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A detailed theoretical study of cascade ionization of air by rf fields and by laser beams is
given. Experimental rate constants for energy loss, ionization, and attachment are used.
The Boltzmann equation for the electrons is solved in both classical and quantum form. Pro-
vision is made for both single-photon and multiphoton ionization and detachment processes. The
latter processes have been incorporated parametric ally in our calculations owing to the lack of a
quantitative description of multiphoton absorption. Possible anomalies in comparison with
available experiments are noted for photons in the 1-2-eV range when the illuminated volume
is large.

I. INTRODUCTION

The cascade breakdown, or ionization, of a gas
by rf electric fields has been studied in some de-
tail, both theoretically and experimentally. More
recently, breakdown experiments have been re-
ported~ '-with intense focused laser beams. Such
experiments have been done at wavelengths X

= 10.6 p (CO~), A = 1.06 p (neodymium), X = 0.694 p.

(ruby). Some aspects of these experiments do not
seem to be consistent with simple extrapolations
from the microwave regime. This is not neces-
sarily surprising since the photon energy e, is
equal to 1.24/X eV (the wavelength X will always
be expressed in microns in this paper) is not neg-
ligible on an atomic scale. That is,

&, =0. 12 eV, ~=10.6 p,

e,=1.17 eV, A. =1.06 p.

~,=1.V9ev, ~=0. 69 I .

In this paper we shall discuss the breakdown
phenomena in air near 300'K. Account mill be
taken of the appropriate molecular processes and
the classical Boltzmann equation will be solved to
give a detailed description of the cascade ioniza-
tion phenomena. We shall see that this provides an
adequate description of the microwave regime, but
is inadequate when the photon energy becomes sig-
nificant. A modified Boltzmann equation, taking
account of the discrete photon energy will then be
used and the results compared mith available ex-
periments.

At sufficiently low frequency air will break down
when the rms electric field intensity is greater than

Es = [30 V/cm] x [air pressure in mm Hg] .
(When the frequency is low enough that breakdown
can occur during a fraction of the rf cycle, E& is

the peak field. ) At higher frequencies Es scales
linearly with f, the frequency. We shall find the
power per unit area P more convenient to use than
the field intensity E, these being related by

E = (1.94 x 10 ) P

where E is the rms field in V/cm and P is ex-
pressed in MW/cm .

The breakdown phenomena in air for radiated
volumes large enough that diffusion losses are neg-
ligible wa, s reviewed some time ago by Kroll. He
expressed the threshold pomer flux for breakdown
in the form

PB = 1.44 (ps + 2. 4x 10 6f ) MW/cm . (1.2a)

Here p~ is the atmospheric pressure in units of
standard pressure and f is the rf frequency in units
of 6Hz. Heexpressed in terms of the wavelength
X (in microns), Eq. (l. 2) has the form

Ps =1.44 (Ps+ 2. 2x 10' V~}MW/cm~. (1.2b)

Equation (1.2) is descriptive of data obtained
by MacDonald' and Scharfman and Morita. We
emphasize, however, that it is based on observa-
tions at microwave frequencies and pressures much
below atmospheric (P~ «1). Extrapolated to laser
frequencies and higher pressures Eq. (1.2) pre-
dicts the powers shown in Fig, 1. As we shall dis-
cuss later, this prediction seems to overestimate
the breakdown power by more than an order of
magnitude under certain conditions.

In discussing breakdown, we shall restrict our-
selves to the early phase when

n, «n(N, ), n, «n(O, ) .
Here n, is the free-electron density and n(N2) and
n(02) are the respective densities of N2 and 02.
Since we are assuming the air temperature to be
near standard, we may write
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FIG. 1. Breakdown power as a function of photon wave-
length as predicted by the microwave formula (1.3).

n(Ns) = (2. Olx 10 )pz cm

n(Os) = (5. 36x 10~')Pa cm s .

The condition (l. 3) permits us to neglect the role
of positive ions. The negative ions Oz and 0 are
of importance in determining the breakdown thresh-
old and we must calculate the respective densities
n(Os ) and n(O ). Other chemical species will be
neglec ted.

The breakdown process is governed by the source
of energy and the sink of energy for the free elec-
trons, and also by the loss of free electrons from
the radiated volume. The energy source is the
electromagnetic wave. In the microwave regime
this provides Joule heating. In the quantum regime
the net effect of inverse and stimulated brems-
strahlung provides the mechanism of electron heat-
ing. The sink results from the transfer of energy
from the electrons to O~ and Nz by exciting rota-
tional, vibrational, and electronic levels.

In Table I we summarize some excitation and
ionization energies which will be needed. (The
particular choice of electronic levels is explained
later. )

In the classical theory the only source of elec-
trons is provided by ionizing collisions of elec-
trons with Oz and N&. To ionize, an electron must
have passed the energy loss "hurdles" to have

TABLE I. Some atomic constants.

Ionization thresholds

N&. 15.58 eV, 0&. 12. Q6 eV

Detachment ener gy

0& . Q. 44eV, 0: 1.46 eV

Vibrational energy spacing

N, (g'Z,'): Q. 2eev, 02 Q3 Z"): Q. 19 eV

Electronic exc itation

Ng(A Z+„): 6. 7 eV, 02(A &g): 4. 5 eV
N&(a II+): 8. 4eV, O&(B ZJ: 8. 0eV
N2(C II„): ll. 2 eV, 02(-): 9. 7 eV

reached an energy greater than 12 eV. Electrons
may be lost by attachment to 02 and O and by dif-
fusion out of the radiated volume. Cascade break-
down occurs when free electrons appear at a faster
rate than that at which they are lost.

At laser frequencies an additional source of
electrons may be provided by photoionization and
photodetachment with laser beam photons. If e,
is greater than the required threshold energy, a
single photon can produce a free electron. When

&, is less, multiphoton absorption can lead to photo-
ejection of electrons.

At the power levels required for breakdownsingle-
photon ionization processes mill be very fast. The
photon flux is

p, = (5x 10 ) XP (photons/cm )/sec .
Since photo-cross-sections tend to be in the range
from 10 ' to 10 cm, the time to photoeject a
given electron [when energetically possible] is
about 10 '/XP sec.

Multiphoton absorption tends to be slower, but
can still play a significant role in the breakdown
processes. In the wavelength range from 0. 7 to
10 LLf., photoionization of N2 and 03 does not seem
to be of much importance. Reference to Eris. (l. l)
and Table I suggests that photodetachment may be
quite significant. Also, we may anticipate that
photoionization from excited states (created by
electron impact) of Ns and Os may be of importance.

The multiphoton absorption phenomena are com-
plicated and not at present quantitatively under-
stood. Bebb and Gold have done perturbation the-
ory calculations. Because of the difficulty of doing
the sums over intermediate states, their results
are somewhat qualitative. A "tunneling" mecha-
nism in the electric field of the beam has also been
studied. ' It is to be noted that Stark broadening
of lines may greatly enhance the multiphoton-ion-
ization process. In particular, where the line
width is greater than the spacing, the electron can
sequentially absorb photons by inverse bremsstrah-



THEORE TICAL STUDY OF IONIZATION OF AIR ~ ~ ~ 1885

lung.
To illustrate the possible effects of multiphoton

absorption we consider a simple model due to Toz-
er, 3 which provides a result very similar to that
of perturbation theory.

Let 4Ebe the energy required to eject an elec-
tron. The required number of photons n is that in-
teger just greater than &E/e„. These must be ab-
sorbed in a time

r = h/e„= 4. 1 x 10 "/e„sec, (1.6)

(1.8)

For n «1, we take e "-= 1 and keep the first term
only to obtain

(1.9)

We illustrate Eq. (1.9) in Fig. 2 with two ex-
amples, for both of which &„=1.IV eV. In the first
we take &E=1.46 eV, corresponding to 0, with n
=2. In the second we take ~E=3. 5 eV, with m=3.

We emphasize the qualitative aspect of this mod-
~1. It does suggest, however, that for A. &1.0 p,

negative ions will not survive in a laser beam of
the anticipated power level. (Application of the
more elaborate theory of Ke'.dysh leads to a simi-

where in the last form e, is expressed in eV. The
mean number of photons arriving in time & in an
area o=2x10 ~ cm is

n = p„o ~= 4. Ox 10 ' (LP/&„) .

The rate at which a given electron is ejected is then

Where numerical results are given, we shall ex-
press energies in eV, lengths in cm, and time in
sec.

