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The mechanism by which periodic nonrandom forces lead to stochastic acceleration of par-
ticles is examined. Two examples considered are (i) the Fermi problem of a ball bouncing
between a fixed and an oscillating wall, with various wall-oscillation functions, and (ii) cyclo-
tron-resonance heating in a magnetic mirror. Numerical studies show that the phase plane
consists of a complicated but regular structure of islands embedded in a stochastic sea. These
islands may have the character of either adiabatic barriers or sinks for particles. The islands
can be described analytically by expansions about elliptic singular points. A velocity below
which no islands exist is observed computationally and is predicted from Floquet theory.
Computations also demonstrate that in some cases an adiabatic wall forms an upper limit to
particle diffusion in velocity space. A lower bound on this wall is predicted analytically. The
Fermi problem is reduced to a Hamiltonian form, and the nonlinear stability and approximate
location of the adiabatic wall is predicted from adiabatic invariance theory. Introduction of
an external random-force component modifies, but does not destroy, the basic results. For
velocities below which no islands exist, it is shown that the random-phase assumption holds,
and that the particle motion can be described by a Fokker-Planck equation. The solution to
the Fokker-Planck equation is found to agree with the numerical calculations. Above the sto-
chastic transition velocity, strong phase correlations exist, and a Fokker-Planck description
is inappropriate.

I. INTRODUCTION

It is well known' ' that in a large class of prob-
lems having more than one degree of freedom there
are parameter ranges for which adiabatic invariants
exist that separate the degrees of freedom. The
phase space for each degree then exhibits adiabatic
behavior; i.e. , the trajectory of the solution is a
closed curve in the phase plane. For other param-
eter ranges, one or more of the invariants may not
exist, such that the trajectory in a single phase
plane is area filling. Similar behavior is found for
one-dimensional nonlinear oscillators with periodic
coefficients. Results of the adiabatic theory and
the numerical computations are summarized in
Ref. 4.

A one -dimensional acceleration problem fitting
into the above scheme that has received consider-
able attention is that of a ball bouncing between a
fixed and an oscillating wall. The problem was
first examined by Fermi' as an analog to a possible
cosmic-ray acceleration mechanism, and will be
referred to here as the Fermi acceleration prob-
lem. Early numerical calculations by Fermi' and
others ~ 7 gave conflicting results, sometimes in-
dicating oscillatory energy changes of the ball, 6

and sometimes indicating that the momentum trans-
fer was stochastic, i.e. , tI at the ball struck the
oscillatory wall with a random phase with respect
to the wall oscillation. 7 Zaslavskii and Chirikov'
partially resolved this contradiction by demon-
strating that for high ball velocities, such that the

transit time of the ball was comparable to the wall-
oscillation period, an adiabatic invariant existed
which limited the energy excursions. For lower
velocities, they postulated that similar invariants
did not exist, and made numerical computations
which they interpreted as verifying their assump-
tion.

As is shown in this paper, the above interpreta-
tion is not complete. An examination of the phase
plane for the Fermi problem, which is presented
in Sec. II, reveals a large number of adiabatic
islands embedded in a nonadiabatic sea. Depending
on the details of the wall motion, the fundamental
island found by Zaslavskii and Chirikov is generally
not the absolute barrier to stochastically heated
particles, initially at lower energies. In fact, for
smooth force functions, the absolute barrier exists
at velocities far below that associated with the
fundamental island.

in part, the technique for analytically examining
the linear aspects of the Fermi problem is similar
to one considered by Greene'. Determine the fixed
points in the phase plane and examine the stability
of the linearized motion about these singularities.
If the fixed points represent elliptic singularities,
and the Jacobian of the linearized motion is equal
to unity, adiabatic orbits exist in the neighborhood
of the fixed points. Otherwise the neighborhood of
the singularities is generally accessible from the
stochastic sea. From these considerations, we
generally obtain a velocity boundary u, in the phase
plane below which no adiabatic regions exist. In
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addition, we determine a simple lower bound on the
stochastically accessible phase space. These ques-
tions are explored in some detail in Sec. IIIA and

compared with the numerical results of Sec. II.
An alternative procedure for examining the adia-

batic regions involves transforming the variables to
a phase space in which the difference equations can
be approximated by differential equations. First
integrals give the Hamiltonian (adiabatic) trajec-
tories, from which nonlinear motion in the neigh-
borhood of the fixed points may be examined, yield-
ing the nonlinear boundaries of the adiabatic regions.
This is, in fact, the technique employed by Zaslavskii
and Chirikov for the fundamental resonance between
the bounce frequency and the wall-oscillation fre-
quency. Higher harmonic and subharmonic reso-
nances can equally well be examined by this pro-
cedure, revealing the entire island structure. The
nonlinear stability of the adiabatic regions and the
maximum velocity to which particles can be heated
can also be determined approximately from higher-
order resonance theory as developed by Jaeger and
Lichtenberg. These techniques are presented in
Sec. IIIB.

Although the nonadiabatic or phase-filling tra-
jectories have been called stochastic, this does not
imply that the distribution function for the particle
velocities can be determined by use of a random-
phase assumption for particle-wall collisions. In
the region of the phase plane in which adiabatic is-
lands exist, the entire phase plane is not available
to a nonadiabatic particle, and the random-phase
assumption may be inapplicable. Even in the region
of the phase plane where adiabatic islands do not
exist, phase correlations may persist between
successive wall collisions. An examination of these
correlations and their effect on the calculation of
the velocity space density distribution from the
Fokker-Planck equation is the subject of Sec. IV.

The Fermi problem typifies a large class of ac-
celeration problems which exhibit much of the same
phase-space structure. There also can be some
notable differences, particularly if the heating is
described by a set of non-area-preserving equa-
tions. An example falling into this latter category
is cyclotron-resonance heating in a magnetic mirror
field. Where convenient, we contrast the results
of an approximation to this acceleration mechanism
with that of the Fermi problem.

II. NUMERICAL RESULTS

We consider first the dynamics of a pa, rticle
elastically bouncing between a fixed and a. peri-
odically oscillating wall, as shown in Fig. 1 (a).
For the wall velocity given by a sawtooth function
in time, Zaslavskii and Chirikov have obtained the
following set of exact difference equations for the
particle motion:
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electric field
in a plane J.z

FIG. 1. (a) One-dimen-
sional Fermi problem; (b)

simplified cyclotron-heat-
ing problem; (c) relation
between v„and v~~ for the
cyclotron-heating problem.

