) . (2. 8)

The ensemble average of the value of the spin at
the center of the cluster is obtained from Z, by
means of

s=e''0 eOJ/2 g ij Similarly,
elnZ;

&o)& = —,'x;,
exi j

which yields

+ 2(2 —b' —a')]'i'. (2. 14)

x;,'=g((o;&, (o, &, t), f&j. (2. iS)

FIG. 1. Division of the triangular lattice into three
sublat tice s.

The three unknown spin expectation values are now

determined self-consistently by substituting the
expressions for x;; and x„into the three equations
for s' given by Eq. (2. 10). With the mean fields
eliminated in this manner, the self-consistent
equations for the spin expectation values can be
written

s'=F ((o,&;&o,&, (o,&) =F(&o,);&o,&, (o,&)

= E(& o,&; (o,&, &o,& ), (2. 16)

where

E(a; b, o) = E(a; e, b)
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= [ (1+ a)/(1 —a)]H2 (a, a, u) H(a, b, t)

x H(a, c, t), (2. 17)

x(a) -=—.' (1 —(a)),

x4=x(- a,), x, = x(a,), x, =x(- a3);

x, =x(a,), x, =x(-a,), x, =x(a,),

(o,o, )-
i
(a;)+(o,.)

i

—1

s ~j and T~O, (2. 21)

(a, a, )-1.for T-O. (2. 22)

The second formulation of the Bethe-Peierls ap-
proximation is a formulation in terms of the free-
energy of the system. The magnetic energy per
site, e, of the Ising model obtained from Eq. (2. 2)
can immediately be written in terms of the two-
particle correlation functions and the spin expecta-
tion values in the form

e = —,
' Z (( a, o,& + (a, o3& + (a2a3&)

——,.' K ((o,a,&+ (o,o,) +( a3o3&)

—-'5C0 (&ol&+ &o2&+ &a,)) . (2. 23)

The problem is to express the entropy or an ap-
proximation to it in these same terms. The Bethe-
Peierls approximation to the entropy per site of
the system is derived for an Ising ferromagnet in
an interesting and lucid paper of Kikuchi. The
method is easily generalized to the interaction of
interest to us. We define the following auxilliary
variables:

and

H(a, b, v) = I[g(a, b, v) v '+ 1]/[g(a, b, v) + v '] j3 .
(2. 16)

In general, these equations will have more than
one solution for a given temperature and external
field. Without an expression for the free energy,
one can not determine which of the possible solu-
tions will obtain. The nearest-neighbor correla-
tion functions (a, a&) and the second nearest-neigh-
bor correlation function (o, o; ) may be determined
by differentiating the cluster partition functions
with respect to the appropriate parameters and
eliminating the mean fields by means of Eqs. (2. 12)
and (2. 15). The results are

(a,a, &
= (1 —t') '[1+ t4 —t'3.((o, &, (a,); t)], i&j

(2. 19}

(a,a, ) = (1 —u') '[1+u' —u'3 ((o;&, (a;&;u}], (2. 20)

where s.(a, b; v) is given in Eq. (2. 14). In the limit
of high temperatures, the above correlation func-
tions approach the mean field result

(o,o, )-(a., ).(o, ) all i, j,
as T increases without limit. The low-tempera-
ture limit of the correlation functions differ re-
flecting the difference between the antiferromag-
netic coupling of nearest-neighbor spins and the
ferromagnetic coupling of second-neighbor spins.
One finds

y(a, b) -=-,'(1 —(a) —(b)+(ab)),

yl = y (al~ a2)~ y2=y(a» a2)~

a» a2)~ y8 = y (ol~ o3}~ yo = y (a» a3)~

y'7 y( li 3) 1 y8 y ( 11 3)i yS y(a21 3)i

ylo=y( 2 3) yll=y( 2 3) y12=y( 2 o3)i

l=y( 1, 1), e2=~3=y(al, — 1), al)

5 y (a2 2) ~8 ~7 y(a2 a2} 28 y( a2 2)

~S y(a3tia3)&i ~10 211 y( 3& a3) &1 e12 y( 3)i O3) '

The Bethe-Peierls approximation to the entropy
per site is given by the expression

6 12 12

s = ~3 Q x,. lnx, —p y,. lny, . —p z,. Inz, (2. 24)

III. POSSIBILITY OF SECOND-ORDER TRANSITIONS

In this section we wish to determine whether the
self-consistency equations given in Eq. (2. 16) per-
mit transitions between an ordered and disordered
state in which the order parameters characterizing
the ordered solution go continuously to zero. To
do this we write two of the consistency conditions
in the form

&((al&; &o2&,(a3&) —&(&a2); &a3&, &al)) = 0,

&(&o2&; (a,), (al)) —&(&a3&; &ol&, (o2&} = 0.