The Boltzmann function describing the distribu-
tion of electrons at position x and time t and having
an energy e is written as E(x, e, t). The normal-
ization of E and the effective temperature T, are
determined by

—,'n, V', = J,
'"

cad~. (2. 1)

The equation satisfied by I' has been derived by
Allis~ and discussed in some detail in Ref. 1. We
suppose the rf electric field in the radiated volume
to have the form

lar conclusion. ) It also suggests that photoioniza-
tion may occur with significant probability from the
excited electronic states of N2 and Oz, the mecha-
nism being a sequential photoexcitation process to
higher excited states and eventual ionization.

In the following sections we shall discuss the
cascade breakdown process in some detail. The
classical Boltzmann equation is presented in Sec.
II. The appropriate rate constants are described
in Sec. III. In Sec. IV we present the Boltzmann
equation with modifications to take account of the
finite photon energy. The results of numerical in-
tegration of the classical Boltzmann equation are
given in Sec. V, while in Sec. VI are given the re-
sults obtained from the quantum version. Finally,
in Sec. VII we compare our calculations with some
experimental observations.

II. BOLTZMANN EQUATION

12

101 1

10

10
9

I
O

@ 10
FIG. 2 Rates for mu1tiphoton

ionization.

10

10

105

10
4 5 6 7 8 4

P ( MV//cm )
2

5 6 7 8 10



1886 N. KHOI I AND K. M. WATSON

E = W2 E2cos[(21/x 10') g t] .
Then the Boltzmann equation is of the form

BF 2& ~ E 8 (, 3fa 8 E
Bt 3mv, Bc I, 8&

(2 2) (2. 6). If the process is followed to electron den-
sities greater than 10'/A, the ambipolar diffusion
constant should be used. Our calculations may
easily be modified to account for this by the sub-
stitution

+—[Q„F]+ G(e, 2')F(& ) dE'-A'F (2. 3)

l1 ~ (v. //1, ) l'1 = 36 A .
The electron loss rate A is of the form

(2. 9)

[valid only in the linear regime (1. 3)].
Here I is the electron mass and v, (&) the mo-

mentum transfer collision frequency. The Joule
heating rate per electron is determined from the
quantity

V F= —1/lPF, (2. 6)

where & is the "diffusion length, " assumed to be
energy independent. This lets us define

AD(c) -=[2&/(3mv, )] A

as the rate of loss of electrons of energy & due to
diffusion. We also define

A(e) =—A'(&)+A~(g}

and rewrite Eq. (2. 3) in the form

BE 8 g 3] p 8 p ' 8
~ /

Q8$ Bq 8~ 1/2 8~ v+—(Q F)

(2. 7)

+ ~ G(~, ~')F(~')d~'-AF . (2. 6)

The expression (2. 6) describes free-electron
diffusion. This is valid when l~ «RD, the Debye
length. When ~&» AL), AD must be replaced by the
ambipolar diffusion coefficient, Since we are in-
terested in the onset of the cascade phenomena, we
shall use the free-electron diffusion coefficient

QJ (e) = (e /m) v, (e) [v2+ (3. 94 x 10")f2]-' E22,

(2. 4a)
where e is the charge on an electron. If we ex-
press Eo in terms of the power flux P, this be-
comes

Q~(a) = (6. 7x 10 3) v,

x[v', +(3.94x 10")f ) 'P eV/sec . (2. 4b)

(Note that the units of Qz here are eV/sec and P is,
as before, expressed in MW/cm .)

The quantity Q„(e) in Eq. (2. 3) represents the rate
of transfer of energy from an electron of energy
& to rotational and vibrational levels of O~ and N~.
The rate of loss of electrons at energy e is ex-
pressed by A'(e), while the rate of appearance of
electrons at energy 2 is f GF de'.

The first term on the right-hand side of Eq (2.3).
represents the rate of loss of electrons from the
radiated volume due to diffusion. We shall here
follow the custom of rewriting this by setting

A(e) = AT(e)+A„(e)+A„(e)+A~(2) . (2. 10)

Here A, is the rate at which an electron of energy
& ionizes 0& or Nz. A,. is the rate at which an elec-
tron of energy e undergoes collisions which excite
electronic levels of Oz or Nz. Finally, A~ is the
rate at which an electron of energy E attaches to 0&
or O.

The quantity j G(e, c') F(e') d2' represents the ap-
pearance of electrons at energy e due to reactions
initiated by electrons of energy a'. The relevant
processes for our application are excitation of
electronic levels and ionization. We have

J G(e, e')F(e') de'de= J A„(e)F(e)de—= iV,

(2. 11)
where

A~=2AI+A (2. 12)

The quantity IV represents the total number of elec-
trons emerging from these reactions. The form
(2. 12) is seen to satisfy particle conservation,
since two electrons emerge from each ionizing col-
lision. Evidently, G(&, &') = 0 for e & e', corre-
sponding to the fact that the reactions involved are
endothermic.

A commonly used approximation is that of setting

f G(&, e')F(e') d&'= W5(2) . (2. 13)

This satisfies particle conservation but violates en-
ergy conservation. To satisfy both conditions we
shall assume that

j G(~, ~') F(2') A' = N„a(~) f A, (~') F(~') d~',
(2. 14)

with

II(~) [2/(~ 1/2 7 3/2)] e-e/ Tg ~1/2 (2. iS)

A~(e) = 2A/(e)+A„(e)+A, (&) . (2. 16)

[Note that J2" B(c)de = 1.] N„ is determined by the
particle-conservation condition and T„by energy
conservation. The method of doing this is explained
in Sec. V. Calculations were also made using Eq.
(2. 13). Little difference was found, the greatest
being about a 20% increase in the breakdown power.

At optical frequencies it may be necessary to
augment A~ with photoelectric processes such as
photodetachment of negative ions and photoioniza-
tion from excited states of N& and 03. In this case
G(&, e') = 0 for c & E' is no longer rigorously correct
but still valid to a good approximation. Thus we
can still use Eq. (2. 14), but with
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F(c)=0 for e=o, (2. 17)

If Eq. (2. 8) is integrated over energy, we may
use Eqs. (2. 1), (2. 12), and (2. 17) to obtain

Be' = n, [Ar +f~o A„(1-f») A—/, -AD], (2. 18)

where f,o and f» are zero or unity in accordance
with the form assumed for A, and

[In evaluating T„, the contribution of photon ener-
gy in excess of the threshold energy required for
photoelectric processes is assumed small and
omitted. ]

While there is little justification for assuming
A, different from zero in the domain of validity of
the classical Boltzmann equation, we have never-
theless, in order to assess the quantum effect and
photoelectric effect separately, carried out some
classical calculations with Ay A& and Ay A&+ A„.
The first case eor responds to complete photode-
tachment from negative ions, the second to this
plus photoionization from all electronically excited
states. More detailed models for A, will be con-
sidered in connection with the quantum Boltzmann
equation.

The appropriate boundary conditions on Eq. (2. 8)
are

larger value when switch over to ambipolar diffu-
sion occurs. When n, has grown to such a value
that the conditions (l. 8) are not valid, the linear
theory described by Eq. (2. 8} fails.

In Sec. V we shall look for solutions to Eq. (2. 8)
ha.ving the form

F(e, f) =F(e)e", (2. 28)

for which Eq. (2. 22) is of course valid. The re-
sulting time-independent form of the Boltzmann
equation is then

q — +—(q F)2 Q/2 8 F
J 8& &1/2 8& v

= (A+S) F — GF de . (2. 24}
J

This is an eigenvalue equation for S, with F subject
to the boundary conditions (2. 17). The power P
=P~, for vhich S = 0, evidently represents the
threshold for breakdown, and it is for this case
that we seek a solution to Eq. (2. 24).

If we integrate Eq. (2. 24) over energy we obtain
[using the condition that F(e) =0 at e =0]

S= 1/r' A=Ar+f„-oA„(l-f, g)A—„-Arr . (2. 25)

Equation (2. 25) will be used in Sec. V to replace the
boundary condition F(e) = 0 at e = 0.

Ar = n fArFd'&
0

(2. 19) III. RATE CONSTANTS

(-, n, &,) =—8

8t
3/2 8 E

Qr i/28&

The physical necessity for the particle-conserva-
tion equation (2. 18) is obvious. We note that since
Qr(0) 40, while Q„(0), G(0, e'), and A(0) all vanish,
Eq. (2. 18) holds only if F(0)= 0.