(c)

u „,g = 6 u „+(4'„—2),

4'wl 2 2un+1+ [(2 +n+1) + 44.un+1 j

+n+1 1 —4n+4~nl 1

(4)

Here 2a is the peak amplitude of the wall oscilla-
tion, l is the minimum distance between the walls,
u„ is the velocity of the particle normalized to V,
where —,'V is the amplitude of the velocity of the
wall, n is the number of collisions with the moving
wall, 0 „ is the phase of the vibrating wall at the time
of collision and changes from 0 to —,

' as the wall
moves from position A. to position B and from —,

' to
1 during the reverse motion, and brackets (' ' ' j
denote the fractional part of the argument. The
plus sign in Eq. (1) corresponds to Eq. (2) during
the preceding step, and the minus sign to Eq. (3).

A simplification of Eqs. (1)-(4) can be realized
if we allow the oscillating wall to impart momen-
tum to the particle, according to its velocity,
without physically changing its position in space.
The problem defined in this manner has most of
the features of the more physical problem and is
also capable of generalization to other mall-forcing
functions. We shall compare results of the two
problems in the numerical calculations. For the
simplified problem, the difference equations, in
normalized form, become
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e, =f C„+M/u„, j,
(6)

(6)

f(uj (units of IO j
30 20 IO 0 0 I/4 I/2 3/4 (

I

U

where M = l/16a, M/u = 2l/vT is the normalized
transit time, T= 32@/V is the wall-oscillation
period, and v =uV, the particle velocity.

We have introduced the absolute-value signs in
Eq. (6) to correspond to the velocity reversal, at
low velocities u &1, which appears in the exact
equations (1) and (3). This assumption has no ef-
fect on the region u &1, which is the region of in-
terest. These simplified equations can be obtained
as an approximation to the exact set for l/a» 1 and
u»1.

Equations (6) and (6) are readily generalized to
nonlinear force functions; for example, for a cubic
momentum transfer we have

-5-

u~, =
i
u„+ (2e„—1) II —(M „—1)'I /,

4'„,g ——(4„+M/u

For a sinusoidal momentum transfer me find

u ~= ~u„+sine„~,

(7)

(8)

l5-.:

FIG. 2. Phase space I-Q and velocity distribution
f (I) for Eqs. (5) and (6), sawtooth wall velocity. M=10,
ten particles with 163 840 collisions/particle.

+„,g = 4„+ 2'/u„, g, (10)
with the phase of the wall oscillation extending over
2z rather than unity. As we shall see, the nonlinear
force function is in many ways simpler than the
linear one.

The difference equations (1)—(4), (6) and (6),
(7) and (8), or (9) and (10) are readily solvable,
for hundreds of thousands of wall collisions, on a
high-speed computer. To explore the entire phase
space, we divide the phase interval (0, 1) or (0, 2v)
into 100 increments and the velocity interval
(O, u ) into 200 increments. We keep track of the
number of times a particle is found within any of
the 20000 cells of the phase space. The results
of the calculations for Eqs. (6) and (6), with M
=10, for ten particles, are given in Fig. 2, after
163840 wall collisions per particle. Normalized
velocity u is measured downward. The symbol in
each cell represents the number of cell occupations
according to Table I. A blank means zero occupa-
tions. The density distribution f (u), integrated over
phases and over all collisions, is given to the left
of the phase space. The particles are initially
given phases and low velocities, chosen randomly.
Subsequent collisions allow them to stochastically
explore the phase space available. The final phase-
plane plot is independent of the initial conditions of
the particles. The unoccupied islands are bounded
by adiabatic curves, and therefore are inaccessible
from outside. The centers of the islands are el-
liptic singularities in the phase plane. Near these
centers, the particle motion also traces out closed
trajectories, as we shall discuss in Sec. III. We
also show that for u &~M, the linea, rized motion

about all the principal singularities is unstable, as
is readily verified from the numerical phase plot.
The elliptic singular point of the main island at
u/M = 1 corresponds to one-to-one resonance be-
tween the particle oscillation and the wall oscilla-
tion. The successive central resonances at lower
velocities u/M = —,', —„-,', . . . , correspond to the
1 —2, 1 —3, 1 —4, . . . , resonances, respectively.
The other islands give the I -k resonances,
where m and k are relatively prime integers.
The positions of the elliptic singularities and the
linearized motion around them are obtained in Sec.
IIIA.

In Figs. 3 and 4, we repeat the calculation for
the nonlinear wall velocity of Eqs. (7) and (8) and
Eqs. (9) and (10), respectively. In Fig. 3, M=10,
with tenparticles, for 81920 collisions per par-
ticle. In Fig. 4, M=100, with 622592 collisions of
a single particle. For these nonlinear velocities,
the sizes of the adiabatic regions are diminished at
low velocities owing to the presence of higher-
order resonances between the period of the island
trajectory and the average bounce period, as dis-
cussed in Sec. III B. An upper velocity boundary
u~ (absolute barrier) also exists, beyond which the
motion is adiabatic, so that no particles can pen-
etrate from smaller velocities. The seeming con-
tradiction of greater adiabaticity for nonlinear wall
velocities is resolved if the discontinuities at the
edge of the sawtooth mall velocity are included.
Provided the motion is localized within one period
of the phase (libration within the separatrix of an
elliptic singularity), the sawtooth wave gives rise
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TABLE I. Number of occupations in a phase-space cell
as a function of the symbol in each cell.

f(u) (units of 10 )
i.o 0

u

0

Symbol

blank
1
2

3
4
5
6
7
8

9

Number of
cell occupations

0
1-10

11-20
21—40
41-80
81-160

161-320
- 321-640

641-1280
1281-2560
above 2560
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FIG. 3. Phase space u-Q for Eqs. (7) and (8), cubic
wall velocity. M = 10, ten particles with 81920 collisions/
particle.

to stable motion for u & —,'M . However, outside
of the separatrix, the drifting orbits encounter the
wall-ve locity discontinuities which destroy the
adiabatic motion. The da.shed curves in Figs. 2 and
4 show the separatrices for two island oscillations
as calculated from Hamiltonian theory. Kith the
linear force (Fig. 2) the separatrix is approximately
an ellipse. With the sinusoidal force (Fig. 4) the
trajectories near the separatrix are unstable, be-
cause of second-order island formation, as de-
scribed in Sec. III B. For this case a Hamiltonian
trajectory is also given that corresponds to a max-
imum phase excursion near the stability limit. The
slight skewing of the islands in the numerically
calculated plots arises from a term neglected in
the Hamiltonian approximation of Sec. III B.

The qualitative features of the phase space are
retained for arbitrarily large values of M. In Fig.
5 we give results of Eqs. (5) and (6) for M = 1000.
There are ten particles with 40 960 collisions per
particle. The central islands occur at the same
values of u/M as in the M = 10 example. We now see
rather large values of u below which islands do not
exist.

