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The large-separation asymptotic forms for the retarded van der Waals forces between a
neutral polarizable particle and a conducting wall, and between two neutral polarizable particles,
are derived from classical electromagnetism under the assumption that the universe contains
fluctuating classical electromagnetic radiation with a Lorentz-invariant spectrum (classical

electromagnetic zero-point radiation).

These forces were first calculated by Casimir and

Polder from quantum electrodynamics, and then recalculated by Casimir using ideas of zero-
point energy. The present calculation involves purely classical electromagnetic attractions
between classical oscillators driven by fluctuating classical radiation.

I. INTRODUCTION

In 1948 Casimir and Polder® calculated the van
der Waals force between two neutral polarizable
particles to fourth order in quantum electrody-
namics. They found that because of retardation
effects, the interparticle potential fell off with
distance faster than the London® #~®, actually going
asymptotically to »~7. This result for the retarded
van der Waals force has been recalculated®™® a
number of times within attempts to obtain an un-
derstanding of the physical mechanism for the as-
ymptotic behavior. The present paper presents
yet another recalculation in the context of a basi-
cally simple classical picture.

Very shortly after his work with Polder, Casi-
mir3 presented an interpretation of the asymptotic
7" potential based upon ideas of quantum zero-
point energy. The present writer, essentially as
an outgrowth from Casimir’s ideas, has been led
to propose®=® that many of the phenomena that are
presently regarded as quantum mechanical in nature
may be explained in terms of classical physics
when we include the possibility that the universe
contains random classical electromagnetic radia-
tion with a Lorentz-invariant spectrum.® Planck’s
constant is introduced as the multiplicative constant
fixing the scale of the classical radiation spectrum.
This hypothesis of classical electromagnetic zero-
point radiation is a valid possibility within the con-
text of classical electromagnetism, and it leads
to entirely classical derivations of the blackbody
radiation spectrum,® of fluctuations usually as-
sociated with photon statistics,” of the third law of
thermodynamics,® and of rotator specific heats.’

It is tempting to suggest that the zero-point radia-
tion may provide the basis for the fluctuations in
Nelson’s derivation!! of the Schrddinger equation
from Newtonian mechanics plus a particle random
walk,

jon

Very recently, it has been shown'? that the un-
retarded London-van der Waals potential (»%) be-
tween two polarizable particles may be derived
from classical electromagnetism including classi-
cal electromagnetic zero-point radiation. In the
present paper, we will give the derivation of theas-
ymptotic retarded potential (»-"). In the future,
we hope to obtain the full fourth-order van der
Waals force and indeed to prove the equivalence to
all orders in perturbation theory between the quan-
tum electrodynamic calculations of van der Waals
forces and those from classical electromagnetism
including classical electromagnetic zero-point
radiation.

II. BASIC ANALYSIS FOR FORCES IN ASYMPTOTIC
REGION OF LARGE SPATIAL SEPARATIONS

The polarizable particles experiencing van der
Waals forces are regarded as harmonic dipole os-
cillators satisfying Newton’s second law of motion

mE=—m X+ eBE, £)+2(e¥/ )X, ®

where X is the displacement of the oscillator of
charge e and mass m, w, is the natural frequency
of the oscillator, E(F, #) is the electric field at the
position of the oscillator, and the term 2(e?/c3) ¥
gives the particle radiation reaction. The electric
field E in space is taken as that due to all the
charged particles present, plus the random clas-
sical zero-point radiation field

2 - -
Ey(F, H=ReX) | d®kre(k, \)b(k, 1)
A=l

x exp{i{ KX ~wt+0(k, 1]}, @)
with
g(E, A)E(E, N)=0p, w=ck (3)

and
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(k=3 . @) where
The fluctuations are treated with the random-phase a=e?/mwg M

convention of Planck'® and of Einstein and Hopf."

The essential mechanism for van der Waals .
forces is quite simple. The fluctuating zero-point
radiation causes random polarization of the parti-
cles, and these then interact through their classical
electromagnetic fields. When the particles are
close together, their mutual interactions can be
handled through the electrostatic fields of the in-
duced dipoles. The natural frequencies w, and ra-
diation damping of the oscillators play a crucial
role (see Ref. 12) in arriving at exactly the London
result.