The equation of energy is obtained, similarly, by
multiplying Eq. (2. 8) with e and integrating:

In this section we give explicit expressions for
the rate constants introduced in Sec. II."

The momentum transfer frequency v, occurs in
both Q J and Arr. For Na this has been measured by
Engelhardt, Phelps, and Risk' with an accuracy
estimated to be about Io/p in the energy range 0.01
& e & 10 eV. For 0, , v, has been measured by Hake
and Phelps' with a comparable accuracy for 0. 2
& c & 10 eV. Based on these measurements, we
have taken, for air,

Q„Fde +
40 4 0

6 GFde de
Iv 0

e'AFdq .

(2. 2o)

p,(e) =7.ox 10' [(a+0. I)/(6+4. 94)]p„sec ',
(&. 1)

An approximation sometimes used is to assume
that F has the Maxwell form

2 [e/(v T3)]1/2 e-8/ Tg n (2. 21)

This permits integration of Eqs. (2. 18) and (2. 20)
to find n, and T, as functions of time. Following
an initial transient period (depending on the start-
ing conditions), the temperature T, approaches a
constant value and n, has a single exponential time
dependence, q r = l. 2 x 10'~ [(e + 0. 1)/(& + 4. 94)]Ppa/f Hi-f

where e is, a,s usual, in eV and we recall that P~
is the pressure measured in units of the standard
pressure. The quantity (8. 1) is displayed in Fig.
3.

Using Eq. (8. 1) we can write Qr [Eq. (2. 4b)] in
the low- and high-frequency limits [henceforth, ab-
breviated as Lo-f and Hi-f] as

Qr =0.96x10"[(@+4.94)/(e+0. 1)]p/pa, Lo-f

n, (t) =n, (0)e" . (2. 22)

If S & 0, the power p is insufficient to cause break-
down. If S& 0, cascade breakdown is occurring.
The exponential growth rate S will change to a

where the units of Qr are eV/sec.
The excitation of vibrational levels in 02 and N2

has been measured in Refs. 16 and 17 and further
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'1 013 10-20/o (based on consistency with other observa-
tions). The rate constant for this process is taken
to be

A~p ——0 for 6'& 3.7

=8.6x 10 ps We[1. 55/(a+1)](e —3.7)

2
0 O8(6-6 ~ 7) SeC"1 for e& 3. '7 . (3.6)

I
O
Cl

1012

The three-body attachment reaction

e+Og+Op-O2 +03

has been studied by Chanin, Phelps, and Biondi
and others. ' The rate coefficient for this process
is here taken to be

A„3= 4. sx 10 pz & [(1+0. 3&) (&+ 0. 08) ] sec ~ .
(3. 7)

[The functional form of A» for e & 3 eV is unknown

and has been arbitrarily specified above. The con-
tribution of this region to our results is negligible. ]

The quantity A~ is then

3
0

I I ! I I I

2' 4 6 8 10 12 'I 4 16 18 20
~ (eV)

A~= A~a+A

12

(3. 8)

FIG. 3. The momentum transfer collision frequency
as a function of electron energy in eV. Q

analyzed by Henry and McElroy. ' The excitation
of rotational levels in O~ has been studied in Ref.
11 and in N2 by Takayanagi and Takahashi. ' Using
these results we write

10
11

Q

Q. = Qo+ QN+ Qz (3. 3)

Here Qo represents the vibrational energy loss to
03 and Q„ the corresponding loss in N2 by an elec-
tron of energy e:

Qo =p~ v e (1.0 x 10' [1+12.6 (e —0.75)'] ' 10
10

Hi-FREQ LIMIT

+2. 6xlo'e """'"}eV/sec, (3.4)

Q p ~&[6 0x 1012e-4(8-2.6$ ]

For the rotational energy loss in air we take

Q„=S. 2x10'p„e "" eV/sec . (s. 5)

We see that Q„ is the only term in Q„of practical
importance. This is fortunate, since Q„appears
to be accurately determined [perhaps to within 15%].

In Fig. 4 we show Q„and Q~ in the Hi-f and Lo-f
limits. Here P~ = 1 and I' has been chosen to be
unity for the Lo-f case, and P/f = 6x 10 ~ in the
Hi-f limit.

The reaction e+O&-O +0 has a threshold at
3.7 eV. This has been measured by Rapp and
Briglia to an accuracy which we estimate to be

9
10

'IO '8,
12

q (eV)
20 24

FIG. 4. Vibrational cooling rate Q„and heating rate
Q; (both in units of eV/sec) as functions of the electron
energy in eV.
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In Fig. 5 we show A„z and A„3 for p~=1. It is
seen that A» is largest at very low energies, while

A» peaks at about 6. 7 eV.
Collisional excitation of electronic levels of Oz

and N2 represents an important sink of energy from
the electron gas. Observations for 0& and N& have
been reported in Refs. 17 and 16, respectively. The
interpretation of these drift tube measurements is
indirect, involving an "unfolding" of the data by
solving the Boltzmann equation. This involves
some ambiguities, particularly in the assumed
levels. For our purpose it has seemed sufficient
to express the excitation rate constant A„ in terms
of three levels each for Oz and Na —those indicated
in Table I. Analytic expressions were chosen to
approximate the data in Refs. 16 and 17, and the
final expression for A„was multiplied by a single
scale factor adjusted to give the measured low-
frequency breakdown threshold in air. [The scale
correction is included in the expressions (3. 10) be-
low, which seem to be compatible with the data in
Refs. 16 and 17. Because of the absence of a quoted
experimental error, a more elaborate treatment
did not seem justified. ] We then write

(3 9)

A„of =0 if c&4. 5

= 5. Ox 10'p„We (e —4. 5) e '~ 6 o if ~ & 4. 5,

A„op=0 if c & 8. 0

=1.21x10 pgvq(e —8. 0)e '~ if E&8.0,

A„o3—-0 if & &9.7

= 3, 5 x 10 p~ vV (& —9. 7)/(1+0. 1&) if e & 9.7,

A„Nf =0 if c&6.7

=5. 5& 10 p~v c(e —6.7)e '~ '7 if E&6.7,

if «8. 4

= 3. 7x10 p va (&-8.4) e-'~ 4 if a& 8. 4

corresponding to Oz and N~, and where [e is as
usual expressed in eV and the rate constants in
sec ~]

10

N3= 0 if «11.2

lx10up ~&(& 11 2)e-eiii. ~ if e&11.2.

10
s~

A2

(3. 10)
For the ionization of Oz and N2 by electron im-

pact we use the measurements of Rapp and Eng-
lander-Golden. A comparison with other mea-
surements leads us to assign an accuracy of about
20/o to these measurements. We then write

AI = Alo+AIN,

given in units of sec, where

Aro=o if «12.06

I

10 = 1. 3 x 10'p„We (~ —12.06) [1+0. 07 (e —12. 06)]

10

5,10 0 4 12

q (eV)

I

16 20 24

FIG. 5. Two-body (A~2) and three-body (A~3) electron
attachment rates in sec" as functions of electron energy.

AD= (845+ 171&)/(p~A ) sec (3. 12)

In Sec. V we shall present the results of numeri-

if 12.06«&25,
AIN= 0 1f E & 15. 58

= 9. 6 x 10'p„v e (e —15. 58) [ 1+ 0. 05 (e —15. 58)]

if 15.58«&25.
(3. 11)

In Fig. 6 we show plots of A„and A, for p~= 1
over the energy range of most interest to us.
From this figure we may anticipate that A„ is of
critical importance for describing electron ener-
gy loss.

Using Eqs. (2. 6) and (3. 1), we obtain finally
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IO
j3 In the range E&4. 5, reference to Figs. 4, 5, and

6 shows that A, and Qz are the important rate terms
in Eq. (2. 24). E(e) decreases monotonically from
its value at 4. 5 eV, eventually being well repre-
sented by the WEB approximation,

(3. 17)

IO
t2 Ax where E& is a constant,

G(E) = v E exp( —J dE' /8„), (3. 18)

I/O„= [3A/2e Q~]
i (3. 19)

I 'O—

We see that the high-energy end of the electron
distribution is limited by the ratio E(/E(„and it is
these electrons which lead to ionization. It is clear
from Eq. (3. 16) that 1t is determined by the vibra-
tional loss rate, and thus when It', «1 the vibrational
loss rate acts as a barrier, limiting the number
of electrons above 3 eV.

