
PHYSICA L REVIEW A VOLUME 5, NUMBER 4 A PRIL 1972

Temperature Fluctuations Associated with Gravity Waves at a Vapor-Superfluid
Interface
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The existence of temperature oscillations associated with surface gravity waves is shown
for an incompressible superfluid in the two-fluid model in equilibrium with its compressible
vapor. The properties of the oscillations are consistent with some informally reported ob-
servationss.

INTRODUCTiON

There has been a recent report' that very low-
frequency temperature oscillations (-2. 5 cycles/
sec) are observed in Dewars of liquid helium when
the temperature is below the & point. The ampli-
tude of the temperature waves is in the micro-
degree range. The frequencies of the waves are
those associated with the lowest allowed wavelengths
for surface gravity waves [~= (kg)'+] but it is not
completely clear why a temperature oscillation
would be associated with such gravity waves. We
show here that if one takes account of the presence
of a compressible vapor above a liquid treated as
an incompressible liquid in two-fluid hydrodynam-
ics, then a temperature oscillation is expected
to accompany a gravity wave. The temperature
wave is theoretically expected to be much less
strongly damped away from the surface below the
~ point and thus would be observable. The predicted
properties of the temperature oscillation wiB be
shown to be consistent with the experimental in-
formation available. The physical origin of the
temperature wave which we find is the temperature
variation induced in the compressible vapor by
the compressions produced by a surface wave.
This source of temperature oscillation is alsopres-
ent for vapor above an ordinary liquid but the
oscillations do not propagate as effectively in ordi-
nary liquid (where they propagate by thermal diffu-
sion) as they do in helium II (where they propagate
as a compressional wave in the normal-fluid. and
superfluid components of the two-fluid hydrodynam-
ic system}.

The next sections present the calculation and
some estimates of the magnitude and other prop-
erties of the temperature oscillation. Finally, we
discuss the relationship of this to earlier work on
liquid helium and point out some remaining ques-
tions.

MODEL

We consider a perfect gas in equilibrium3 with
an incompressible liquid which is described by two-

fluid hydrodynamics. We suppose that the flow of
the fluids is irrotational and we neglect the effects
of viscosity and thermal conductivity. We linearize
the equations of hydrodynamics to study small
oscillations. We assume that the pressure and

temperatures are equal at the interface of the gas
and the liquid. To take account of the fact that
matter is transferred from vapor to liquid during
surface wave motions we assume that such transfer
takes place at a rate o(x, y, f) g/sec/cm2 at the
point x, y of the surface. o(x, y, t) is determined
by the requirement that the pressure and tempera-
ture at the surface follow the vapor-pressure curve
(see Appendix). Linearizing in the velocities, we
then have the following set of equations and bound-

ary conditions: For the vapor the equations of
motion are

(2)

(p~S~) = —p~S~V q ~,

expressing conservation of mass, momentum, and
entropy and constitutive relations

P~= p~k~Tg/m,

S,= (k,/m) ln(em/p, ~') .
For the liquid the corresponding equations are

p„V P„+p,V~/, =O,
0

p„VP„+p VP, = —VP, —p, gz,

P, S, = —p, S,V Q„,2

VP = —VPi/pi —gz+ SiV T(,

where v~= VQ, is the velocity of the vapor, p is
the density of the vapor, P, is the pressure of the
vapor, S~ is the entropy per gram of the vapor,
T~ is the temperature of the vapor, X is the ther-
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[p.P.+ p.4.+ p~g&]o=[p, 4,+ pgL]o, (io)

where f is the surface displacement; taking the
time derivative and using

g 9$(= —+
pe ~z o

mal wavelength of the vapor, rg is the mass of an
atom of the vapor, k~ is Boltzmann's constant, g
is the acceleration of gravity, p„, is the density
of the normal, superfluid, v„,= VP„, is the veloc- .

ity of the normal, super fluid, S, is the entropy
per gram of the liquid, P, is the pressure of the
liquid, and T, is the temperature of the liquid.