However, when the polarizable particles are very
far apart, it is only the very low frequencies of os-
cillation which we expect to play a significant role.
For high frequencies (small wavelengths), there
will be canceling effects between adjacent fre-
quencies if the particles are very far apart, since
the slight phase shifts will build up over the large
distances. Thus in the asymptotic region v~ «,
we expect only the frequencies near w=0 to affect
the interactions of polarizable particles. Although
the expressions we employ are conveniently ex-
pressed in terms of integrals over all frequencies,
only the low-frequency parts actually contribute in
the asymptotic region of large separation.

Now the analysis for low frequencies is particu-
larly simple, since we may neglect the term m X%
and the radiation reaction involving ¥'. We have
the oscillator in phase with the driving radiation

-

x=(e/mwd) BT, 1), (5)
p=eX=ok , (6)

2
EQ@, t)=Re};
by

is the static polarizability of the particle.
The force on an electric dipole P in an electric

field ¥ and magnetic field B is given by
F=(-v)E +pxB . (8)

If the dipole is induced by the electric field as in
Eq. (6), then

F=(af - V)BE+ oEXB , (9)

where « is the polarizability. The associated en-
ergy of the particle for a=const is

§=-L1aE2 , (F)==-v(8). (10)

It is this last expression that we use as the basis
for calculations of the potentials U(R) for particles
separated by a distance R. We write

U(R)=8(R) -8(), (11)

subtracting the comparison energy &(«) when the
polarizable particles are removed to spatial infin-
ity.

III. POLARIZABLE PARTICLE AND CONDUCTING WALL

Following the example set by Casimir and Pold-
er,' we first calculate the second-order attraction
of a polarizable particle to a perfectly conducting
wall, and then later calculate the attraction between
two polarizable particles.

We consider a polarizable particle a distance R
along the x axis from a conducting wall in the yz
plane. The random electromagnetic zero-point
radiation is reflected from the conducting wall and
hence satisfies (with %, <0 only)

a3k bk, 2)(2explilk: X - wt+ 0)]+(27i-¢€ —&)explil(-27i- K+K)-X-wt+6]})

2 > -~ ~ -~
=25 | @®kb(k,N)2[7 €, cosk,xcos(kyy+kez —wt+0)=(je,+k¢,) sink, xsin(kyy +kz—wt+6)].  (12)
=1

Substituting the value for E(%, #) at the point (R, 0, 0) into Eq. (10) for the energy 3,

£(R)=-%a<za)i

dskJ d3p'4 H(k, ») &’ \")
A=l %=1

X[e, € cosk”Rcosk;R+(ev€;+e,eﬁ)sink,Rsink;R]cos(—wt+9)cos(—w't+9)> , (13)

where the brackets indicate the averages over time
(cos[-wi+ o(k, )] cos[- w't+ 0", \)])

= % 5),}.'53(E"E') )

(sin[ - wt+6(K, \)] cos[ - w't+08& ,2)]y=0. (15)

(14) -

—

Now integrating over all %,,

A=l

5(R)=—%a225d3k%(ﬁw/ﬂa)

x [e,2cos?k, R+ (€% + €.} sin®k,R] . (16)
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This integral for the energy is divergent at high
frequencies. However, our interest lies only in the
change in the energy with the distance R of the
polarizable particle from the conducting plate.
Hence we subtract the energy at some fixed com-
parison point, .chosen conveniently as R~ «,

U(R)=8(R) -&()
=-3a f,l Ak 3w/ 1) [€,2(cos®, R — )
A=

+(e2+ €A (sin’e,R-%)], (17)
where we have written
cos®k,R~%, sink,R-3 (18)

as R~ «. Except for the difference between box
and free-space normalization, this potential is the
same as the electric terms in Eq. (12) of Ref. 5.
The integrations are easily carried out as indicated
in that paper, giving

U(R)= — (3/87)(c/R") , (19)
which is exactly the Casimir-Polder result.
1IV. TWO POLARIZABLE PARTICLES
The asymptotic potential between two polarizable
particles is obtained in analogous fashion. We con-

sider two polarizable particles A and R, where A
is situated at the origin of coordinates and B lies

J

2
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to the right a distance R along the x axis.