To estimate this blocking effect due to vibration-
al excitation, we note that

10 2—= 1. 8 —,
e

0

Lo-f limit

2

= 1.2x10 ' —,Hi-f limit . (3. 20)

9
f0O 244 e l2

~ (eV)

FIG. 6. Electronic excitation rate (A„) and ionization
rate (Ai) as functions of electron energy.

cal solutions of Eq. (2. 24) using the rate constants
described above. At this point a qualitative de-
scription of the solution may be helpful, however.

For this purpose we shall suppose that B(c)= 0
for c ) &0, where &0 is quite small, and that S 0—
that is, P is near the breakdown threshold. We
first integrate Eq. (2. 24) over the interval 0««0
to find, using Eq. (2. 11),

r~ & Qz i~)'2
r

3l2
86

0

(3. 13)

In the energy range co& e & 4. 5 eV, we neglect (A
+ S)E. This lets us integrate Eq. (2. 24) to give

Z(e) = v ~ (Fo exp( —f d e'/e)

+ W f [-,'(e')'I''QJ(e')] 'exp(f d~"/e)de'j,
(3. 14)

where I 0 is a constant of integration and

I/e-=-,'q„/~q, .
Since W is positive, we have immediately

E(4. 5) (4. 5)'
(

I

'
da) ( )

Reference to Eq. (1.2a) shows (3. 20) is of order
unity for classical breakdown conditions. In this
regime the blocking effect of vibrational loss is
therefore not very important. [This will be seen
also in Table II, based on numerical integration
of Eq. (2. 24).] For some of our laser applications,
however, with lower breakdown powers, Eq. (3. 20)
indicates the presence of a substantial blocking ef-
fect. These phenomena will be illustrated in the
numerical results presented in Sec. V.

TABLE II. Variation of breakdown power with rate
constants.

d lnP~
1nA

Lo-f limit

dlnP~ '

ldlnAg
'

d lnPJ3 I

d lnq„ l

Hl f llmlt
d lnP~

I d In@„

IV. FINITE QUANTUM BOLTZMANN EQUATION

Equation (2. 3) treats the Joule heating and the
vibration-excitation cooling of the electron gas as
continuous processes. This is not obviously satis-
factory for photon energies of the order of a volt,
or higher. Zel'dovich and Haizer ' have given a
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(4 2)
where Q~ is given by Eq. (2. 4) and e is some en-
ergy characterizing the energy dependence of v, (&).
[Equations (4. 1) and (4. 2) are derived in the Ap-
pendix. ]

Since the predominant contributor to Q„ is the
Na vibrational loss, it seems adequate to use a
single component model for this and write

Q„(& —D„)= D„R„(a) . (4. 3)

Here D„ is an equivalent vibrational excitation en-
ergy which was chosen to be

D„=0.27 eV. (4. 4)

[Calculations were done for D„ranging from 0. 25
to 0. 29 eV. The effect of this variation in D„could
not be seen to within the accuracy of our calcula-
tions (about l%%uq). ]

Obvious physical considerations lead us to re-
quire that

R„(e)=0 for a&e, ,

Rs{e)= 0 for c & e„,
R„(&)=0 for e&D„.

(4. 5)

The modified form of Boltzmann's equation is
now seen to be

sF(~)
BI;

= Rs(e+ e„)F(e+ c,) + R&(&) F(& —e„)

—[R~(e)+R„(~+e„)]F(e)

version of the Boltzmann equation which takes ac-
count of the discrete energy of the photons in a
laser beam. In this section we describe a modi-
fied version of their equation.

To do this we introduce the following notation:
R„(c) is the rate of absorption (inverse bremsstrah-
lung) of photons of energy e, by an electron of en-
ergy e —e, (final energy c). Rz(e) is the rate of
stimulated emission of photons of energy &„ by an
electron of energy a. R„(e) is the rate at which an
electron of energy & induces vibrational excita-
tions.

A general relation between R~ and R~ is

Rs(e) = R„(c)(1 —e„/~)" ' . (4. 1)

To second order in the ratio a,/7, we have

electron growth rate S as an eigenvalue. The meth-
od of solving Eq. (4. 6) and the resulting solutions
will be described in Sec. VI.

Equation (4. 6) reduces to Eq. (2. 8) when we con-
sider E, and D„ to be very small. To see this we
expand all functions of energy in Eq. (4. 6) in a
Taylor series in e„or D„, about the energy & and
keep only the lowest-order nonvanishing terms.
This leads to the equation

2 2

+~2 ~ f[R~(e)+R„(c)]F(c)j

+ D„—[R„(e)F(c)]+ GF de' AF . -(4. 7)
4

Now, according to Eq. (4. 4) D„R„=Q„, and accord-
ing to Eqs. (4. 1) and (4. 3)

R~(e) —R„(c)=-—
2

~ R~(e) —e,
1 e BR (e)

Substitution into (4. 7), using (4. 3) leads imme-
diately to {2.9).

The conditions under which Eq. (2. 8) accurately
represents (4. 6) require careful analysis. This
will be done in Sec. VI. The energy dependence
of the rate constants shown in Figs. 3-6 suggests
that for &y & 0 1 eV the classical approximation is
probably valid, whereas for &„1.0 eV it cannot
be considered reliable.

V. INTEGRATION OF BOI.TZMANN EQUATION

In this section we describe the integration of the
time-independent form (2. 24) of the Boltzmann
equation. The expression (2. 15) for 8 was adopted.
The "temperature" T„was chosen to conserve en-
ergy in collisions leading to electronic excitation
or ionization. That is, we write

e G(&, &') F(E ) dE d& = Z (E —Eg() A„gt F(&) de
l=1 "6

+ (& —~o, ) A«, F(e) dq
~I 0

+R„(q+D„)F(e+D„)-R„(&)F(e)

+ K„B(q) A„(e')F(E') de' -A(~)F (e).

(4. 6)

"0
(E 12, 06) A~o F dz

0

(c —15. 58) A~g F da .

The particle-conservation equation (2. 18) is
automatically satisfied provided F(e) is integrable.
The assumed time dependence (2. 23) converts Eq.
(4. 6) into a time-independent equation with the net

(5. 1)

Here &» and e«are the appropriate excitation
thresholds, the A„'s are defined by Eqs. (3. 10), and
the AI's by Eqs. (3. 11).
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BFF= 0, = assigned constant . (5. 2)

The integration gras begun at 21 eV and continued
to e = 0. 1 eV in steps of +~ eV. [A comparison
was made using steps of 333 eV and ~0 eV, which
indicated a relative error in F due to roundoff of
about 10 ~. ] A correction to S was made for c &21
eV using the expression (3. 18), although this cor-
rection to S did not seem to be greater than about
l%%uo.

For convenience, the distribution function F was
always normalized to unity in our calculations, that
1S,

1 E(~)de= 1 . (5. 3)

From the consistency and reproducibility of our
results, we estimate a numerical error in our cal-
culated breakdown powers of about 1/0.

The classical microwave regime was first
studied. This meant setting A, = 0 in Eq. (2. 24).
For low air density (p„& 0. 1), the three-body at-
tachment rate A» is negligible. In this case the
scaling with p~ is simple. The net electron pro-
duction rate S has then the functional dependence

S =p, S, (P/p, ', Ap„), I.o-f

S=p, S„(P/y', Ap„),
(5. 4}

where SL, and S„are functions of the indicated
arguments. The breakdown power P~ is obtained

Equation (5. 1) will assure us of net energy con-
servation in the Boltzmann equation (2. 24). It does
involve an approximation, however, in that all elec-
trons emerging from exciting or ionizing collisions
are to a very good approximation assigned a single
Maxwell distribution. To test the sensitivity of our
results to the rather arbitrarily assumed form of
G(e, e'), several calculations were done using
"wrong" values of T„. In the cases investigated,
factor two variations in T„affected breakdown pow-
er by about 5/q, while setting T„= 0, which corre-
sponds to Eq. (2. 13) in no case caused a relative
difference greater than 20%%uo for the breakdown
powers.

