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The electromagnetic waves propagating transverse to the direction of streaming of the con-
trastreaming plasmas in the presence of a uniform magnetic field are investigated. For elec-
tron plasmas thesewavesbecome unstable only for some bounded values of the streaming velo-
city Up, namely, U~n & Up & U~, For relativistic streaming velocities, the electron thermal
effects are destabilizing whereas for nonrelativistic streaming these are stabilizing unless
c 0 /co&~ & s and k V&~/Q~ «1 (0 being the characteristic wave number, V« the electron thermal
velocity, 0~ the electron cyclotron frequency, and u&~ the electron plasma frequency). The
magnetic field however reduces the region of instability no matter what the streaming velocity
is. The effect of nonrelativistic-ion streaming is destabilizing while that of the ion tempera-
ture is stabilizing. In the presence of a strong magnetic field, the effect of relativistic-ion
streaming is also stabilizing.

I. INTRODUCTION

The plasmas streaming with a relative velocity
exhibit the well-known two-stream (TS) instability
whenever this relative velocity exceeds a certain
critical velocity. Buneman' showed that besides
this TS instability, there exists a transversel in-
stability in plasmas with wave propagation trans-
verse to the direction of the relative streaming.
Momota presented the criterion for the existence
of these transversel instabilities in cold as well
as warm plasmas and showed that the thermal ef-
fects were stabilizing. Lee' studied this instability
for counter-streaming plasmas in the presence of
the magnetic field and found that both the magnetic
field and the thermal effects were stabilizing. Buti
and Lakhina4 modified Lee's criterion for instability
and concluded that the magnetic field was always
stabilizing while the temperature can be destabilizing
in some regions. Recently, Tzoar and Yang' have
discussed this problem for the case of large k,
i.e. , A. =k V~, /n, »1. They find that the spectrum

of the unstable k has a lower as well as upper limit
and that the magnetic field reduces this unstable
region. Lee and Bornatici have reported that for
anisotropic -temperature plasmas the perpendicular
temperature is stabi. lizing whereas the parallel tem-
perature is destabilizing. The transverse instabil-
ities have also been studied for collisional plas-
mas and for plasmas in which both the electrons
and the ions are streaming. s&

The above-mentioned investigations were carried
out for nonrelativistic streaming velocities; but

recently the production of intense relativistic elec-
tron streams has been reported' and it has stim-
ulated the investigations of the instabilities for
relativistic streaming. "' ' Here we have studied
the transversel instabilities in plasmas which are
contrastreaming with any arbitrary velocity (rela-
tivistic or nonrelativistic) in the presence of ex-
ternal uniform magnetic field. We find that for
very low streaming velocities as well as for ex-
treme relativistic streaming velocities, the waves
propagating transverse to the direction of stream-
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ing, are stable i.e. , the bounded region U &, & Uo
& U is an unstable one. The increase in the mag-
netic field increases U „, decreases U, and
consequently reduces the region of instability.
In the relativistic regime of streaming velocities,
the electron thermal effects are found to be de-
stabilizing whereas for low streaming these are
stabilizing unless c k /~~, & —,

' and k V „/Q, «1.
II. DISPERSION RELATION

Let us consider two identical homogeneous plas-
mas contrastreaming along the direction of an ex-
ternal uniform magnetic field Bo which we take along
the z axis. Each plasma consists of electrons and
ions which are streaming with velocities Uo, and
U«, respectively. For small perturbations the
motion of the particles, which are streaming with
relativistic velocities, is governed by the linearized
relativistic Vlasov equation, ~3 namely,

af,. p sf,." px B, sf
Bl~ JJ Bx 'ffI,; C p, ep

+- ' -(pxllo) -'-=o, (1)
mJ cyq sp

where y&
= (1+p /m; c )' fp, E&, and 8& are the

perturbed distribution functions, electric field,
and the magnetic field, respectively. ~ labels the
two streams and j refers to the species, i.e. ,
e;=+e for ions and —8 for electrons. f„ is the
equilibrium distribution function which for the case
of nonrelativistic plasmas with relativistic stream-
ing is given by '

f(); =NA exp[ —(V —Uog) /2V,";], (2)

where

a ~ exp [-a
& (1 —Uo&'/2 c )]4' yo)~ K2(aq™/yoq)

with a; =m, c /kT;", yo; = (1 —Uo;/c ), and Z2
is the Bessel function of second order for a purely
imaginary arguments.