A dot denotes partial time differentiation, z is
a unit vector normal to the quiescent surface.

The boundary conditions implied by these as-
sumptions are (see Appendix), for the pressure,

seek a surface wave of form

&P, (z, x, t) =f(z) cos (kx —&t)

and find

or

1p~=A exp(-[ k —(&/c, ) ]'~ z] cos(kx —o'1t) (16)

by imposing the boundary condition 1P, (z - ~) =0.
Using (14) then gives

T, = (- 2r~/3c', ) A exp(-[k'-(&u /c, )']'" ]sin(kx-~t)
(I'L)

for the time-varying part of the vapor temperature.
Here T is the temperature of the vapor and liquid
in the absence of a surface wave.

For the liquid, Eq. (7) gives
of the Appendix,

/

P T —p —pg —- 15
0

from the Appendix gives

[p.4.+ p.4, pi4, ]o=——(~p/p, )[r,]o

v&~+ pigz = —p.v4. p.v—b. .
Inserting this in Eq. (9) gives

(p. /p)v (j,—j)=Svr .n l l

Taking V of this and using (6) gives

V Q =S(V T(,

(is)

(19)

(2o)
[~'= (d~/dr)„, is the slope of the vapor-pressure
curve] Her.e b, p= p, —p, and [ ~ ~ ~ jo means that the
quantities inside the brackets are evaluated at
z= Q. For the temperature, the boundary condi-
tion is

[T,jo =

[TED]o

For the velocities, the boundary conditions are
worked out in the Appendix:

ST,= ca V 1P„2 2

where

(2i)

a l ~P

where we have linearized in time- and space-vary-
ing quantities as before. Equation (6) gives

9$„8$, o. AS

. ~z 0 ~z 0 p, S, (13a)
S, is the time-independent part of the liquid entropy
per gram Combi. ning (20) and (21) one has

Bg„ag, 1
(S)( 1)

in which &r is given by Eq. (A15) of the Appendix.
Here &S= S~ —S, .

CALCULATION

UsingEqs. (3) and (5) gives

(14)

~ 0

v'r, = (i/c, )' r„ (22)

which is also a standard result describing second
sound in helium.

The program is next to (a) solve Eq. (22) for
T, subject to Eqs. (12) and (17). (b) Then solve
Eq. (21) for P, subject to Eqs. (13b) and {16). {c)
Solve Eq. (6) for P„subject to Eq. (13a). (d) Final-
ly impose the condition of Eq. (11) to determine &u

as a function of k.

Taking the time derivative of (2) gives
~0 0

(i5)

Step (a): Temperature Oscillation in the Liquid

Write

and using (4) together with (14) and (15) implies

Qg=c, v Q~,
2 2

where c f= 5ksT /3m. This is a standard result
describing sound propagation in a perfect gas. We

T, (x, z, t) = T, (z) sin(kx- ~t) (23)

(24)

for the time-dependent part of the liquid tempera-
ture. Eq. (22) then implies
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or

using the condition that

T, (x, z -—~, f) = 0
I

(for the time-dependent part).
Then imposing Eq. (12) and using Eq. (17) we

have

T, (x, z, t) = (- 2T~/3c, ) A exp{[k —(~/cz) ] '~ z}

x sin(kx —&f) . (25)

This equation displays the main result of the paper;
the existence of a deeply penetrating temperature
wave in the liquid.