The integration procedure was as follows. An

initial value was assumed for T„(t he final value
was usually about 2 eV), and it was assumed that
8= 0. Equation (2. 24) was then integrated numeri-
cally. 8 Values of S and T„were then evaluated
from Eqs. (2. 25) and (5. 1), respectively. These
values were next inserted into Eq. (2. 24), which
was again integrated to give new values of S and T„.
This was repeated until consistent values were ob-
tained. [Usually, three integrations of (2. 24) were
sufficient. ]

Equation (2. 24) was integrated assuming that at
an energy of 21 eV,

5P~/P~ ' dlnP~ etc. (5. 5)

From Table II we see that P~ depends most sen-
sitively on A„, which seems to be the least ac-
curately known. We therefore, as described in
Sec. III, adjusted A„with a single scale factor to
give the coefficient 1.44 in Eq. (l. 2). [The cor-
rect scale factor has been included in Eqs. (3. 10).]
This scale factor represents the only arbitrary pa-
rameter in our calculations. Although not unique,
a corresponding modification of any other rate
constant to give agreement with Eq. (l. 3) would

seem inconsistent with our assessed accuracies
of these rates.

Our calculated value of the coefficient 2. 4x-10
in Eq. (1.3) was 2. Ox 10, which is consistent with
its known accuracy. This coefficient is determined
by the momentun transfer frequency v„which is
relatively accurately known.

The breakdown power P~ was next studied for a
range of values of p~ and APR. The results are
summarized by the formula

P~ = 1.44 [p~ K~ (Ap„, p~)

+2 o&&1o 'f' Ka(Ape pz)], (5. 5)

where A is measured in cm. This may be ex-
pressed in terms of the wavelength A (in p, ) using
the relation

The Lo-f and Hi-f functions KL and KH are both
normalized to be unity when Ap~ is large (say
greater than 10 ) and p~ small (say less than 0. 1),
in agreement with the notation in Eq. (1.3).

The functions K~(Apz, 0) and KH(ApR, 0) are
shown in Figs. 7 and 8, respectively. The ex-
plicit p~ dependence (as distinct from the Ap~ de-
pendence of these functions) takes into account cor-
rections to the simple scaling laws (5. 4) due to the
three-body attachment A». It is significant only
when the diffusion rate is comparable to or less
than the attachment rate (i. e., for large Ap~). To
exhibit this effect we define Ll, z(Pz) —= KI.„,H(~, P~)
—1 and plot these functions in Fig. 9. To obtain
E~ „for general values of its arguments the follow-
ing functional relation, which holds to an excellent
approximation, may be used:

K~(x, p~) = Kz(xy~(x + y'J. ) '~', 0), (5. V)

on setting S= 0.
A sensitivity analysis was made of the dependence

of P~ on the rate coefficients. To do this each of
the coefficients was in turn multiplied by a constant
factor near unity and the resulting change in P~
noted. The results are summarized in Table II,
where we write
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K T (eV)

FIG. 7. Function KI, (&pz, 0),
Also shown is the electron tem-
perature for P =P~ as a func-
tion of Apg.
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where the function y~(p„) is defined by t~ing the
large -x limit. Thus,

Kl,(,p„)= 1+L (p ) =K (y (p„), 0) .

A similar procedure may be applied to K„. The
functions y~ and y~ are shown in Fig. 10.

The electron temperature T, (in eV) at P = P~ is
shown also in Figs. 7 and 8 for the Lo-f and Hi-f
limits, respectively. The increase in T, with de-
creasing AP~ reflects the need for a higher ioniza-
tion rate to compensate for increased diffusion
losses.

In Fig. 11 we show the Boltzmann distribution
function F(e) in the Lo-f limit for large A and P
=P~. The small peak near c = 2 eV represents the
effect of Q„, as anticipated in Sec. III. In Fig. 12
we show the net ionization rate S as a function of
P for p~= 1 and in the Lo-f limit. Ne also show the
mean rates A» and A» for the reactions g+O&-O
+0 and e+ 20&-O& +0&, respectively. The rela-
tively smaller value of A» would be expected from
the small value of L~ (Fig. 9) for p„= 1.

%'e now consider the large-volume Hi-f limit. The
Boltzmann function E(c) is shown in Fig. 13 for

Hi

KH

FIG. 8. Function KH(~P&, 0).
also shown is the electron tern-

T (eV) perature for P =Pz.

1

10
2 3 4 5 6 78 -3

10
2 3 4 5 6 78 -2

10
A p (cm)

2 3 4 5 6 78 -1
10
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1.6

1.4

1.2

1.0

0.8

FIG. 9. Pressure-correction functions
L~ and LH. These wou1d vanish if there
were no three-body attachment to 02.

0.6—

0.4

0.2

0-
0 10 12 16 18 20

three power levels, with Pa = 2. 7 x 103 MW/cm~.
As the power is reduced the greatly enhanced "bar-
rier effect" of Q„ is seen, as was anticipated in
Sec. III [see Eg. (3. 16)]. Figure 13 illustrates how
close Q„comes numerically to playing a significant
role in determining the breakdown power. The rates
S, A~, and A» are shown in Fig. 14 as a function
of P. In this case, with p~= 1, the three-body at-
tachment is somewhat greater than two-body at-
tachment at P=P~.

The ionization rate functions are illustrated in
Figs. 16 and 16. In the I o-f limit we show S/p„

[in sec ] as a function of (P —P~)pz for several
values of Apa. In the Hi-f limit S/p„ is shown as
a function of [10 (P —Pa)f ] for several values of
Ap~. The rapid increase of S for P& PI, illustrates
the reason why PJ, is so mell-defined experimental-
ly.

The expression (6. 6) summarizes the predictions
of kinetic theory for microwave breakdown. We
have mentioned the possible role of direct photode-
tachment and photoionization processes by the laser
beam and allowed for them by introducing the func-
tion A, (e) in Eq. (2. 16).

7x1 0
2

1/y

FIG. 10. Functions yz and yl, to be
used in Eq. (5. 7).

0'
10

R

12 18 20
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1.0

10

F( e)

-2
10

'IO

F =0 GHz
P = 1.4 MW/cm

2

PR

LARGE VOLUME

In Fig. 18 we show the predicted breakdown power
as a function of AP~ for X =1.06 p, and the three
cases described by Eqs. (5.6), (5. 8), and (5. 10).
The successive lowering of the breakdown power as
we add new electron sources is of course expected.
Because the only electron loss mechanism is now

diffusion, P~ decreases indefinitely with increasing
APs. (We recall that Pa is defined by the require-
ment S =0. Had we defined P~ by an electron multi-
plication requirement, then P~ would approach a
nonvanishing limit determined by vP~, where ~ is
the laser pulse duration. ) The decrease of P~ with
the added electron sources and especially with in-
creasing Ap„ is strongly inhibited by the Q„vibra-
tional barrier suggested by Eq. (8.19). This is il-
lustrated in Fig. 19 where the drastic effect of Q„
is seen for APa =0. 1. (Also shown is a result of the
quantum calculations of Sec. VI, This shows a
greatly reduced effect from Q„.)

It is of some interest to ask how well the break-

10 0
q (eV)

20

10
FIG. 11. Boltzlnann function for low frequency and

large spot, size.

To illustrate the possible effect of this let us
first take

a„(~)=a„(&) .

This corresponds to complete photodetachment of
negative ions, but with no photoionization from ex-
cited states. The breakdown power in this case is
given by the expression Lo FREQ

p = I

P~ = 2. 88X10 f K~(APR) .
The quantity KD is shown in Fig. 17.

The second case we consider is

a„(~)=x„(~)+a„(~).

(5. 8)

(5. 9)

This corresponds to complete photoionization from
all excited states, as well as photodetachment.
This case represents an extreme limit then for
photoejection of electrons tother than photoionization
from the ground states, for which the cascade pro-
cess would not be relevant]. Corresponding to the
assumption (5.9), we write

00—

A3

P, =2.88xlo 'y'K„(AP„) . (5. 10)

The quantity K„ is also shown in Fig. 17. Compari-
son of Figs. 8 and 17 shows that there is, indeed,
a marked effect associated with photoejection of
electrons.

1.0 1.5
P ( MW/cm )

2
2.0 2.5

FIG. 12. Quantities S, A.A2, and XA3 shown as functions
of the power P.
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1.0 down phenomena are described by the Maxwell as-
sumption (2. 21) and the time-dependent equations
(2. 18) and (2. 20). To investigate this we used
(2. 21) to calculate the averages (2. 19) and integrated
(2. 18) and (2. 20) as functions of time. The starting
conditions were

10

10

10

n, =10 cm 3, T, =0. 1 eV .
During a brief transient period (about 10 ' sec. for
ps = 1) T, reached a constant value (comparable to
the values shown in Figs. 7 and 8) and the exponen-
tial growth (decay) (2. 22) began.