For streaming along the direction of the mag-
netic field, Eq. (1) along with the Maxwell's equa, —

tions, gives the dispersion relation

—Q P; -~2 Uo, /P ~
[1 ( /~ )2]

——0, (7)

where P,. =A(2 ~V~2)' i,2X, =0 V,&/02, and f„ is the
Bessel function of first kind and of imaginary ar-
gument. By using some Bessel-function identities, '4

the dispersion relation (7) can be transformed to
a more convenient form as

+ ~ p& (d
~&

+ 2 r~ ~&& p& 1 +2 &~ 2 W 2 Og

(")' ' — (8)
((d —'a Q )

Equation (8) can be studied numerically for the
growth rate of the instability. Before doing so we
shall, however, discuss some special cases where
it is possible to obtain simple analytical expres-
sions for the growth rate.

A. High-Frequency Instabihty (cv —0, )

In this case the contribution due to ions can be
neglected, and the dispersion relation given by
Eq. (8), for the case of strong magnetic field,
i.e. , X, «1, simplifies to

(u4-P(u'+qn, ' = 0, (9)

lnG =+ (i/m&QJ [k,p cose- m&&uy, )(y —y )

+k, p sine (sing —sin&]&')], (8)

where k„and k, are the components of the wave
vector k para, llel and perpendicula. r to Bo.
= (4~Ne /m;) i and 0, =

~ e I Bo/m;c are the plasma
and the cyclotron frequencies, respectively. The
upper and the lower signs in Eqs. (5) and (6) cor-
respond to the ions and the electrons, respectively.

Following Buti and Lakhina, we can show that
for nonrelativistic (y= 1) identical contrastreaming
plasmas and for wave propagation transverse to
the direction of the magnetic field, i.e. , k= 0 e„,
the dispersion relation takes the form

(u,', g I„(x,)e '~

0,. ' „„(n—u)/n, )

jRJ=o,
where

where

p = (c'a'+ u)2~ P, + fl,') (lo)

R=(c 0 —(u ) 1-c kk+QZ (upqPi

r' Q

x [ dpp I dQ p

J 0, Bp

q =c'0'+P, ~~2 —P, ~2~ (1+ U&, /V&. ) &, .

According to Eq. (9), ur is given by

(u'=-,'P+-,'(P' —4qA,') . (12)

with

sf cc

+k p x =i my~y;, (5)ep
From Eq. (12) it is obvious that~ will be negative,
which corresponds to a purely growing wave, if
q &0, i e. , if



1848 G. S. L AKHINA AND B. BUTI

k'&k' (13)

1 «0, /k V„«P, (UL/c )((u~/k V„) . (is)

The numerical evaluation of (15) shows that this
inequality can not be satisfied for relativistic
streaming, and thus the system would be stable
for these relativistic streaming velocities. How-
ever, this can be satisfied for nonrelativistic Uo„
and if we make use of the inequality given by (13),
the instability criterion can be rewritten as

1 « fl,'/u'v, ', & (1+U,'. /v, '.), (16)

which can be satisfied for Uo, » V„.
The growth rates for wave numbers correspond-

ing to Eq. (13) or Eq. (16) is given by

1m~ = [-,'(p'+4yfl, ')"'--,'p ]"',
where

X=-V&0 (18)

Note that Eq. (17) has a meaning only for Uo, /c
«1, in which case P, tends to unity and X increases
with the increase of Uo, so that for nonrelativistic
Uo the growth rate is enhanced by the increase of
Uo, . Since X decreases with the increase of the
magnetic field, the magnetic field will suppress the
growth rate.

B. Low-Frequency Instability (~& Q;)

For the case of low frequencies and for A. ;
=(kR;)2«1, where 8;= V„/0; is the ion i,armor
radius, the dispersion relation of Eq. (8) reduces
to

cu -pro +QQ; =0,
where

p=(q+ p, (up, +n, ),2 2 (2o)

Q =- [q+ p; &o&;
—p; e&;(I + Uo;/V~2&) A.; ], (21)

and q is given by Eq. (11). Equation (19) for v'
gives

&u = ,'Pa ,'(p —4QO;)—— (22)