SteP (5): Velocity Potential for the TMo Superfluid

Equation (21) becomes [using (25}]

&& cos(kx- ~t) . (32)

o.„ is determined by Eq. (13a) to be

o.„= (A/k) { r-(p. /p. )[k' (~/ca)']'"

—(p,/p() (I+»/Si) [k' —(&/cg)']"'

+ (&'/g) (1+ 2P 'T/3c
&g) (~p/pi —(&S!S~) (p, /p~0

(33}
Step (d): ~ vs k for Gravity Waves

Equation (11) gives

—(a„p„+ op,) + p, A = —&p)A, (34)

where we have set t = 2P T/3p, c, by use of Eqs. (IV),
(27), and (32). Then using Eqs. (29) and (33) and

setting

y = [k'- (~/c, )']"'k

& Q, = (+2S(T~ /3cz c,) A exp{[k —(~/cz)']"'z}

x cos(kx- &f) . (26)

gives

(0 /'gk =2 ~ pry+ pi+ +pl
~p(I+ h)

(35)

This has the general solution

P,(x, z, l) = (o.,e ~'+ (A'/czz/&) exP{[kz —(&/cz)3]'+ z}

In the case that p~«p, we set p~/p, =e and get to
first order in e that

x cos(kx- &&)), (2'7) oP=gk 1+ E if p~ p, «1,1+y
(1+ &)

(36)

where

A' = —2S,T +A/3 czz c~, (28)

+y k

and where P,(x, z- —~, f) =0 has been used. o., is
determined from Eqs. (13), giving

which reduces correctly to ~ = gk when e = 0. To
check that ihe result is correct when a=0, we
note that in the case o= 0 we have from Eq. (A15)
that

o= (A/g) {p,(I+ &) ~'+ p.g [k' —("/ci)']'")= o (3'I}

or when (&/c, )z«kz that

~'/gk = —I/{(+ 1) . (38)

Inserting this into (35) and solving again for (uz/gk

gives

in which

~p+ p(~ /SS () (p./p, )+~ 1+
3C1 pgf pit

(29)

&'= gk[&p/(p, + p&)li«=0 (39)

in agreement with the standard result for two fluids
without evaporation or compressibility.

y= 2S, T/3c', . (3o}
DISCUSSION OF TEMPERATURE OSCILLATION IN LIQUID

Step (c): Velocity Potential for the Normal Fluid

Equation (6) is

v'4. = —(p./p. ) &'4. (31)

or using (26)

V,y„= (A'p, /p„) exp{[k' (~/c, )']'"-z) cos(kx- ~f)

with solution

p„= (o„e"—(p,c',/p„~ ) A' exp{[k' —(v/c, )']' 'z})

In this section we first consider the order of
magnitude implications of Eq. (25) which displays
the existence of a temperature wave in the liquid.
We use parameters relevant to the experimental
case of interest. ' In that case k =1 cm ' (5-in.
Dewar) and ~ = 15 sec ' (v =16Hz) while cz ——2000
cm/sec. Therefore, we have (~/cz) =III cm '«k.
Thus the temperature oscillation in Eq. (25) damps
out in a distance of the order of centimeters. We
can estimate the magnitude of the temperature
oscillation in terms of the amplitude A by use of
T=2 K, c, = I/v 5&10' cm/sec and Eq. (25), giv-
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ing an amplitude of &T = 7&10 'A K. A is related
to the amplitude of the surface wave by

v„=kg, and ~g = v„+ &/P&.

Using

cr = p, A (~2/g+ k) = 2pg Ak

then gives

(=3Ak/& or &T= —,'x 10
~

L~
'K

when T is in 'K and g is in cm. Thus a microdegree
oscil. lation corresponds to a surface oscil.lation of
amplitude 3 && 10 3 em. In the experimental arrange-
ment, gravity waves of this amplitude might be ex-
cited quite easily by stray laboratory vibrations. '
Thus the predicted amplitude of temperature waves
is probably large enough to account qualitatively
for the observations .