Using the rate constants of Sec. III, the coeffi-
cient of Eq. (1.2a) was found to be about 50%%u~ larger
than the accepted 1.44 value. The coefficient of f~
was too large by a factor of 2. (This is determined
primarily by p, .) The functions Kz and Kz were
given with comparable accuracy. The functions KD
and K„were in fair agreement withthe corresponding
quantities calculated from the Boltzmann equation
(to within a factor of two for Apz& 0.02).

VI. SOLUTION OF QUANTUM BOLTZMANN EQUATION

A. Computational Procedure

10
0

, (eV)
20

This section is devoted to a discussion of solu-
tions to the quantum Boltzmann equation (4. 7), which
in time-independent form (i. e., assuming SF/Bt
=SF) takes the form

FIG. 13. Boltzmann function for several power levels
when Pz -—2. 7 x 103 MW/cm3.

10

g = 10.6g

p =1

10

A
A3

10

0.0—

Lo-f LIMIT

10

-2

-4
1,0 2.0 3.0

P (MW/cm )
2

4.0 5.0x10
3 10

0 3 4

(P - P8)/PR
2

FIG. 14. Quantities S, A~2, and 2~3 shown as functions
of power P.

FIG. 15. Function S/p& as a function of (P-PI3)p& for
several values of JI p~ in the I,o-f limit.
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I
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10

g

10

10

10

HI -f LIMI T

+N„B(e) J Ag(e')F(t' }de' -A(~)F(e) . (6. 1)

Solution of Eq. (6.1}was simplified by confining
our attention to the case in which the factor relating
D„and e„ is an integer. Taking D„=O.27, solutions
were obtained for e„=0.27J' or 0. 27/J, where 8 is
a positive integer. Intermediate values can be
found by interpolation. (As noted in Sec. IV, cal-
culations were performed with slightly different
values of D„ to test the interpolation procedure, and
no discrepancies were found. )

%e note that, apart from the integral term, Eq.
(6. 1) is an algebraic equation relating a discrete
set of energy values. Accordingly, we consider
only energy values which are integral multiples of
~e, where ~c is the smaller of e„and D„. The in-
tegral

J A„(e'}F(e'}de'

was evaluated in terms of such values using Simp-
son's rule. The normalization factor N„ is defined
by the equation

10
0 (4a KB(i&e) ' A„Fde)

k=0 "tee
(6. 2)

FIG. 16. Function S/P~ as a function of 106(P -PI3)/f~
in the Hi-f limit.

SF(e) =R~ (e+e„)F(a+e„)+R„(e)F(e—e„)

—[R~ (e}+R„(e+e „)]F(e)

+Z„(~+D„)F(~+D„)—Z„(~)F(~)

For &„&D„ the treatment of the quantum equation
is very similar to the numerical treatment of the
classical equation. The results of the extensive
calculations perf ormed were indistinguishable
(within the accuracy of our calculation) from those
of the classical Boltzmann equation and will there-
fore not be described in any detail. In this case
&c = e, and Simpson's rule was used to evaluate 8'.
Somewhat different boundary conditions (see our
later discussion) were used at the high-energy

7.0 I I I I I l I

6.0

5.0—

4. 0

3.0

FIG. 17. Functions ED and K„, cor-
responding to Eqs. (5.7) and (5. 9), re-
spectively.
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0
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10
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termination, but this did not noticeably affect the
calculated results.

Our principal interest was focused on the case
that e „&8„. Henceforth in this section, unless ex-
plicitly stated otherwise, we assume &,& D» ~&

=D„, and e, =J&e.
First, let us discuss some mathematical features

of this problem. We set e =i&a in Eq. (6. 1) (i =0,
1, 2, .. .) and study the resulting infinite system of
linear homogeneous algebraic equations. Both
R„(e') and B(z) are quite negligible for e & &0, where
co=9 eV. Thus, we may set

R,( )a= B(e) = 0, ~ & ~,

and first consider the domain e & eo. Here Eqs.
(6. 1) split into J independent sets of the form

R, [k+1,f ] F[ k+1,j]
= (A [kj]+8+Ra[kj ]+R~ [k+1,j])F[kj]

-R„[k,j]F[k - l, j], (6. 3)

where F[k,j ] =F(e), etc. , with e = (kJj) &e, j '=-0,

1, . . ., J-1, and k =ko, ko+1, . . ., where (ko —1)J&e
& e, & (ko —2)Jhe. The general solution of Eq. (6. 3)
evidently involves two arbitrary constants for each
value of j, since specifying F at ko and ko+ 1 al-
lows one to determine all other values recursively.
Imposing the condition that each F vanish as k-~
reduces the number of arbitrary constants to one.
For convenience we define a unique solution of Eq.
(6. 3), G[k, j], by adding the requirement that G[M/
J, j]=1 for M/J some integer (to be specified later)
greater than k, .

Assuming the function G[k, j] to have been de-

termined, we next consider Eq. (6. 1) for i = 0,
1, . . ., M. Where this set of equations makes ref-
erence to F(e) for values e &M&e, we make use of
the high-energy solutions assumed to be already
determined and write

F(e) =F((M- j)&e)G[k, j], (6.4)

with e =(kJ- j)&e as before. Thus, Eq. (6. 1) may
be regarded as a system of M+1 linear homogeneous
equations in M+1 "unknowns, " the F(ib, e) Th. e
growth rate parameter S is determined by the re-
quirement that these equations have a nontrivial
non-negative solution.

The procedure employed to solve the above de-
scribed equations was as follows. Recursive ap-
plication of Eq. (6. 1) starting with i =M and con-
tinuing through i =0 +1 allows one to express all
F(ibm), for 1&i &M-Z, linearly and homogeneous-
ly in terms of F(id'), for M —J+1&i & M. (Recall
that S, X„, and T„must be assumed given from a
prior calculation or estimate. ) The expressions
for F(ib.e) so obtained may then be substituted in
Eq. (6. 1) for 1 & i & 7- 1. The J —1 relations so ob-
tained depend linearly and homogeneously on the
F(i&a) (for M- J'+1 &i s M) and may therefore be
used to determine the J'- 1 ratios F(id')/F(M&e)
for M —J+ 1 & i & M —1, Equation (6. 1) with i =-0 de-
termines F(0) =0, and the normalization condition
on F, again using Simpson's rule, determines
F(M&&). All values of F(i&a) are thus determined
and all equations of the system are satisfied ex-
cept that for i=J. This last equation provides the
condition which determines the growth rate eigen-
value S.

10

E

0
10

z
0
C)

FIG. 18. Breakdown power
at A, =1.06 p predicted by mic-
rowave theory and by the mod-
els of Eqs. (5. 7) and (5. 9).
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An aiternate (and algebraically equivalent) equa-
tion for determining S, which is more effective in

an iteration procedure, is obtained by summing
both sides of Eq. (6. 1) from i =0 to M to obtain

S = 5~ N„B(i&a)
5=0 B.e

A„Fde —Q A(i&a) F(i&)

+ Q z, (i«)F(i~~)-
j=N+ g f ~M+1- J

N ag

))„{{ac+a„))'{~aa)) Z'{({&e). . (8. 5)
$ =1
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FIG. 19. Boltzmann function for two spot sizes. Also
shown is the Boltzmann function for the quantum theory,
as described in Sec. VI.

In discussing the computational procedure we have
tacitly assumed that the high-energy solutions have
been determined. We now caU attention to the fact
that the length of the calculation increases only
linea, rly with M and the complexity is independent
of M. It is convenient, therefore, to choose M
large enough (in practice with Mhe well above eo)
so that the accuracy with which G[k, j] is deter-
mined has little effect upon the results. Accord-
ingly, M4e was chosen to be approximately 21 eV
and G[k, j] was approximated by means of the clas-
sical high-energy solution (3.17). That is, we
chose

G[k, j]=G(~)/G((M-j) «), (6.6)

where e = (kZ- j)be and G(e) is given by Eq. (3.18).
Ad koc modifications in (6.6), including the choice
G[k, j]=0 for k & M/t, were investigated and the ex-
pected insensitivity to the precise form of G[k, j]
verified.