(3 1)

(3.2)

The third consistency equation merely determines
the average spin values in terms of the external
field. The above equations are identically satisfied
in the disordered phase in which (o,) = (a2) = (a3) = a,
where 0 is the average magnetization per site. We

The magnetic free energy per site is then construc-
ted from Eqs. (2. 23) and (2. 24) and depends on
twelve unknowns, the three (o,) and the nine (a, a& &.

The equivalence of the two formulations is easily
established. Upon setting to zero the variation of
the free energy with respect to variations in any
of the functions (a;a, ), with i not equal to j, one
obtains the expression for these six correlation
functions given by Eq. (2. 19). Similarly, setting
the variation with respect to (a,.a,. ) equal to zero
yields the expressions for these three correlation
functions given in Eq, (2, 20). Lastly, setting the
variation with respect to (a;& equal to zero yieMs
the three self-consistency equations of Eq. (2. 16)
which determine the spin expectation values
themselves. With the explicit expression for the
free energy, the various solutions of the self-con-
sistency equations can be checked to determine
which solution is that of the lowest free energy.
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wish to determine whether there exists another
solution to these equations in which each sublattice
magnetization differs infinitesimally from its value
in the disordered phase. As we are interested in

phase transitions in the lattice gas at constant den-
sity, we shall investigate transitions in the ising
model at constant magnetization.

As

3o = (o,) + (o,)+ (g,),
then

6(g,) = —5(g,) —5((x,) .

Varying both Eqs. (3. 1) and (3.2) with respect to

(g,) and (ga) at constant o yields the same condi-
tion:

(b)

0
(cI)

(c)

0
(e)

»(& ); & ), & )) » (& ); & ), ( ))
s(a, ) a(g )

with the derivatives evaluated at (o,) = (o2) =(o,) = g.
With the use of Eq. (2. 16) and Eq. (2. 7), this may
be expressed in the more transparent form

s 36 ((o,), (o ), (g,)) s 3e ((g,), (g ), (g ))
&(g,) a(g, )

with the derivatives evaluated at (g, ) = (g2) = (g,) = g.
In terms of the lattice-gas variables, this condi-
tion is

(3.3)

& p((n, ), (n2), (n, )) 9 p ((n,), (na), (n, ))
s(n, ) e(n,)

with the derivatives evaluated at (n, ) = (n2) = (n, ) =n.
Before solving Eq. (3.3), it is necessary to choose
a ratio of the ferromagnetic to antiferromagnetic
coupling strengths. From Eq. (2. 3), it is seen
that this ratio is also that of the strengths of the
attractive and repulsive interactions in the lattice
gas. A value of 0. 2 for this ratio was chosen as

I
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0.2

0
0 I/6 I/2

FIG. 2. Locus of possible continuous phase transitions
in the temperature-density plane. Only one-half of the
complete diagram, which is symmetric about density one-
half, is shown.

FIG. 3. The free energy per site vs order parameter
is shown schematically at a fixed density at five progres-
sively decreasing temperatures. The sequence is de-
scribed in the text.

it is appropriate to the interactions between helium
atoms adsorbed on graphite. With this ratio, solu-
tion of Eq. (3.3) shows that the consistency condi-
tions do admit second-order transitions from the
disordered to an ordered phase. The locus of these
transition temperatures in the temperature density
plane is shown in Fig. 2. The temperature is
measured in units of J and the density is only shown

between zero and one-half as the diagram is sym-
metric about one-half.

IV. RESULTS

To determine the phase diagram of the model in
the Bethe-Peierls approximation, the average sub-
lattice magnetizations were varied keeping the
average total. magnetization fixed, and the minimum
of the free energy was sought. The results of this
procedure are as follows.

There is no transition from the disordered phase
to an ordered phase in which all order parameters
are distinct and nonzero. There a.re transitions
to the ordered phase characterized by one vanish-
ing order parameter and two nonzero order param-
eters of equal magnitude ( ( ), and of opposite sign.
As there can be no ambiguity, this phase shall be
referred to henceforth as the ordered phase.