One root of Eq. (22) is always negative, inde-
pendent of the sign of P, provided Q &0. However,
for P &0, i.e. , X &(0, +P, &u~, ), where X= —q, we
shall have a low-frequency instability along with
the high-frequency instability. In fact p &0 ensures
that the high-frequency waves are unstable (cf.
Sec. II A). The typical growth rates associated with
this low-frequency instability are of the order of

where

&,'=n,'[(V,', +U,', ) -c'fl,'/(P, ~')] '. (l4)

In order to be consistent with the assumption of
strong magnetic field, i.e. , X, «1, for instability,
we must satisfy the inequality

(n'+p (u' )"'
For y &0, the high-frequency waves are stable

but the low-frequency instability can persist pro-
vided Q & 0, i.e. ,

q+P ~,' -P, ~,'(I+U,', /V«)~, . O, (23)

with q &0. In fact this is the situation where the
low-frequency instability is most important.

Equation (23) along with the assumption of X;« I
requires that for instability

Im(d = [2(p + 4QO 0;) ~ - ~P] (2s)

where Qo= —Q. For nonrelativistic-ion streaming
P; tends to unity and Qo increases with the increase
in Uo, and decreases with the increase in T;.
Hence for nonrelativistic-ion streaming, Uo; has a
destabilizing effect and T; has a stabilizing effect
on the growth rate. For U„/c- 1, p, decreases
rapidly with Uo;, and so Qo is decreased; hence
for extreme relativistic-ion streaming the system
will be stable against low-frequency instability.
The effect of magnetic field on this instability is
stabilizing as seen from Eqs. (21) and (25).

C. Cold Ions (T; = 0)

The analysis of Secs. IIA and II 8 was restricted
to the strong magnetic fields and small wave num-
bers, i.e. , X, «1. These restrictions are not
necessary if one considers the case of cold ions
streaming with nonrelativistic velocities. The dis-
persion relation for this case reduces to (for low
frequencies)

where

and

M
I3; V»» —((, V„, ((V,'. + UD, ) -c'O.'(l3. td»(]I .

M '
gyes

(24)
Now from q &0 we observe that for k to be real,
the term in the square bracket in Eq. (24) must be
positive. For the case of low ion thermal velocities
Eq. (24) can be easily satisfied even when [(V„
+Uo, ) —c 0, /(P, &u~)] is very small. It is interesting
to note that for relativistic-ion streaming, the con-
dition (24) is violated due to the fact that for U„/c- 1, P; tends to zero whereas P, is restricted to
some minimum value to ensure the reality of k.
Hence for relativistic-ion streaming the instability
can not occur.

When the requirements for the instability, i.e. ,
Eqs. (23) and (24) are satisfied the growth rate
corresponding to Eq. (22) is given by
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Im(u = [,'(P"+4-y')' ' —,'P]'", —

where

(32)

x =

From Eq. (32) we observe that for low electron
streamings, Cp decreases with the increase of Up,
and also by the decrease of T, but nevertheless re-
mains positive. Hence, for small values of Up„
Up, and 7, will enhance and suppress the instability,
respectively. For extreme relativistic streamings
Cp Q Q and so in this regime Up, and T, have no
effect on the low-frequency instability. For inter-
mediate Up„high-f requency instability is excited
as Cp no longer remains positive. In Sec. III we
find that the qualitative behavior of this instability
remains unchanged for T, 40 (cf. Table I).

Cp=c k +p (0» p (d»(1+Uoe/Vg )[1 fo(p)e e].
(29)

In Sec. III we shall show that Cp &0 is the neces-
sary criterion for the high-frequency instability.
In the absence of high-frequency instability, the
low-frequency instability can exist if Q &0, i.e. ,
if Up~; &U~, where

U~ =(Co+&@~,) 0, /k &u.~;, (30)

with Cp '0
We may point out that the instability condition of

Eq. (30) can be very easily satisfied over a large
range of the magnetic field values even when U~
vanishes. For UO, =O, instability criterion (30)
goes over to

Uo;&(m/M)[c k /(u»+Io(X, )e '+m/M](Q, /k )

= (m/M) fl,'/u' (31)

because Io(X,) e 8 1 and for transverse instabilities
c2ka/&u»a & 1. When the instability requirements
of Eq. (31) is satisfied, the corresponding growth
rates can be calculated by solving Eq. (27) for ~~

and are given by

III. ANALYSIS OF THE GENERAL DISPERSION RELATION

In this section we shall first find the general
criterion for the onset of instability and then pre-
sent some numerical results for the growth rate of
instability. We rewrite Eq. (8) as

L((u') =R(u)'),
where

L(ur )=~ -c k -Z;P;+»

(33)

(34)

U~ ~ 2
(~2) 2 &~ P ~2 I~ og g n n;I„(X )e~

(36)
Following Hamasaki, we observe that the purely

growing waves will be excited if L(0) &R(0), i.e. , if

2 2 ~ 3 y~ 2 pjc k +~~ P&p& —~ Pg co&~ 1+ g 0~&0
Vq~

(36)
where

a, = [l-f,(~,)e-'~].