In Figs. 6 and 7, the phase space for the motion
specified by Eqs. (1)-(4) is given, with M = 1000

-p5-&:::::.::::::::::::"("

FIG. 4. Phase space I-Q and velocity distribution

f (g) for Eqs. (9) and (10), sinusoidal wall velocity. M
=100, 622592 collisions of a single particle.

and M = 10 000, respectively, for ten particles,
with 40 960 collisions per particle. Except at small
u, the results are similar to those of the simplified
problem equations (5) and (6). The difference in

f (u) within the stochastic region will be explored
in detail in Sec. IV. Briefly, we can observe that
a random-phase assumption as applied to Eqs. (1)
or (5) would lead to a uniform velocity distribution.
It is the departures from this assumption, em-
bodied in higher-order phase correlations, that
lead to the differing results for f(u) in Figs. 5 and
6.

Numerically integrating Eqs. (1)-(4), Zaslavskii
and Chirikov obtained f (u), and recognized that an
island existed at u =M. They postulated that a
random-phase assumption was appropriate for
u &M / . In the intermediate velocity region M /

&u &M, they postulated further that the density fell
off due to partial phase correlation. In fact, the
density in velocity space fa,lls off due to the exis-
tence of adiabatic islands in the phase plane. As
we shall see in Sec. IV, the phase correlation re-
sults in modifications in the Fokker-Planck coeffi-
cients that may lead to an enhancement, rather
than a diminuation, of the density at higher velocities.

The procedures considered here are applicable
to a wide class of problems associated with par-
ticles being acted upon by periodic forces, or more
generally the behavior of differential and difference
equations with periodic coefficients. One problem
of practical interest is that of a charged particle
confined in a magnetic mirror, interacting with a
rf wave that is resonant with the particle gyrofre-
quency at some magnetic field within the contain-
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FIG. 5. Phase space u-Q and velocity distribution
f (I) for Eqs. (5) and (6), sawtooth wall velocity. M
= 1000, ten particles with 40 960 collisions/particle.

(11)

(12)8 i =8„+2~MV/v„, i+&8,
where

V sin8„&8= san
V n+1

e„&—V cose„

= m —sin ", v„& —V cos8„. (13)
V sin8„

&n i

e„ is the magnitude of the transverse velocity of
the particles, yz is the number of collisions with the
heating zone, 8„ is the angle between the rf electric
field and the transverse velocity vector of the par-
ticle just before a collision, V is the magnitude of

ment region. As a simple model, we consider the
longitudinal and transverse motion of a charged
particle trapped in a linear magnetic field B, (g)
=Bo(l+ o.z), as shown in Fig. 1(b). A perfectly
reflecting wall at z = 0 reflects a negative-velocity
particle back toward the positive z axis. The rf
heating zone at z =I consists of a eircularlypolarized
electric field lying in the x-y plane, of negligible
longitudinal extent, rotating at the local cyclotron
frequency. The guiding-center approximation is
used to describe the particle motion. As the par-
ticle is reflected back and forth in the mirror be-
tween z =0 and z &l, it passes through the heating
zone at z = l. The motion of the particle, assuming
an impulsive transverse force in the heating zone,
and assuming that the longitudinal velocity of the
particle is zero at z=l+, is described by the fol-
lowing system of difference equations:

v„,q= (v„+V +2v„V cos8„)

0
0 J. I/O I/2 5/4

..&.. . . ..............J.......... . .............l. ..... .......... ........i

I

'' I 'I

20
I

t
I

I

It

I'
'I IIII II 'III 'I » III PII 11 I I 'I I 111' ll 11 11 I Il I ' I III Il

I I

I» 111 I

IIIP

I
I.

Pill I I II II I
I I I I I1t.

I I

50
I

II
I I III111111

I II I I I I '. IIIII I I I II I ll I I III I I II ~

I

11 I I
I

FIG. 6. Phase space g-Q
for the Zaslavskii-Chirikov
equations (1)-(4), sawtooth
wall velocity. M = 1000, ten
particles with 40 960 colli-

sionss/particle.

the velocity increment which the rf field imparts
to the transverse velocity of the particle, and
M= s Lal+(nl) ] ur, ol/V, where &u,o is the cyclo-
tron frequency at z = 0. Figure l(c) shows the
geometrical relation between the various quantities
in Eqs. (11)-(13)for this system.

In Fig. 8, the phase space is given for the cy-
clotron-resonance problem, with M = 57. 8, with
ten particles, after (a) 2560 and (b) 5120 collisions
per particle. The phase space exhibits some fea-
tures strikingly different from those observed in
the Fermi-acceleration model. The low occupa-
tion numbers at low velocities indicate the presence
of a strong frictional force which accelerates par-
ticles to higher energies. It is clear from the form
of the phase plane and the way it changes with the
number of collisions that there exist points in the
phase plane which are sinks for particles. These
sinks have replaced the adiabatic portions of the
phase plane that excluded particles in the previous
problems. There is also no maximum velocity g~

beyond which particles cannot be accelerated. At
large u, the trajectories of the particles slant
across the phase plane such that the particles
march inexorably toward higher velocities. In
Fig. 8, these effects can be clearly seen. Of the
ten particles started at low velocities, one has been
trapped in a double sink at u =12, four in a sink at
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FIG. 9. Phase space u-Q for Kqs. (5) and (14), saw-
tooth wall velocity with an additional weak stochastic
force. M=10, —0. 005 &&+& 0. 005. (a) 10240 and (b)
20480 collisions of a single particle.

R ~g
= 8„+F(Q „, il „)

@„,g = 4'„+A(u„,g ) + G(u„,g, @„),
(i5)

(is)

p ~q =M(p„),
which can be iterated:

p„„=M'(p„) .

(iV)

(18)

The condition that the mapping (1V) is area pre-
serving is that det(J) = 1. Here J'( p„) = J(u, q, Q

lu„, Q „) is the Jacobian matrix of the mapping, and

where E and G are periodic in 4'„with a period 6
of 2~ (or sometimes, for convenience, unity), and

E, G-O as the periodic force tends to zero. The
function A is chosen to describe the advancing of
the phase 4'„ in the absence of the applied periodic
force. It is useful to introduce the variable it „
= 4'„modulo e. The quantities u„and 4'„are often
conveniently chosen to be, respectively, the nor-
malized velocity and phase (with respect to the
force) of the particle just before its nth collision
with the force. If the force acts continuously rather
than impulsively on the particle, then a reference
plane, for example, z=zo, is chosen on which u„
and 4„can be defined. It is often convenient to
regard G as a function of u q rather than u„; no
loss of generality is involved.

Equations (15) and (16) define a mapping in a two-
dimensional space p =- (u, iti), such that

for Eqs. (15) and (15},

(19)

~ll~+F(Qyt 4~)
~

e,,,=e.+A(u;.,)+G(u;,g, @,), j=i, . . . , &

(2O)
M&+S

—&S ~

4 ~& = 4 z + 2vTm, nz=O, &, . . .
where yn is an integer relatively prime to k.