There are no second-order transitions between
the ordered and disordered phase. All transitions
are first order with the order parameter changing
discontinuously across the phase boundary. It is
of interest to explicate the reasonwhy the continuous
phase transitions which were found to be permitted
in Sec. III are not obtained. This is most easily
done with the aid of Fig. 3 which shows schemati-
cally a series of plots of the free energy per site,
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FIG. 4. Phase diagram obtained from the Bethe-
Peierls approximation in the temperature-density plane.
Only one-half of the complete diagram, which is symmetric
about density one-half, is shown.

of J.
Figure 5 shows the phase diagram as a function

of chemical potential and temperature, both mea-
sured in units of J. In general, this diagram is
symmetric about p/J equal to p —yKJ '. For the
triangular lattice, the number of nearest-neighbor
pairs, y, andsecond-neighbor pairs, P, is six.
As we have chosen K/J to be 0. 2, the diagram is
symmetric about 4. 8.

The behavior of the order parameter as a func-
tion of temperature at a density of one-third is
shown in Fig. 6. As the temperature increases,
the order parameter decreases from the value unity
to 0. 823 just below the transition temperature.
Lastly, the specific heat per particle at constant
area is plotted in Fig. 7 for a density of one-third.
Its limiting values as the temperature approaches
the transition temperature from below and above
are 4. 1 a,nd 0. 84, respectively, in units of the
Boltzmann constant.

V. DISCUSSION

f, vs order parameter $. All plots are at the same
magnetization but different temperatures.

The temperature in Fig. 3(a) is very high and
the free energy has but one minimum at the dis-
ordered phase, $ equals zero. As the temperature
is lowered, the situation shown in Fig. 3(b) de-
velops. There are now two minima, correspond-
ing to the disordered phase, and to anorderedphase
with a finite value of (. The system is still in the
disordered phase as the free energy attains its
lowest value there. Between Figs. 3(b) and 3(c)
the system has undergone a first-order transition
to the ordered phase. The extremum at $ = 0 is
still a minimum and at a nearby value of $ the free
energy has a local maximum. At the temperature
at which a continuous transition is possible, these
two nearby extrema merge as shown in Fig. 3(d).
The system, of course, is in the ordered phase
with a, finite value of $. Lastly, if the temperature
is lowered still further, both minima correspond
to possible ordered states and the extrema, at $ = 0
is a maximum. In summary then, the first order
transition takes place at a higher temperature than
the continuous transition so that the latter is not
seen.

The phase diagram in the temperature-density
plane is shown in Fig. 4. As in Fig. 3 the tem-
perature is measured in units of J and only one-
half of the symmetrical phase diagram is plotted.
Again the ratio of strength of the attractive to re-
pulsive interaction is 0.2. The maximum transi-
tion temperature occurs at a density of one-third
and has a value kT/J=1. 165. As at all other den-
sities the transition is first order. At density one-
third, the latent heat per particle is P. 788 in units

I
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I
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I I l I l I l I I I l

0 0.2 0.4 0.6 0.8 I.O I.2 l.4

FIG. 5. Phase diagram obtained from the Bethe-
Peierls approximation in the chemical potential-tempera-
ture plane. The diagram is symmetric about the value
of p, /J equal to 4. 8.

The phase diagram in the temperature-density
plane displ. ays several features that one would ex-
pect to appear in an exact solution. The maximum
transition temperature occurs at adensity of one-
third because at this density the system can form a
superlattice which is energetically favorable and

which encompasses aB particles, while at other den-
sities there are too many or two few particles to do so.
For similar reasons it is expected that in a two-phase
region, the density of the ordered phase is always
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FIG. 6. Behavior of the order parameter with tem-
perature at a density of one-third. The magnitude of the
discontinuity in the order parameter of the transition
temperature is 0.823.

close to one-third as is found. Further, due to the
weak attractive interactions, the system, at arbi-
trarily low densities and temperatures, can cluster
into an ordered phase in equilibrium with a low
density pha, se which acts as its "vapor "The. ex-
istence of a disordered phase in the vicinity of den-
sity one-half reflects the very large entropy of the
disordered system at this density. In the purely
repulsive system, a similar large value of the en-
tropy prevents ordering at any temperature at this
density. '

In addition to the above successes there are dis-
tinct faults in the results which are a consequence
of the approximation used. Some of these faults
will occur whenever the Bethe-Peierls approxima-
tion is employed while others are particular to the
use of the approximation on a close packed lattice.
As an example of a failure of the first kind, we note
the existence of negative entropies. The expression
for the entropy of Eq. (2. 24) evaluated at density
one-half and at vanishing temperature with the aid
of Eqs. (2. 21) and (2. 22) yields the result -5 ln2.
A similar result is obtained on the square lattice. '
This result is due to the fact that the approxima-
tion assumes that all pairs are independent. This
assumption has more serious consequences on a
close-packed lattice. One such concerns the be-
havior of the correlation function (n, n~) for i not
equal to j which can be related to (o, c&). It is found
that as T approaches zero, (n, n,.) in the state ob-
tained approaches zero for all densities less than