The electric field acting on particle B consists
of the classical zero-point radiation E; of Eq. (2),
and also of the electric dipole field E; from parti-
cle A. The electric field of a dipole p e™*“f oscil-
lating with frequency w is

i, T, t)=Re[pF -7 (@ D) S| e it (20)
with

F = B[(kr)t + (k)2 = (7)™, (21)

G = B[(k)t + 3i(kn) % = 3(k7) 2 ] ™" . (22)

The potential between the polarizable particles is
found from the energy of particle B in the field of
particle A :

8(R)= -3 ap[By(Ts, 1)+ Ezu(T5, 1) 7. (23)

Again subtracting the divergent energy when the
particles are far apart, we find

U(R)=8(R) -8(), (24)
and keeping terms to lowest order,

UR)= - agEy(Fs, 1)  E5u(fs, 8) , (25)
with

§A= aAEO(_fA 0. (26)

Thus we arrive at

UR)=—-a, ap <2 )23 jdsk I d’k’ H&, \)HE’, \') cos(k,R - wt+6)

A=l a'=l

x{e+&'[('3/7)cos(K'R - w't+6") - (&'/r?) sin(k'R —w't +8') = (1/7%) cos(k'R — w't +6")]

-, €[('%/7)cos(k'R - w't+6") — (3k'/r®) sin(k'R —w't+6") = (3/7%) cos(k'R - 't + 0’)]}>. 27

The time averaging involves terms such as

(cos(k,R —wt+06)cos(k’'R —w't+6’'))=cosk,Rcosk'R (cos(~wt+8) cos(-w't+6'))

+ sink, R sink’R {sin(- wt + 8) sin(- 't +6’)) — cosk, R sink’R {cos(~ wt+ 6) sin(- w't+6"))

— sink, R cosk’'R {sin(- wt + §) cos(- w't+0")) = (cosk, R coskR + sink, R sinkR) 3 5M.63(E -k . (28)

However, the term in sink, R is odd in %, and will vanish in the integration over k,. The potential becomes

2 2
k
UR)= - ayap 2 a0t 25 [(k— coskR - —%
a=1 T v v

sinkR - 13
”

coskR)

2 (K2 3k . 3 |
&\ coskR — P sinkR - -5 coskR) | zcosk, R . (29)

f

tric polarizability. Carrying out the integrations
as indicated there, we arrive at the Casimir-Polder
result

Comparing this with Eq. (23) of Ref. 5, we see that
we have (except for the change of normalization)
exactly the terms of that equation involving the elec-
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U(R) = 23 a a5 fic (30) particles. In this low-frequency domain, it is easy
e . .
4R to calculate the dipole moments induced by the :
V. SUMMARY zero-point radiation and then to obtain the mutual

If one assumes that the universe contains random
fluctuating classical radiation, then neutral polar-
izable particles are continually being polarized, and
accordingly are continually emitting and absorbing
radiation. In the asymptotic region where distances
are large, only low-frequency field fluctuations will
influence the attractions between neutral polarizable

forces between polarizable particles. Assuming

a Lorentz invariant spectrum of classical fluctuat-
ing radiation with the scale set by Planck’s con-
stant, the results obtained for the attraction be-
tween a polarizable particle and a perfectly con-
ducting wall, and between two neutral polarizable
particles are in agreement with the quantum elec-
trodynamic results of Casimir and Polder.
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Calculations of space-charge-controlled diffusion of electrons and positive ions in an iso-

thermal afterglow are presented.

In particular, the transition from electron-ion ambipolar
diffusion to free diffusion of the electrons and ions is investigated.

The results are in qualita-

tive agreement with the experiment of Gerber, Gusinow, and Gerardo insofar as predicting the
general features of the transition from electron-ion ambipolar diffusion to free diffusion. In
addition, the results substantiate the general behavior implicitly predicted by the more elabo-

rate steady-state calculations of Allis and Rose.

INTRODUCTION

This work reports calculations of space-charge-
controlled diffusion of electrons and positive ions
in an isothermal afterglow. In particular, the
transition from electron-ion ambipolar diffusion to
free diffusion of the electrons and ions is investi-
gated.

Allis and Rose! (hereafter designated as AR) laid
the foundations for this work in 1954 when they cal-
culated the ionization rate necessary to maintain a
steady-state discharge. Their result of interest
here is the effective diffusion coefficients of elec-
trons and (implicitly) positive ions as functions of
the electron density in the discharge. In their con-
clusions it was pointed out that if the ionization fre-

quency in a steady-state discharge is associated
with the electron loss rate in an afterglow, then
the aforementioned effective diffusion coefficient
should describe the electron loss rate in-an after-
glow.

To date there have been several attempts to test
the AR theory.?® These did not give quantitative
agreement with theory. However, considering that
the AR results were for hydrogen (in the steady
state) and the experiments used helium? and neon®
this is not surprising.

There have been many experiments in which a
mass analyzer has been used to measure the ion
decay rate (inferred from the ion wall current) dur-
ing an afterglow. In this work we are concerned
primarily with the experiments of Gerber et al.*