For nonrelativistic streamings, i.e. , Uo, /c «I,
Eq. (36) which expresses the general criterion for
instability goes over to that of Buti and Lakhina. 4~ 9

The instability conditions discussed in Secs. IIA,
II B,and II C are just the special cases of Eq. (36).
Moreover for high frequencies where ion dynamics
can be neglected, Eq. (36) reduces to Co &0 as men-
tioned in Sec. IIC.

Incidently from instability criterion given by Eq.
(36) we can find out the critical value of the plasma
density or plasma frequency above which the in-
stability can occur. For this we write Eq. (36) as
~~ & co~„where

+', =c'y'[p, (I+ U~2/V, ', ) c, + P, (m/M)(1+ U,', /V,'; ) v;

P. —(m/M) P, ]-', (36)

v~, being the critical plasma frequency. We may

TABLE I. Variation of (Imru/~, ) for g =120, A =0.1, c 0 /co~=0. 1, and T;/T =0.001 and 0.01.

0, 01
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.95

0.01
T;/T,

0.001

0.17 x 10
0.22x 10"
0. 56 x 10
0.17 x 10 6

0.48 x 10-'
{}.83 x 1Q 2

0, 30 x 10
0.45 x 1Q '

0.42 xlp '
0.42 x 10"~

0, 42 xlp 7

0.01

0.0
0.0
0.11
0.16
0.48
0.83
0.30
0, 35
0.32
0, 32
0.32

x 10-'
x 1(}-'
xlp~
x lp ~

x 1(}"~

x 10"7

xlp ~

x lp ~

xlp 7

P. 001

0.42x 10 ~

0, 48 xlP 7

0, 83 x 1(}"7

0.17x 10 ~

(}.48x 1Q ~

0 83 x 10-2

0, 30 x 10"
0.53 x 10-6

0.45 x 10
0.45 x 10
0, 45 x 10"6

Q. 01

0.33 xlp
0.39 x 10"7

0.73x 10 7

0.17 x 10
0.48 x 10-~

0.83x10 2

0.30x 10 2

0.5lx 10 6

0.44 x 1Q 6

0.44x lp 6

0.44x 10"6

0.001

0.23 x 10
0.26 xlp
0.43 x 10
0, 83 x 10
0.48 x 10
0.83x 10-'
0.30 x 10 '
0.26 xlp
0.23 x 1(}
0, 23 x 10
0.23 x 10 5

0. 5

r;/T,
0.01

0, 21x 10 6

0.25x lp 6

0.42 x 10"6

0.83 x 10-'
0.48 x 10
0.83 xlp 2

0.30x 10 2

0, 26 x 10
0.22xlp 5

0. 22 x 10 ~

0. 22 x 10
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FIG. 1. Variation of (Im~/co~) vs U e/c for c 0 / (d
=0.1, a8=120, and m/M=O for +=0.1 (dot-dashedline),
1.0 (dotted line), and 10.0 (solid line), respectively.

point out that the critical plasma, frequency for the
high-frequency instability is higher than that for the
low-frequency instability. Just to have an idea of
the critical plasma frequencies, we find that for
a, = 120, X, = 0. 1, and Uo, /c = 0. 3, the high-frequen-

cy instability is excited when (~~, = 162 0, , whereas
for the same values of a„X„Uo,/c, and T, /7, .
= 0.001, the low-frequency instability is excited
when (a) &u~~ = 7. 14II,'for UO2, /V~~, = 0. 01, and (b)

~~2, =0.1502 for Uo~,. /V~, =0.5. The critical plasma
frequencies appearing in the above example are
ea.sily a,ttainable in the laboratory plasmas. In

general, the inequality &~, & &~, can be satisfied
for quite a few astrophysical plasmas as well as
for the laboratory plasmas.