Let us consider the velocity and phase equations
for the simplified Fermi problem:

u,„=iu, +F(e,) ~,

+„,= e, + 2~m, /u. „.
(21)

(22)

A few simple properties of these equations can be
shown. Summing over the k+1 velocity equations,
and assuming u& &F(4;) for all j, we obtain a rela-
tion among the phases for each family of fixed
points:

It is well known that a dynamical system de-
scribable by a Hamiltonian H(q, ~ ~ q„, ii~ ~ ~ p„, i)
induces in the 2g-dimensional phase space of the
system an area- (measure-) preserving flow. Thus,
if the mapping (1V) is obtained directly from a one-
dimensional Hamiltonian H(qi, pi, t), it must be
area preserving. The Zaslavskii-Chirikov equa-
tions (1)-(4) and their simple variants (5) and (6),
(V) and (8), and (9) and (10) a,re examples of area-
preserving mappings. For a three -dimensional
Hamiltonian, it is sometimes possible, making use
of one or more integrals of the motion, to obtain
a reduced phase space of less than six dimensions
which undergoes an area-preserving flow. How-

ever, this is often not the case. In general, the
flow in a restricted phase space of two dimensions
is not area preserving. The approximation to
cyclotron-resonance heating given by Eqs. (11)-(13)
is an example of a non-area-preserving mapping.
It should be noted, however, that in other approx-
imate treatments of the cyclotron-heating prob-
lem, for portions of the parameter space, sufficient
invariants exist to recover the area-preserving
property 'o

Fixed points. Equations (15) and (16) possess a
fixed point of order k at P = (u, g) when P =M"(P)
and P is not a fixed point of any order less than k;
i.e. , a particle located exactly at P will reappear
after k collisions. For every positive integer
value of k, there is a denumerably infinite set of
fixed points. Fixed points of order k occur in
families of exactly k members each. These families
of fixed points may be organized. into a hierarchy,
as discussed by Greene.

To obtain all the kth-order fixed points, we solve
the 2k+ 2 algebraic equations
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where m is an integer relatively prime to k, and.
where

k-1
uam

-1
ug

j=i

For each k, the integer nz is used to order the
families of fixed points. The k members of each
(k, m) family are all found within a velocity spread
rhu „=(k —1)I EI

As can be seen from Figs. 2-9, the most sig-
nificant fixed points are those for u» 1, for which
the quantity &= IFI /u, -0. For &=-0, the k

members of each (k, m) family of fixed points are
then located at (4&, u&) = (4 0+ 2v jm/k, kM/m),
j= 1, . . . , k, (m, k) relatively prime, where 40 is
arbitrary. The effect of a small but finite e is to
determine the possible values for 40. For a finite
e, 4'0 is obtained from Eq. (23):

Q F(~, ) =0 .
j=1

Summing over all k+ I phase equations, we obtain
the "average" velocity u, of each family m of kth-
order fixed points:

u~„=kM/m,

M
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(24)

For a given k, this equation may have from none to
an infinity of solutions, depending on the form of

In the usual case, E has two zero crossings
80, 8~ (80 & 8~) in the interval —v & 8 & v, and is anti-
symmetric about 80. It follows that 8& = 80+ m and
that E is antisymmetric about 8,. In this case,
4, = 8, and 4', = 80+ v/k, k = 1, 2, 3, . . . . Some of
these latter fixed points can easily be seen as the
centers of the island structures in Figs. 2-9. In
Table II, the calculated locations of the k = 1 and
some k = 2 fixed points are given for the various
acceleration problems considered here.

Lineaxized maPPings and stability. It is of in-
terest to study the stability of the particle motion
in the immediate neighborhood of a fixed point P&

of order k. Letting 4p„= p„-P&, we define a
linearized mapping L by

II
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Clearly, L is equal to the ordered product of k
Jacobian matrices of M, each evaluated at the k
successive fixed points of the family of which Pq

is a member,

f =~(pa)~(pk-1) ' ~(pl) .
Under successive iterations of L, the particle moves
in an orbit near the fixed point. To determine the
character of the orbit, we solve the two linear dif-
ference equations (25) by introducing ap „.„
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= ~pox', and we obtain the following characteristic
equation for x:

x ~ -r TrL +detL = 0 . (27)

~ = e'", cos8 = —,
' TrL . (28)

In this case, the particle traces an elliptical orbit
about the fixed point P&, completing one orbit every
2v/8 collisions. If, on the other hand, (TrL)~&4,
then the two roots of Eq. (2V) are real, and one of
them has a magnitude greater than unity. The
particle traces one or both branches of a hyperbolic
orbit, ultimately moving far from the fixed point.
The character of these orbits (elliptic or hyper-
bolic) and the rotation angle 8 (if elliptic) is the
same for all k members of the given family of fixed
points. However, the actual shape and orientation
of the orbit in the u-P plane is different for each
member of the family.

For mappings M which are not area preserving,
the character of the orbits may be quite complex.
For 0 & —,

' (TrL) & detL & 1, the two roots of Eq. (27)
are complex conjugates, having a magnitude less
than unity. The particle then spirals in toward
the central fixed point ("trapped orbit"). Such or-
bits are responsible for the particle "sinks" seen
in Fig. 8. For —1+ I TrL, 1 &detL & ,'(TrL)2&1, a-

trapped orbit is also obtained, with the particle
moving in toward the fixed point in a nonspiraling
orbit. For detL & —,

' (TrL) & 1, complex-conjugate
roots having a magnitude greater than unity are
obtained (unstable, spiraling-out motion). In all
other cases, two real roots, one of which has a
magnitude greater than unity, result. The orbit
is then unstable.

Stability of Fermi and cyclotron trr oblems for
k = 1 gnd k = 2. We now consider in detail the sta-
bility analysis for the problems shown in Table II.
All of the Fermi problems are area-preserving
mappings, while the cyclotron-resonance problem,
Eqs. (11)-(13), is not. For the simplified saw-
tooth-wall-velocity problem, Eqs. (6) and (6), at
the b = 1 fixed points (see Table II), we find TrL
= 2 —m /M. An elliptic point (stable, closed orbit)
is thus obtained if m & 2M ~, namely, if uq & 2M ~ .
The rotation angle 8 is given by Eq. (28); for uq

It is well known that the quantities TrL and detL
are invariant, independent of the cyclic order of
the b Jacobian matrices in Eq. (26). Thus the roots
of Eq. (27) are the same for all b fixed points in a
given family.