This result states that the nearestneighbor sites
on an occupied site are always empty which is
clearly not possible, for example, at densities
greater than one-third. Another consequence is
observed in the phase diagram in the chemical po-
tential-temperature plane. Due to the attractive
interaction it is certainly expected that at tempera-
ture equal to zero and at densities between one-
third and two-thirds the system will consist of two
phases in equilibrium of densities one-third and

z

0.6 0.8
kT/J

I,O l, 2 I.4 I.6

FIG. 7. Specific heat per particle at constant area vs
temperature at a density of one-third.

two-thirds. As the strength of this interaction is
small but nonzero, it might be expected that this
two phase equilibrium would persist at low tem-
peratures. This would imply in the p, -T diagram
that the value of the chemical potential on the phase
boundary would reach the value about which the
diagram is symmetric (4. 8 in Fig. 5) at a finite
temperature but this is not observed. Again this
is due to treating the pairs as independent and fail-
ing to include their correlations. These correla-
tions are particularly important in bringing about
a phase transition in the presence of repulsive in-
teractions only. Their exclusion in the approxi-
mation is further demonstrated if the strength of
the attractive interaction is set to zero in which
case no phase transitions result: Rather, it is
found that the consistency conditions admit ordered
solutions, but the free energy of the disordered
phase is always lower.

We conclude therefore that the low-temperature
behavior as given in the approximation is not reli-
able at densities at which the correlation among
pairs becomes important, i. e. , densities greater
than a value somewhat less than one-third. From
the above argument concerning the behavior in the
p-T plane and the results displayed in Fig. 5, we
can estimate a temperature on the order of —,'J be-
low which, at these densities, we expect qualitative
differences between the exact and approximate re-
sults.

Another question of interest is whether neglect
of the correlation between pairs on a close-packed
lattice necessarily results in the absence of a sec-
ond-order transition. On this Ooint we can cite
the work of Peierls' who consideredorder-disorder
transitions in alloys of the kind AB3 which have a
close-packed fcc structure. In that calculation,
all nearest-neighbor pairs in the cluster were
treated equally so that correlations between pairs,
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although not treated exactly, were included in the
approximation. A first-order transition resulted.

Experiments of He' "and Hes ' absorbed on
graphite do show a Large peak in the heat capacity
at densities of one-third. The evidence appears
to indicate that the transition is of second order.
It must be noted, however, that irrespective of
whether the model considered should evince a
second-order transition, corrections to the exact

results of the classical model due to the inherent
quantum-mechanical nature of the heLium system
must be investigated.
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The Brandow boson many-body theory is used to calculate the generalized dielectric con-
stant within the random-phase approximation. The generalized dielectric constant obtained
this way agrees with the Bogoliubov theory in the high-density limit and thus yields all of the
well-known Bogoliubov results. The momentum distribution function for fc«0 is also calcu-
lated. The treatment is fully number conserving.

I. INTRODUCTION

In a previous paper, hereafter referred to as I,
a study was made on a charged boson gas using the
analogy to a fermion system with high spin degen-
eracy. The noteworthy feature of the theory is
that one introduces the concept of a hole in the
boson system and thereby treats the dynamics of
the condensate in a proper way. The number of
particles is conserved without the aid of the chem-
ical potential. The well-known Brueckner -Gold-
stone cluster expansion is directly applied without
any modification to the condensation operators.
The result of I shows an exact agreement with the
Bogoliubov theory of Foldy both for the ground-
state energy and the condensation fraction.

In this paper, this study is extended to the ele-
mentary excitation with the same Hamiltonian as

used in I, In Sec. II the irreducible polarization
part is calculated and then the generalized dielec-
tric constant is obtained, which agrees again with
the Bogoliubov theory in the high-density limit.
This time-dependent dielectric constant yields all
of the known results of Bogoliubov theory. In Sec.
III we supplement I by calculating the momentum
distribution function for k go.

II. DIELECTRIC CONSTANT AND RELATED FUNCTIONS

The Hamiltonian is

H =Z~&(q)a", a~+ 2 ~+~v(q)[a;aoa;ao+aca", aoa",
t

+acaQa-, a -, +a'",agacac], (1)

with e(q) = Ksq /2m and v(q) = (4re /Q)(1/qs). Here
0 is the volume and N will represent the total num-
ber of particles. The prime indicates the absence