Equation (33) was solved on IBM 1620, and the
growth rates for m/M =0 are shown in Figs. 1-3.
For nonvanishing I/M and for nonrelativistic Uo„
the growth rates are given in Table I. The case of
relativistic-ion streaming could not be handled on
the computer for the parameters of interest. This
case has been dealt with in Sec. IIB.

From Fig. 1-3 we note that for electron plasmas
the instability can be excited only for some bounded
values of the streaming velocities. The increase
of the magnetic field suppresses the growth of the
instability and also reduces the range of streaming
velocities in which the instability is excited. This is
in complete agreement with our conclusions of Sec. II A.

The high growth rates & 0. 5'~ obtained by Ignat
and Hirshfield~' (Fig. 5) for relativistic streaming
velocities are the ones for longitudinal electrostatic
instability (p «1). Our results could be compared
with their results for p» 1; in which case our growth
rates corresponding to the parameters considered
by them are comparable to the ones obtained by them.

It is interesting to note that the streaming velocity
has an upper bound for instability. This can be ex-
plained as follows: The electromagnetic instability
is excited due to the bunching of the current (as
pointed out by Momota ). The bunching is caused by
the Lorentz force J&8 with J = neU as the current
density. This bunching of the current causes the
perturbed magnetic field to grow and thereby makes
the system unstable. For nonrelativistic streaming
velocities, the local density of the charged particles
remains unchanged by increasing U; so J increases
with the increase in U and this enhances the bunch-
ing. However, in the relativistic regime U/c-l,
the local density decreases sharply as U increases,
thereby decreasing J and consequently the bunching
is reduced.

From Fig. 2 we observe that the instability can

50.0

IO.0

FIG. 2. Variation of Om~/~ )
vs c p /(d~z or g&=3.o0, Q2/~2
=0.001, and m/M=O. Curves 1, 2,
and 3 are for U~/c = 0.2, 0.5, and
0.6, respectively.

0.0.OI O. I I,O
2

c k/UI, e
I O.0
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FIG. 3. Variation of (Im+/cu&~)t va U /c for II2/cu2

=0.01 and m/M=0. Solid curves are for c k /~~~=0. 1
and dashed curves for c k /~=0. 5. Curves 1, 2, and
3 are for a~=80, 100, and 140, respectively. The scale
for the dashed curves along the y axis has been reduced
by a factor of 4.

persist only in a bounded unstable region in k space.
The increase of the magnetic field reduces the un-
stable r egion (this is not shown in Fig. 2).

From Fig. 3 we note that in the relativistic re-
gime of electron streaming, the electron thermal
effects are always destabilizing whereas on the non-
relativistic side they may or may not be destabil-
izing. In fact, in the nonrelativistic regime,

lectron thermal effects are always stabilizing un-
less c k /&u~ & —', and X, «1. This follows directly
from the instability criterion (36).

When U«=0, the effect of ion temperature on the
instability criterion (36) and on the growth rate is

negligible. From Table I we, however, note that
for Uo; ~0 but nonrelativistic, some purely growing
waves with very small growth rates are excited
whenever the electron streaming Uo, is such thai the
system is stable against the high-frequency in-
stability (cf. Fig. 1). From Table I it is obvious
that the low-frequency instability is enhanced by
the ion streaming and suppressed by the increase
of ion temperature; this is in complete agreement
with the results of Sec. II 8 and II C for nonrela-
tivistic U«. From Table I we also note that when

Uo, is such that the high-frequency instability is
excited; U«and T; have negligible effect on the
growth rates as one would have expected,

IV. CONCLUSIONS

A system comprising of homogeneous contra-
streaming magnetoplasmas is susceptible to both
the high-frequency and the low-frequency trans-
versel instabilities. The high-f requency instability
can be excited only for some bounded values of the
electron streaming velocity, Uo, . When the stream-
ing velocities are in the relativistic regime, the
effect of electron temperature is destabilizing
whereas for low streaming velocities the effect is
stabilizing unless c k /~~ & —,

' and X, «1. This in-
stability is not affected appreciably by ion stream-
ing Uo, and ion temperature T,, but is suppressed
by the magnetic field.

For nonrelativistic Uo;, the low-frequency in-
stability is enhanced by the ion streaming and is
suppressed by ion temperature and also by the
magnetic field. For the case of strong magnetic
fields the low-frequency instability can be excited
only for some bounded values of Uo&. Moreover,
the low-frequency instability can be easily excited
at low plasma densities whereas the high-frequency
instability requires comparatively larger plasma
densities.
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