The character of the solutions of Eq. (27) has
been studied extensively in connection with nonlinear
mechanics, and we summarize the results below.
For an area-preserving mapping M, detJ=1, and
it follows from Eq. (26) that detL = 1. For (TrL)2
& 4, the two roots of Eq. (2V) are complex con-
jugates and have unit magnitude:

»M t, we have 8=m/M t =M'~ /uq. For k=2,
uz, u2» 1, we find TrL = 2-m /M, and thus obtain
stable orbits provided u&=uz &M . We note that
as u is decreased from large toward small values,
the k = 2 fixed points go unstable before the k = 1
fixed points. For the cubic wall velocity, Eqs. (7)
and (8), one similarly obtains the stability condi-
tion for b = 1 that u, & (-',M)'t . For the Zaslavskii-
Chirikov mapping, Eqs. (1)-(4), for 0=1, one ob-
tains the condition for stable orbits u, &-', (M + —,')'
For the sinusoidal wall velocity, Eqs. (9) and (10),
there are two k = 1 fixed points as shown in Table
II, for each value of m. The fixed point at P, =~
has TrL= 2+ 2~m /M, so that the orbits are un-
stable (hyperbolic) for all m. Qn the other hand,
the fixed point of $, =0 has TrL =2 —2~m2/M, so
that these points are stable provided m & (2M/m)' 2,

i.e. , provided u&&(-, nM)'t2. For &=2, a similar
calculation shows that the fixed points Pq = (0, 2M/
m) and P2= (~, 2M/m) are stable, provided uq=u2
& (mM)'~2. We again note that, as u is decreased,
k= 2 fixed points go unstable before the k =1 fixed
points.

The cyclotron-resonance heating problem, Eqs.
(11)-(13), has two b = 1 fixed points for each value
of m, as shown in Table II. For u&»1, we obtain
TrL and detL as

TrL = 2 s 2am /M + O(u) ),
detL=1-m /M +O(uq ),

(29)

1 E~
p/ (30)

where the positive sign refers to the fixed point at
P& =-,'(~+m/M) and the negative sign to the fixed
point at P, =-,'(3~ rn/M) -From t.he stability con-
ditions, we find that the former fixed point is al-
ways unstable (hyperbolic), while the fixed point at
-', (3v -m/M) has trapped orbits (particle spirals
into the fixed point) provided m &(2M/w)~~2, namely,
provided u, &(—,'~M)'~~. For u, »M't~, the rotation
angle 8 of the particle around the fixed point is ap-
proximately (2mM)'t~/u, . At the same time, the par-
ticle spirals exponentially in toward the fixed point
as e 8", where the spiraling-in rate P= (2uf)
These trapped orbits can be seen very clearly in
the phase-plane structure of Fig. 8. For conven-
ience, the stability conditions for k = 1 and k = 2
are summarized in Table II.

Stability for lar ge k. In general, the stability
analysis for the k=3, 4, 5, etc. , fixed points be-
comes progressively more difficult. However, by
an expansion procedure, we can obtain an expres-
sion for the stability of fixed points for the sim-
plified Fermi problem for large k. The Jacobian
matrix of the mapping at (P, , ur), j=1, 2, . . . , b,
is given by
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where 5;= —BM/u& and B= 2w (or sometimes 1).
Recalling that u,„=kM/m and M,„= (k —1) I F,„,
it is clear that we may write

5, = 5 = —BM/u~'= —Bm'/O'M, (31)

provided hu, „«u, , i.e. , provided

~F~ „«M/m . (32)

For large k, j5 I «1, and we can easily establish
by induction, using Eq. (26), that

TrL =2+k5 g E (Q, )+O(5 ) .

1/2u~& ~kM (36)

At the stability boundary itself, u&~= &kM'
= —4/k~, and M/m= 2M'~ . For k&3 and M»1, both
the assumption that 151 «1 and the inequality (32)
are satisfied.

From Eq. (36) and the results listed in Table II,
we see that the larger the value of k, the larger is
the associated stability boundary u. It is clear that
the k = 1 stability boundary represents an important
transition velocity for a particle. Below this ve-
locity, no adiabatic islands exist, and all phase-
space states are accessible to low-velocity par-
ticles.

Stochastic transition velocity u, . In addition to
the above stability analysis for the sawtooth wall
velocity, numerical computations of the nonlinear
difference equations (15) and (16), for a wide variety
of forcing functions F, G, and with A(u„.,) = 2'/
u 1, show the existence of a transition velocity u,
below which no adiabatic islands or (for non-area-
preserving mappings) trapped orbits are observed.
Figures 2-9 all show evidence of this transition
velocity. Vfe hypothesize that, except for patho-
logical cases, a transition of this type always exists.
Below u„all phase-space states are accessible to
low-velocity particles. Above u„disjoint areas in
phase space exist, with either no (area-preserving)
or only one-way (non-area-preserving) access
among these areas. Since a minimal requirement

Inserting Eq. (31) into Eq. (33) yields

em'TrL=2- g F'(y, ) .
j-1

If gF is negative, then the fixed points are a,lways
unstable (hyperbolic). If gF is positive, then
stable orbits (elliptic fixed points) are obtained if

QE &4kM/Bm'.

As an example, consider the sawtooth wall velocity,
Eqs. (5) and (6), for which F (P,) = 1 for all g „
and the period B=1. Then gE'=k, and the kth-or-
der fixed points have stable orbits provided m
&2M'" or

IOO-

40-

20-

IO-

4 9
~ Absolute barrier

& Stochastic transition

I

IO 30 IO0 300 IOOO

FIG. 10. Absolute barrier u& and stochastic transition
velocity u~ as a function of I, for the sinusoidal. wall ve-
locity of Eqs. (9} and (10).

for a, stochastic description of particle motion in a
given region of phase space is that all positions in
phase space be accessible and have access to all
other positions„we refer to u, as a stochastic tran-
sition velocity; below u„a stochastic description
of the motion may be possible, as described in
Sec. IV.

To calculate the value of u„one must in princi-
ple examine the character of the orbits around
families of fixed points of all orders k. However,
numerical computations and analytical results for
the sawtooth wall velocity suggest that the sto-
chastic barrier u, is associated with the stability
or instability of the k= 1 fixed points of the mapping
M. It is thus sufficient to calculate the stability
boundary of the k = 1 fixed points. A comparison of
the calculated stability boundaries for k =1 with the
computational result for g, is shown in Fig. 10, for
various wall-velocity functions and values of M.

A physical interpretation of the transition velocity
u, can be obtained by observing that the stability
boundary occurs at cose= —1 in Eq. (28); i.e. , the
phase shift per bounce of the island oscillation
around the fixed points is equal to ~. This is just
the well-known condition for stop bands in a periodic
structure. In terms of the period 7', of the island
oscillation, v; & 2r, for stochasticity, where 7, is
the bounce period. Setting 6 = ~ in Eq. (28), we
can determine the ordering of the natural periods
for stochasticity, v, &(VmE ) v7'„,», where, typi-
cally, mF is of order unity.