The approximations involved in going from Eq.
(35) to & =(gk)'~ involve assuming that

(&/c, k) = 5 x 10 0 «1

Pt/Pl e 20

Thus the predicted frequency is &= (gk)'~2 for this
case to within about 5% approximation. This is
consistent with the observed frequency of the tem-
perature oscillations. The largest corrections to
to= (gk)'~2 are those of order e in Eq. (36). We ex-
pect u to be about 5% higher than in the absence
at the vapor. The result (39) with no evaporation
gives on the contrary a frequency lower than
(gk)'~2. The equation also predicts a possibly ob-
servable temperature dependence of

To understand why the temperature oscillation
might not be observed above the & point we con-
sider the corresponding calculation with an ordi-
nary incompressible liquid replacing the two-f luid

liquid. If the thermal conductivity is ignored, then
there is no temperature wave at all. Including
thermal conductivity gives

P

T, = —(2T&A/3c, ) sin/kx —&t

+ kz [1p ((u/Dk')2]' 2 sin[ —,
' tan ' (&/Dk )])

x exp(- kz([l+ (&/Dk ) ]'~ 2cos[ —,
' tan '(&u/Dk )]]),

where'

D = ~/c„p, = 10-' cm'/sec

is the thermal diffusion constant for liquid helium
above T~ vis the therm. al conductivity and c„ is
the specific heat. With + - 15 sec ' and A

- 1 cm
we have (&u/Dk2) -10' so that

T, = (- 2T &A/c2) exp(- &2/v 2Dk)

xsin(kx- ~t)+ ~z/v 2Dk).

This disturbance is damped in a distance

~2 Dk/~ = 10 ' cm

and would therefore not be seen. ' Thus this cal-
culation is consistent with the observed disappear-
ance of the temperature oscillations above T~.

RELATION TO THIRD SOUND, RIPPLONS, AND
RECENT WORK

The work of Atkins' predicting third sound is re-
lated to the present calculation in. the fol.lowing
way. Atkins implicitly includes normal-fluid vis-
cosity by fixing the normal fluid. He does not in-
clude pressure variations in the vapor but he does
include evaporation effects. With these diff erences,
his calculation is the shallow-water version of the
standard calculation describing surface gravity
waves' (using two-fluid hydrodynamics instead of
one-fluid hydrodynamics). Our calculation is the
two-fluid hydrodynamic version of the standard
calculation for two fluids in contact in the deep-
water limit (the kh, kh» 1 limit of problem 2,
Sec. 12 of Ref. 2), with the added proviso that
the upper fluid be compressible and with evapora-
tion included. The other difference in the two
calculations is that in the shallow-water limit
(Atkins4) the force of gravity is replaced by the
van der Waals forc e .

The present calculation is also closely related
to earlier work of Kuper' and Atkins on gravity
waves called ripplons by Kuper, In the paper by
A tkins, the interest is in the effect of these waves
on surface tension. Atkins e laimed that the su r-
face tension is only aff ected by the short-wavelength
surface waves in which gravity plays a negligible
role. Kuper's paper was concerned with critical
velocities. He considered bulk gravity waves but
applied the resul. ts to a film, a procedure which
Atkins pointed out was incorrect. Neither of these
papers considered the vapor and neither suggested
that a temperature variation would be associated
with surface waves on the bulk fluid. In the termi-
nology of Kupe r ' s pape r, we can say that the re-
sult of this calculation is that consideration of the
compressible vapor above the fluid shows that tem-
perature os cillations are ass ociated with ripplons
on the surface of bulk superfluid helium.

Arkhipov' has also treated the film problem. He

did not obtain a temperature variation because he
included neither the vapor (as done here) nor the
locking of the normal third (as done by Atkins ) nor
the evaporation effects (also done by Atkins0 and
here).

Recently, work by MeinhoM-Heerlein and Loos'
appears to take most of these features into account
in studying the problem of sound waves incident on
a vapor-liquid boundary. We cannot make a de-
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tailed comparison of this work with the present
calculation because a detailed account of the cal-
culation has not appeared. The approach to entropy
balance appears, however, to be different.