The computation is started by assuming S =0,
T„=2 eV, N„=1. After computing a set of values
for all (id') by the above described procedure, new
values of S, T„, N„were obtained using (6. 5), (5.1),
and (6. 2). The procedure was rapidly convergent
with three iterations typically being adequate to
determine S to better than 10%. As a final check,
satisfaction of Eq. (6. 1) with i =t, which 'should be
guaranteed by Eq. (8.5), was explicitly verified.

The electron growth rate used in determining the
breakdown power was given by the expression (eval-
uated with Simpson's rule)

Sl J [Al(&) +A, (e) -A& (e) -A (e)]E(e)de
(6.7)

where A„(e) refers to the rate of electron produc-
tion by direct absorption of photons (to be discussed
later). [A„ is also to be added to As in Eqs. (6. 1),
(6. 2), and (6.4).] The S appearing in Eq. (6. 1)
should be the same as S, , defined in Eq. (6.7). For
a fixed number of iterations S, is the more accurate.

An example of a calculated Boltzmann function ob-
tained by this procedure is shown in Fig. 20, to-
gether with a cia.ssical Boltzmann function computed
for the same conditions. For this example e, = 2. 4
eV and A, has (unrealistically) been taken to be
zero. The power corresponds to breakdown power
(S, =O) at A=~. The sharp drop in the classical
function at the 2. 7-eV peak in B„is again seen. The
quantum function exhibits the sa,me sharp drop. The
subsequent peak (at 3. 9 eV) is due to electrons which
which jump the R„barrier. This structure is re-
peated at higher energies, since all of the high-en-
ergy electrons arise through successive photon
absorptions. The majority of electrons emerging
from ionizing or electronic excitation collisions are
returned below the vibrational peak, so that no ef-
fective mechanism exists for smearing out the dis-
tribution at high energies. Modifications in the
guessed Boltzmann function in the asymptotic high-



N. KHOLL AND K. M WATSON

1. Single-Photon Processes

As indicated in Sec. I, sin le- ho
ransi ions which are energetically os 'bl

p e in times short compared to t ical
pulse durations. Thus f

e o ypical

photons both 0 and 0"us, or 1.78-eV rub 1
an z photodetach, while only 0

ri e ese processes we write

A » f, f,) = 8(f„—1.46)A»(f)

energy region had a negligible effect on the m
ri u ion and, in particular, left the

n he other handoscillatory structure intact. O t
calculations performed with thwi e vibrational peak
suppressed did wash out the oscillator struc
We conc].ude that the ' o ea e oscillatory character of the
Boltzmann function is likely to var m

egin to appear as soon as the photon ener be-

that i
ug o jump the vibrational peak,

hat is, at energies of about 1 eV.

B. M. Models for Photoelectric Contribution

p ses contribute to gas b ak-Photoelectric roces
own in our analysis through the function A„[see

Eq. (2. 16)]. In the absence of ade uate t
or experiment 1

'
en a information to construct a

expression for A (f) we h

ruc a reliable
or „e, we have considered a number

o p enomenologica3 models f th
have carried out breakdown c

or is quantit an
ow alculations for each

o em. Itisho edth ' '
xp

ment will ive
p at comparison with exp

g' e some information as to th '
xperi-

cance. The fo
o eir signifi-

e ollowing contributions to A h

considered.
o , ave been

+ 8 f„-0.46) A»(f) +A»„(f, f „) ~ (6.8)

g -photon contribution to A»Here A&„ is the sin l.e-
&» f, f„) is the contribution from hi hl e

d e() =(
unction. In order to estimate A w

a e upper state excitation functions A„

evels spread uniformly between the d
and the ionization limit. With this in

mind, we chose the form

A»g f ~ fy) =Go(f ~ fr)A„OS(f) +GN(f q fy)A NxN3 ~

(6. 8)
where

1.0

10

PHOTON ENERGY = 2.4 eV
LARGE VOLUME

0 (f, f„)=(f„/2.36)8(f+f„-12.06)(f+f„—12 06

(f —9.7), f„&2. 36

~„~2. 63
(6.Oa)

&N(f, f „)= (f„/4. 38) 8(f + f„—15.58) (f + f„-15 58f+f„-15.58

10

(f —11.2), f„&4. 38

~, ~4. 38.
(6. 8b)

10

10

10

f (eV)

2. MultiPhoton Processes

As described in the Introduction ho
processes which ar

o uc ion, photoelectric
w ic are not energetically possible

through sin le- hot'
g e-p o on absorption can neverth 1

occur throu hg multiphoton absorption. Theoretic al

to be suff'
ec s o not, however, seem

u iciently reliable to provide a b
their incor oration

i e a asis for
pora ion in our computations. Accord-

ic consists of proposing a number of ad hoc
models and computing their effects
thresholds.

eir effects upon breakdown

A very simple-minded model seems ade u

an assessment at this o'
seems adequate for

writing
is point. This is obtained bls 0

FIG. 20. Quantuum Boltzmann function for P =Phdh"hor p otoionization. Fo
the classical B lt ' ' so zmann function is s"
ditions.

s.,own for similar con-

A(fn=A »x(f, +fr)++8(f +sf& —f )A (fX 3C

(6. 10)
The summation here is to bis o e carried out over the
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FIG. 21. Quantity E~ as a function of photon energy.
The deviations from unity indicate the importance of
quantum corrections.

Results obtained by carrying out the computations
described above are presented in a manner similar
to that of Eqs. (5.6) and (5. 10). We write

P~=3. 32xlO f Ko(AP~) .
The quantity K, which we shall call the quanta
breakdown factor, will appear with various addi-

remaining excited states, of energy e„of O~ and

Na.
This model is evidently based on the view that

the lower excited states of N~ and 02 can be treated
as discrete and that multiphoton effects can be use-
fully parametrized by photon multiplicity.

C. Results of Calculations

tional subscripts describing the conditions under
which it is computed. K = 1 corresponds to clas-
sical breakdown at normal atmospheric pressure.
KD and K„were normalized to unity at pressures
sufficiently low that A» was negligible. We see
from Fig. 9 that this is not a very substantial dif-
ference from the nor malization used in Sec. V.

Figure 21 exhibits the quantum breakdown factor
K obtained at p& =1 with no photoelectric processes
(i. e., A„=O) in the limit of large APs. While the
assumption that A„=O is unrealistic for z„&0. 5 eV,
the figure does illustrate the effect of quantum cor-
rections to the Boltzmann equation independent of
the role played by photoelectric processes. In
agreement with our previous discussion the effect
is negligible below a quarter of a volt and begins
to be significant at energies somewhat greater than
1 V.

Because quantum corrections to the Boltzmann
equation are insignificant below the detachment
threshold of 0, (0.46 eV), it seems clear that A„
must at least include 0& photodetachment whenever
these effects are important. Under these condi-
tions, pressure dependence, except in the combina-
tion Ap&, is completely negligible, and hence no
explicit pressure-dependence calculations are re-
po rted.

Figures 22 and 23 show the effects of various as-
sumptions for photoelectric processes for 1.35-
and 1.89-eV photons, respectively. K„ is the
quantum breakdown factor obtained by assuming all
photoprocesses requiring n or fewer photons con-
tribute to A„, as described by Eq. (6. 10). (That
is, we assume photoionization takes place from all
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E&„for n photon ioniza-
tion and Q=l. 35ev.
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levels requiring less than ne„ ionization energy. }
Because of the energy level structure assumed for
N& and O» it is possible at certain photon energies
for some of the Ãz„'s to be equal, as the addition
of one photon need not make an additional state ac-
cessible. When photoionization can occur from all
the excited states of Oz and Nz, we use the notation

Eq„.
In Fig. 24 we show K@„as a function of Ap~ for

photon energies of 1.35 and 1.89 eV. For com-
parison we show K„as obtained from the classical
Boltzmann equation (K„ times 1.15). These curves
illustrate the fact that quantum corrections become
more important at lower power levels, because it
is at low power levels that the vibrational barrier
most effectively inhibits classical breakdown.

Also shown in Fig. 24 are two points calculated
from the condition that S=10 sec ', rather than
for S=O.

To summarize, our results show that in the 1-2-
eV photon energy range quite substantial reduction
of breakdown power below the "frequency squared"
law of the microwave regime may be expected.
This would be true even if multiphoton processes
were not contributing-but the effect of course be-
comes much more pronounced with multiphoton ion-
ization. On the other hand, no effect considered in
this paper would lead one to expect any departure
from the extrapolated microwave behavior for CG~
laser photons (0. 117 eV).