Absolute barrier velocity u&. An examination of
Figs. 2-9 shows that, for certain mappings, an
impenetrable velocity barrier u& exists, above which
particles initially at low velocities can never be
subsequently heated. This barrier does not exist
for the cyclotron-heating problem, because the
mapping is not area preserving. Particles which
penetrate to M &M are thereafter continuously heated.
For the sawtooth wall velocity, either Eqs. (1)—(4)
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u „.g =u)„+H(u „,@„),

@m1 +n+~n+1 t

(3V)

(38)

(39)H(w„, 4'„)= w„F(4'„)-/ [2~M +w„F(4„)j .
If we introduce the rotation angle Q(p) and the radius
w(P), which parametrize the assumed invariant
curve in P, we find from Eqs. (3V) and (38) that

Q(y) =~(y) + H(~(y), y),
Q(y) =~(y+ Q(y)) .

(40)

(41)

We impose the condition that Q and M be contin-
uous single-valued functions of g; i.e., breakup
of the invariant curve into islands or a double-
valued invariant curve does not exist. Differen-
tiating Eqs. (40) and (41), we find

Qg= Kp+H~28g+Hg ~

Q~=Mr (1+Q~),

(42)

(43)

where the subscripts w and Q denote differentiation
with respect to that variable, and se& is so~ evaluated
at y+Q(y).

It is clear from Eq. (43) that Q~ & —1 and m~&1;
otherwise zv and 0 are not continuous single-valued
functions of P. We can then form a necessary con-
dition for the existence of an invariant curve:

—(I+Hg/(I+H. ) &~,&1, (44)

or Eqs. (5) and (6), the barrier also does not exist,
due to the discontinuous nature of the wall velocity.
However, in this case, for a finite number of col-
lisions, f(u) drops off sharply for some u & 2M~ ~ ~,

since the particle can only penetrate considerably
beyond this value of u near the discontinuity at
P =0 or 1. For an area-preserving mapping with a
smooth wall velocity, such as Eqs. (V) and (8) or
Eqs. (9) and (10), the absolute barrier always ex-
ists. This barrier curve, located at g„ is the
Arnol'd-Moser invariant curve' ~" of the mapping
equations (15) and (16), having the lowest average
value of g. Arnol'd and Moser have shown that,
given suitable smallness conditions on the deriva-
tives of E, G, andA, invariant curves of the map-
ping always exist. In practice, their existence
proofs are of little use in predicting the location u,
of an absolute barrier. " However, for the Fermi
problem, we can obtain a lower bound on the location
of the absolute barrier u& as described below. In
Sec. III B, we approximately determine its location
by Hamiltonian techniques.

To find the lower bound, we insert the transfor-
mation w = 2~M/u into Eqs. (21) and (22). We obtain

u cos Q —K sing —2wMu cosP
(1+u ' sing)

Putting Q = 0 to make H +H~ as negative as pos-
sible, Eq. (45) yields u = (~M)"'. For velocities
below this value, an invariant curve (absolute bar-
rier u„) does not exist. Particles can be heated to
at least a velocity (wM)'~ under the influence of the
periodic wall velocity. As can be seen from Figs.
4 and 10, the lower bound (mM)'~' is within a factor
of 1.5 of the actual barrier velocity u&.

B. Hamiltonian Form of Fermi Problem with Sinusoidal Wall
Velocity

The difference equations can be represented as
differential equations by introduction of the singu-
larity function in the force equation:

d4 2~M
d7 Q

where the time variable 7 is measured in units of
the number of wall collisions n, and the Fourier
representation of the 5 function has been employed.
Equations (46) and (4V) have the Hamiltonian form

H(r) =2~M lnu++~e' ' cost, (48)

with g and 4 the canonical coordinates.
Averaged equations. For very large u (u»M),

(u„,i —u„)/u„«1 (49)

(4 „., —4„)/2~ «1, (50)

allowing Eq. (48) to be averaged over 7 to obtain a
first integral of the motion 2~M lnu+cos4 = C. How-
ever, velocities this large are not of major interest
to us, as can be seen from Figs. 2-9. For the ve-
locity range of interest, 1 «u & M, Eq. (50) is not
satisfied, while Eq. (49) is. However, if we in-
troduce a change in variable

u =u -M/m, Q = 4 —2~mr, m an integer (51)

so as to transform to a coordinate system around a
0 =1 fixed point at uo=M/m, then (P, —P„)/2~«1.
In the careted variables, Eqs. (46) and (4V) take
the form

H~+Hq & —2

for some P in the range —w &P & ~. As an example,
consider E(Q) = sing. Then

where the left-hand inequality in Eq. (44) is obtained
by substituting the smallest possible value of O~,
—1, in Eq. (42). [Note that by Eq. (39), H & —1. ]
From Eq. (44), a sufficient condition that an in-
variant curve does not exist is

A

g2 mr

d7

dQ 2aM
p Qd7' uo

(52)

(53)
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Equations (52) and (53) can be integrated to obtain
the Hamiltonian

2~M uH= —' g, ~3m. cosQ=C .
up

(54)

If the motion in the u —g phase plane is assumed to
be slow on the time scale r, Eq. (54) canbe averaged
over v to give the averaged Hamiltonian

2~M u3
H= z

——cosQ =C,
up

(55)

which describes the trajectories near the main
(k=1) fixed points at P =0, m, and u=uo. Near the
elliptic singular point at Q = 0, the Hamiltonian
curves of II consist of encircling orbits out to the
separatrix (hyperbolic singular point), beyond
which there are drifting orbits. The maximum os-
cillation of u occurs for the separatrix trajectory,
for which C has its maximum value of C =+1.
Prom Eq. (55),

(e ),„=2u,(2')-"'. (55)

The Hamiltonian curves from Eq. (55) can be com-
pared with the results from the numerical calcula-
tions. These results are shown as the dashed lines
in Fig. 4. Near the fixed point, the linearized so-
lution of the difference equations (25) are in agree-
ment with the numerical caleul3tions and the Hamil-
tonian curves.