Finally, the recent work of Seiden' has treated
the bulk liquid surface oscillation including vis-
cosity but neglecting the vapor. He finds a tem-
perature oscillation linear in the viscosity in the
absence of the vapor which he finds to be "very
weak. "

FURTHER QUESTIONS AND DISCUSSION

The range that the temperature oscillations pene-
trate the liquid is shown by (25) to depend sharply
on the temperature near T, through the velocity
of second sound cz(T). This should be an experi-
mentally verifiable point which could be used to
check the theory quantitatively. The depth depen-
dence of the oscillations wouM not be hard to moni-
tor by use of a small thermometer atvariousdepths
and at various temperatures below but near T~.
A second feature of the theory which should be
quite easy to check experimentally is the tempera-
ture dependence of the oscillation frequency im-
plied by Eq. (S6). In the case of interest this reads

& =Z&(I+ p, /pi)

The correction term is of order 5% (2% in the fre-
quency) and is temperature dependent near T„.

It is straightforward to extend the calculation to
liquid helium of finite depth. Other possible ex-
tensions of interest include adding the effect of
normal-fluid viscosity and thermal conductivity
and of rotational flow. The neglect of thermal
conductivity and viscosity in both the liquid and the
vapor seems justified, both because they are
small and because the phenomenon of interest oc-
curs suddenly at the & point and therefore seems
unlikely to depend essentially on these quantities.

ACKNOWLEDGMENTS

tions. We proceed from the first formulation to
the second. The equations of mass continuity in-
cluding o are

p, = —p, V v, —o &(z —&),

p„v ~ v „+p, 'v ~ v, = e 5(z —t;) .
For entropy conservation we have

(Al)

(A2)

„(p,S',) = - p,~,'V'4, ~. 6(z - &),

pi~rv 4'a+ o's 6(z —&) ~

8$,

(AS)

(A4)

Evaporation corrections to the momentum-con-
servation equations can be shown to arise only in
second order in the velocities. One therefore has

83'
] = —7'I~ —p~gz, (A6)

8t
= - V'P, —p,gz {A6)

o 9$4= —+
pg 8z p

(A7)

p~) sz «»i sz o
(A8)

VAPOR

~AREA a

for momentum conservation to lowest order in the
velocities.

We integrate eachof the Eqs. {Al)-(A4) over a
pill box defined as in Fig. 1(a) for the liquid equa-
tions and as in Fig. 1(b) for the gas equations, as-
suming Wa» e & 0 in each case. We get, lineariz-
ing as before,
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APPENDIX: BOUNDARY CONDITIONS

We suppose that a mass o(x, y, t) per unit area
per unit time is deposited from the gas to the liquid
at the surface at the point x, y of the surface and
that at the same time entropy transfer o, per unit
area, per unit mass takes place from the gas to the
liquid. We may include these effects in the equa-
tions of motion through use of & functions. Alter-
natively, by integrating the resultant equations of
motion over appropriate surfaces, we may take the
effects of o, o, into account in the boundary condi-

LIQUID

~AREA a

(-l

(b)

FIG. 1. Integration volumes used in the appendix.
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from the continuity equations, but [Pjo involves only perturbations, so we have

(A9) pal 4,)o+ p,g& = &'P', ], (A14)

v, ) BP„
pt~ ) ~& 0

(Alp}

Combining this with (A7) gives an equation for cr:

from the entropy equations, and

p l4' )o= —f&1o- ps&

p.fW. 4+ p.l:b.l~= f&l, —c+&—

(Al 1) To determine o, we compare equations (A7) and
(A9) giving o', =S~o. Then combining (A8) and (Alp)
gives

from the momentum equations. Equating the pres-
sures in (All) and (A12) then gives Eq. (10).

We use (All) to impose the condition that the
temperature and pressure stay on the vapor-pres-
sure curve at the surface: Taking the time deri-
vation. of (Al 1} and linearizing

and using (A8) we have

V']0= p, l:k,j,+ p,st, (Als)
sAn

Z 0
(A17)
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