VII. COMPARISON VfITH EXPERIMENT

In order to compare our results with experiments
it is necessary to relate the diffusion length ~ to

K

10

L CALCULATED FOR 5 = 10 sec
AND X = 0.65'

10

10

I I I I

10

I i | I I I l I

10
APR (cm}

I ! I I I I I I

10

FIG. 24. Comparison of Kq„ for the classical Boltz-
mann equation with that for the quantum Boltzmann equa-
tion.

the geometry of the beam. It is also necessary to
take the finite pulse duration into account. We have
dealt with these questions in the following crude
way.

First, we assume the field to be constant within
the focal volume and negligible outside the focal
volume. We also assume a square pulse in time of
duration 7. Experimental observations of electron
growth suggest that we take S~ = 20 as a criterion
for the necessary growth rate S for breakdown.
This corresponds to an electron multiplication factor
of about 5&&10 . We neglect the fact that the growth
rate will increase when the switch to ambipolar dif-
fusion takes place, although this may have some
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significance for the smallest AP~ results.
In the region within the focal volume the previous-

ly discussed equations apply, as we continue to ne-

glect any dependence of the Boltzmann function on

position within this volume. [That is, we neglect
any dependence of A, Eq. (2. 5), on energy, so the
position dependence is factored out in Eq. (2. 8)].
As the electrons leave the focal volume they are
cooled in a distance short compared to other dimen-
sions in the problem (=2x10 cm at atmospheric
pressure) to a temperature of 0.5 eV or less, so
three-body attachment is the dominant loss mecha, -
nism in the exterior region.

Treating the thickness of the cooling region as
negligible, we let n„(x)e ' correspond to the elec-
tron density in the focal volume (region 2) and

ns(x)e ' correspond to the electron density in the
exterior region (region B) We t.hen have

Sn~ ——Dg& @~+v;n~, x in A.

(7. 1)
SÃg =Dg ~ 'ply —v Bg x in 8 .

we have

I/Aa =(S+~.)/Da,

v I
—-S +D4/A4 . (7.4)

We see that ~~ is specified by the experimental con-
ditions, and ~~ is determined by solving the bound-
ary matching problem between regions A. and I3.
Equation!7. 4) then determines the required value
of v;. It is convenient to define an effective diffu-
sion length ~,«by the relation

The diffusion coefficients D& and D~ differ somewhat
because of the different electron temperatures in the
two regions. v, is the net ionization rate in region
A (ionization and detachment minus attachment) and

v, is the attachment rate in B. Writing

V'n„= —(1/A'„) n„, V'n =(1/A' )n, , (7. 2)

cylindrical symmetry and the boundary matching
condition is

= —K' —— K

(7. 6)
Here a is the spot radius and Jo, Ko are Bessel
functions (in conventional notation). For one experi-
mental case the focal spot was highly elliptical. We

treat this case as a plane slab of thickness d, for
which we find

(d/2A„) cot(d/2A„) = d/2A~ . (7. 7)

10

In using Eq. (7. 6) or Eq. (7. 7) to determine A„,
we took

I/li', = 5. 7x10'p,'+ l. 95x10-'ps/T cm ',
corresponding to an electron temperature of 0. 5 eV.

Figure 25 shows a comparison of our theory with
some representative experimental points for the Nd

glass laser photon energy of 1. 1'l eV. The theo-
retical curves are based upon Eq. (6. 11) and Fig.
22 for Ko, scaled up by 5% to take account of the
fact that the K~ curves were computed for q, = 1.35
eV. (This factor is based on two points computed
at the correct frequency. ) The three experimental
points designated T.D. B. are taken from Ref. 3.
The focal spot was described as highly elliptical,
so for these we have used the slab model for deter-
mining A. The left terminus of the horizontal bars
corresponds to l&,«computed for a pulse duration
of 40 nsec; the right terminus, to an infinite pulse
duration. The data is presented this way to help
assess the importance of the pulse width.

vq
=—D„/A, g s —-S +D„/A„. (7. 5)

In this way the breakdown curves computed for S=0
in the previous sections can also be used for the
finite pulse duration cases, the breakdown power
being determined by the same functions evaluated
at + ffP@ Owing to the ene rgy dependence of the
diffusion rate, this relation is not an exact one.
Numerical investiagion of a particular case indi-
cates, however, that the error involved is less than
our numerical accuracy (=1%) can reveal.

In order to carry out the program described above
it is necessary to make an appropriate and tractable
geometric specification of the focal region. Because
it is the smallest spatial dimension which is most
important in controlling diffusion, we shall treat
the region a,s though it were cylindrical with in-
finite length. For a circular focal spot we then have

CV

E
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=- 1.17 eV

10
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FIG. 25. Comparison of experiments at A, = l. 06 p,

with our multiphoton models.
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The four points marked H. M. S. are taken from
Ref. 2. For these points we took a pulse duration
of 60 nsec to determine the left terminus. The
T. D. B. points are in reasonable agreement with

theory, provided one assumes that most or all ex-
cited states photoionize. On the other hand, the

data of H. M. S. indicates a large dependence on spot
size which seems hard to account for with our the-
ory. Taking the finite pulse width into account, we

would predict about a 30% variation in breakdown

power instead of the observed factor of 7. More
recent results of Smith for still larger spot sizes
are indicative of the same phenomenon.

Figure 26 shows a similar comparison for ruby
photons (c,= l. 78 eV). In this case Ko has been
scaled up by 8/0. The experimental points are taken
from Ref. 3. The ellipticity of the focal spot size
was small in this case, so we have used the cylin-
drical model to determine A. Again, the points of
Ref. 3 are in reasonable agreement with the theory.
Recent unpublished results of Smith" indicate the
same large spot size anomaly that was found at
l. 17 eV.

Independent experimental study of multiphoton
processes is probably needed for a quantitative un-
derstanding of the role played in breakdown. Fur-
ther experimental study of the large spot size anom-
aly is also probably required before this is under-
stood.

4v f(p) p'dp=F(c) dc, (Al)

x f(p) 6(p /2m —c) d p

=-R&(c) F(c) dc, (A2)

where Rs was introduced above Eq. (4. 1), M is the
appropriate s-matrix element, and c' = p'~/2m. We

see that

Rs(c)=(m/4Ii) f dQ~, dQ~ ~Mi 5(» —«' —«,)p'dc .
(A8)

The corresponding rate of absorption of photons of
momentum k with scattering from p' to p is

dR„(c) = dc' f dsp
i
M

i
5(c —c' —c„)

x f (p') 5(p'~/2m —c')d, p'

=- R„(c)F(«') d«'. (A4)

Thus

Rp(c) = (m/4&) dQ, .dQ, ~M ~'5(c —c —c„)pdc

= (p/p') R,(c), (A5)

where c = p~/2m. The rate of stimulated emission
to produce a photon of momentum k when an elec-
tron scatters from p to p' is

d R (.) = dc f d'p'
i
M

i

' 0(» —c' —«„)

APPENDIX: DERIVATION OF EQS. {4.1) and {4.2)

We let f (p) be the Boltzmann function for elec-
trons of momentum p. Then

10

105

s
V

which is the same as Eq. (4. 1). R„(c) can be ex-
pressed in terms of the brehmsstrahlung cross
section for scattering by the constituent molecules.
In the absence of detailed knowledge of this cross
section we made use of the approximate equation

(4. 2). Equation (4. 2) takes into account all kine-
matic factors exactly and is based upon a relation
between the matrix elements involved in brems-
strahlung and those involved in elastic scattering.
We express this relation as follows. Let do(p, p',
k, c)/dQI, dQ, dk be the differential cross section
for bremsstrahlung with polarization &, and let
do(p, p ~ p )/dQ~, be the differential cross section
for elastic scattering. Then

do(p, p', k, c)
dg, dQ dk

IO p'
(mc)

dQ~, dQ~ [ ( p —p') c]

103
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FIG. 26. Comparison of experiments at X = 0. 68 p with

our multiphoton models.

„ ~i(&, i t') ,0 (
~

)d A~.

where P = 2(P +P'2). Equation (A6) follows most
directly from the Brown-Goble form of the Low

theorem. Equation (A6) together with exact kine-
matic factors leads directly to Eq. (4. 2). A scale
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for & is suggested by the fact that the derivation of

(A6) involves the assumption that the variation of
the electron scattering amplitude with energy (on

and off the energy shell) is small over the range
&„as well as the assumption that &, is small com-
pared to characteristic electronic excitations.
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