Estimate of absolute barrier. The validity of the
phase-space trajectories obtained from the averaged
Hamiltonian is limited by second-order resonances
between the wall-collision frequency and harmonics
of the frequency of oscillation about the fixed points.
For the linearized motion, the minimum value of u

for stable oscillations was calculated in Sec. III A.
The nonlinear stability (breakup into islands) is now

investigated by use of Eqs. (54) and (55), in the
manner described in detail in Ref. 4. We note from
Eq. (55) that the linear frequency of oscillation about
the elliptic singular point is ~0 = (2aM) /uo, which
is to be compared with the bounce frequency of
2aM/uo. For 2~M» 1 and 2~M/uo =- O(1), resonances
involve only high harmonics of the motion in the
u —

&j& phase plane. Except possibly near the separa-
trix, these harmonics have very small amplitudes,
which lead to significant perturbations of the Ham-
iltonian curves as obtained from Eq. (55), only in

the immediate vicinity of the resonances. Thus, we

expect no significant nonlinear breakup of the in-
variant curves in this region. Qn the other hand,
for 2+M/uo=O(M't ), the phase plane, as obtained
from Eq. (54), exhibits chains of islands with sig-
nificant amplitudes, formed by alternating elliptic
and hyperbolic fixed points. These islands break
the smooth trajectories calculated from Eq. (55)
Bt those values of C for which resonances occur.
The lowest harmonic number resonance occurs

2~M ~S —cosQ = C,
2up

where the action is, by definition,

(57)

J= —
I udge,2

and the new and old variables are related by the
usual relation u= BS/sg and 8=8H/8J. For C &I
(rotation orbits), S may be solved in terms of ellip-
tic integrals, and to lowest order in the nonlinearity,

H(J, 8) = vM J' /uo ——C (5S)

with angular rotation frequency &u = 2' J/uoe. The
transformation leading to Eq. (58) is performed
on Eq. (54), the Hamiltonian before averaging. If
the lowest harmonic resonant term is the /th

harmonic of g resonating with the mth harmonic of
v, then the generating function

W = (l8 —2' 7)J (59)

transforms the Hamiltonian to new variables 8 =lg
—2~mr and J = J/l, such that in the 8 -J phase
plane, the resonance appears as a singularity about

at a frequency near cop, with successively higher
harmonics resonating at values of C for which the
"soft-spring" nonlinearity cosd& in Eq. (55) suffi-
ciently reduces the frequency.

Two types of orbits need to be examined: libra-
tion for which P oscillates and rotation for which

Q advances or retards continuously. The former
are the orbits inside the separatrices joining the
hyperbolic singular points of Eq. (54), and the
latter are the orbits outside the sep3ratrices. If
the successive chains of islands do not interact
strongly, i.e. , do not have nearly overlapping am-
plitudes, then between the resonances, phase tra-
jectories as given by Eq. (55) isolate the resonant
regions of the phase plane from each other. The
isolation achieved by the rotation orbits is physically
more important, since the lowest-velocity adiabatic
orbit isolates the stochastic region of the phase
plane which can be explored by a single initially
low-velocity trajectory from the remainder of the
phase plane; i.e. , the lowest-velocity adiabatic
orbit is the absolute barrier u&. Generally, the
amplitudes of successively higher-order resonant
island chains rapidly decrease, such that only the
amplitudes of the second-order resonances need be
examined.

The second-order island chains are calculated by
a procedure developed by Jaeger and Lichtenberg, 4

to determine the breakup of the libration orbits.
We apply the technique here to the rotation orbits.
The average precession frequency is determined
by transformation of the averaged Hamiltonian of
Eq. (55) to action-angle variables by solving the
Hamilton- Jacobi equation
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which 8 is slow compared to all other frequencies.
An average over 7. then yields

II= —
2 I J —2vmJ -A, —

2 I J' cos8=C, (60)
up up

where A, is the coefficient of the /th harmonic ob-
tained from the nonlinear expansion of the Hamil-
tonian in terms of elliptic integrals. Within a
numerical factor of order unity, A, is given by

(61)

Assuming A, «1, Eq. (60) has elliptic and hyper-
bolic singular pointsat J= uo~m/Mlaand 8= 0and v, re-
spectively, and the maximum excursion of J is
dd', „=(2A, J2)'~~. The strength of the singularity
is measured by comparing the shift in frequency
due to the resonance, b,~,„=(B~/BJ)M,„, with
the separation of resonances 5~ = &v, /I. From Eq.
(58), B~/BJ= ~0/J, giving

~-'-*=2"'I"'(C 1) '
5(U

(62)

TABLE III. D~~/g~ for various values of C and l.

We note that Eq. (62) is a function of I= 2vjeo, and
from Eq. (58),

&so= 2(~MC) ~ uo,

such that I is a function of the ratio uo /M'~2. There
fore, the absolute barrier occurs at a value of up
=KM' ', where K is a function of C, but independent
of M.

The value of K can be obtained, approximately,
from Eq. (62) by constructing Table III. Jaeger
and Lichtenberg have shown in a number of numeri-
cal examples that island breakup occurs for L&u /
5~ between Q. 3 and 0. 5. This indicates a range of
values of l and C from Table III for which breakup
can occur, but that the boundary must occur for
C &2. Unfortunately it is in this region that higher-
order nonlinearities become important and the
period becomes longer, with infinite period (I = ~)
at the separatrix at C=1. However, over a rea-
sonable range of the higher-order nonlinearity, we
might expect that h~,„/5~ would not differ much
from the data in Table III. Assuming that island
breakup ceases to occur for b~,„/Bur&0. 3, and
setting C=1.5, we obtain a value of K= 2. 75. For
permissible values of C in this neighborhood, K
varies only slowly. We compare this result with

the numerical values at which an absolute barrier
is observed in Fig. 10, which gives the predicted
linear relation between up and M', with K= 2. 8.

A calculation similar to the above, performed
for the closed orbits of the main island resonances,
indicates that serious erosion of the elliptic tra-
jectories occurs at comparable values of up. Thus
the nonlinear effects have substantially equivalent
roles in determining the transition from adiabatic
to stochastic behavior for the orbits of libration
and rotation. This result is in marked contrast to
the trajectories of Eqs. (5) and (6), for which

E(P) = P Modl. In the latter case, the elliptic or-
bits are nearly linear, giving adiabatic orbits
around stable fixed points that extend to the neigh-
borhood of the separatrix. The rotation orbits,
on the other hand, are not adiabatic, since the dis-
continuity of E(&f ) at the edges Q = 0 and Q = 1 in-
troduces large amplitude perturbations in all har-
monics of the rotation frequency. This behavior
can be observed by comparison of Figs. 2 and 4.
In Fig. 2, for F(Q) = Q Modl, the main stable re
gions are observed out to the boundaries of the
phase interval (hyperbolic fixed points) but no ab-
solute barrier (adiabatic rotation trajectory) is ob-
served. In Fig. 4, for F(&f&) =sin&]&, in contrast,
the area of the main adiabatic region, at values of
u lower than the absolute barrier, is significantly
reduced from that predicted from the Hamiltonian
equation (55).

IV. STOCHASTIC ACCELERATION

In this section, we investigate in what sense the
evolution of the velocity distribution function can
be described by a stochastic process. Clearly the
motion in the two-dimensional phase plane is de-
terministic. However, provided u & u„so that
adiabatic islands do not exist, it may be possible
to express the evolution of f(u, n), the distribution
in u alone, in terms of a Markov process in u'4:

f(u, n) = ff(u —b,u, 0) P(u —Au, n
~
u) d(Au), (63)

where P is the conditional probability of a particle
being at u if it were at u- hu, n collisions earlier.
All quantities in Eq. (63) are independent of phase.
If we make the additional assumption that n» 1 and
that ~u«u, i. e. , that there exists a collision num-
ber n such that

1«n«u/ ~F~.,„,
then Eq. (63) can be written in the form of a Fok-
ker- Planck equation,

1
1, 5

2

1
0. 65
0. 25

0.91
0.46
0.27

0. 7
0. 3
0. 14

0.49
0. 16

0.31

Bf B 1 B'—= ——(IIf)+ — (Df),
On Ou 2

where the frictional coefficient is

B(u) = (1/n) f ~uP(u —Au, n
~
u) d(du)

(65)

(66)
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and the diffusion coefficient is

D(u) = (1/n) f (~u) P(u —b,u, n
~
u) d(~u) . (67)

Validity of Fokker Planck e-quation. Of course,
I' is actually a function of the initial phase distri-
bution as well as the initial velocity u —Au. How-
ever, we expect that a correlation "time" n,
(measured in number of collisions) exists, such
that any reasonably smooth initial phase distribu-
tion relaxes to a uniform phase distribution after
approximately n, collisions. Provided n can be
chosen considerably larger than n„P will be in-
dependent of the initial phase distribution. To es-
timate n„we use Eq. (30) to obtain

FIG. 11. Diffusion coefficient D as a function of g for
Eqs. (5) and (6), sawtooth wall velocity. M=10000, with
1000 particles placed at various initial velocities ~0, with
random phases.

D can be obtained from a random-phase assump-
tion.

For u& u„ invariants exist which relate velocity
and phase, independent of time. Such invariants
exist within the adiabatic islands, which cannot
therefore be described by Eq. (63). In the sea
surrounding the adiabatic islands, the process may
be Markoffian in u, but the random-phase assump-
tion is clearly not appropriate, as all phases are
not available at a given velocity.

Making the simplest assumption that n=1, for
Fermi acceleration given either by Eqs. (1)-(4)
or (5) and (6), and assuming all phases equally
probable, we find B=O and D= —,', . In Fig. 11, we
compare the above analytical result using the ran-
dom-phase assumption to the value of D obtained
numerically as a function of n for 1000 particles
placed at various initial values of velocity u. Equa-
tions (5) and (6) are used for the computation,
with M= 10000 and a stochastic transition boundary
predicted at u, =50. For u=10, 20, 30, and 40
and initially uniformly distributed phases, the phase
correlation is found to be negligible, so that
D(u, n) = D(u, 1)=,'2 for n & 1. For u= 50, on the other
hand, there is strong phase correlation, so that
D is not independent of n, even for n& 200. For
u= 60, another process also enters, as a number
of the particles are initially trapped in adiabatic
regions and do not take part in the diffusion pro-
cess. Finally, if particles are not initially spread
over all phases, there is a transient behavior for
the first few n collisions, during which phase
randomization is occurring, as seen from the
dashed curve in Fig. 11.

Au„, , = hu„+F b, Q„, ,

AItI„„=—Rhu„+ (1 —RF') iy, ItI„,
(66)

where R=BM/( +Fu) . Below the stochastic tran-
sition velocity u„R is greater than 2. In the
worst case, we assume that the initial phases are
spread over a small interval 6$(0), and that
b, u(0) =0. Provided R»1, the dominant terms in
Eq. (68) then yield AQ(n) = R" b, ItI (0) and A(u) = F'
&& R" '

b,&j&(0). Setting the phase spread b, Q(n) equal
to the phase interval 6 (1 or 2Iy), we find

ln[e/~y(O)]
lnR

showing the weak logarithmic dependence of n, on
the initial phase interval, and thus on the form of
the initial phase distribution. In contrast, since
b.u(n, ) «u, the velocity distribution remains con-
stant while phase randomization occurs. Provided
n» n, and inequality (64) is satisfied, the Fokker-
Planck description of the time evolution of f is
valid, and the Fokker-Planck coefficients 8 and
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FIG. 12. Comparison of velocity distribution f (I) for
the Zaslavskii-Chirikov equations (1)-(4) and the simpli-
fied equations {5) and (6), for M=1000.
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Steady-state solution and frictional coefficient
B. For the Fermi-acceleration mechanism, the
small phase correlations which appear for n & 1
do not significantly alter the diffusion coefficient.
However, sirce B=O for m=1, they may be of great
importance in determining the frictional coefficient
and ultimately the distribution function integrated
over collisions, f (u).

Figure 12 shows a comparison of the velocity
distribution f (u) between the Zaslavskii-Chirikov
problem [Eqs. (1)-(4)]and the simplified problem
[Eqs. (5) and (6)]. The frictional coefficient can
be determined from the numerical calculations of
f as follows: We assume perfectly reflecting bar-
riers at u= 0 and u= u„such that —Bf= ,' s(Df)/su-
at u= 0, u, . The steady-state (8/Bn =0) solution
of Eq. (65) with these boundary conditions and with

f specified at u=uo is

f(u, n- ~) =f (u) =f (u, ) D(~) D ' (u)

x exp J 2B(u')D-'(u') du', (70)
Qo

from which we obtain, for D(u) = ~i2,

B(u) =
24
1 d(ln )

For the Zaslavskii-Chirikov equations, from Fig.
12, f (u) ~u, so that from Eq. (71) we obtahi
B= (24u) '. This value of B is in rough agreement
with an analytical calculation for n= 2, as follows:

Assuming u» 1, from Eqs. (1), (2), and (4), we
obtain

u„,=u +e„.--,'+(1+-,' u ')fe„+M/u„„J--,' . (72)

For u' & M (].is a rapidly varying function of u and
Averaging over + and a small velocity interval

au= 1 yields (()) = —,'. From Eq. (72) we obtain
B(u) = (16u) . For the simplified equations (5)
and (6), in the same manner, we obtain B(u) = 0,
and thus f(u) = const. The deviations from this re-
sult as seen in Fig. 12 are due to higher-order
phase correlations.

We conclude that, in the portion of the phase
space in which no islands appear, the evolution of
the velocity distribution can be described by a
Fokker-Planck equation. In order to calculate
diffusion and frictional coefficients the time step
must be chosen to correspond to a sufficiently large
number of "collisions" so that the phases are ran-
doIMzed.

Note addedin proof. A recent article by A.
Brahic [Astron. Astrophys. 12, 96 (1971)]deals
with some aspects of Fermi acceleration consid-
ered in this present article.
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