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A general procedure is formulated by which the hierarchy of many-particle scattering equa-
tions of the Faddeev types can be reduced systematically to matrix equations of lower dimen-
sions. As illustrations, such reduced sets are derived explicitly for the three-particle system
by rearranging different components of the total Green’s function, The resulting equations it-
erate with connected kernels only in the explicit channels. Using the reduction method, the
connection between the various versions of scattering equations derived earlier have been ex-
hibited. The effect of implicit channels may be taken into account noniteratively using the
channel projection operators. It is also shown that an arbitrary set of distortion potentials
may be introduced for the purpose of minimizing the coupling between the rearrangement
channels, thus improving the convergence of the multiple-scattering series.

I. INTRODUCTION

Much effort has been made!~® in recent years to
apply the Faddeev equations* (FE) to actual physi-
cal three-particle systems in atomic and nuclear
problems, with moderate success in some cases.
Although the FE provide a mathematically consis-
tent description of the three-particle scattering
problems, 3-6 jt has become increasingly clear that
they are often not the most convenient set of equa-
tions to apply. Some of the practical difficulties
are (i) the absence of any divect distortion po-
tential terms; the distortion effect is generated
solely by the coupling to other rearrangement
channels. This seems to place too much emphasis
on the coupling terms. (ii) The presence of three-
coupled equations, each with infinite sets of in-
elastic channels, makes actual applications ex-
tremely difficult, although the set treats all three
rearrangement channels symmetrically. For sys-
tems with more than three particles, the set of
equations is almost impossible to solve. (iii) The
convergence of the final amplitudes, as the input
two-particle amplitudes are improved, is very slow
in many cases. This is of course directly related
to the problems (i) and (ii).

In the present paper, we consider the question of
what are the most convenient sets of equations to
solve by relaxing the mathematical rigor of the
original FE and obtaining a simpler theory which
can be more readily applied to many-particle elas-
tic, inelastic, and rearrangement processes. I
we denote the initial and final channels of interest
to be explicit and all the rest of the channels as
implicit, then the reduced matrix equations that
we obtain are such that the iteration kernels are
compact only for the explicit channels. This is in
contrast with the FE which provide connected ker-
nels in all the rearrangement channels, The dis-
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cussion below is based on the assumption that, when
the implicit channels are treated by some nonitera-
tive approximations, the loss of rigor for the im-
plicit channels then may not be serious.

A brief summary of the result of Faddeev is given
in Sec. II, and we define notations. Several crucial
steps in the derivation of the FE are pointed out,
which will be useful later on. In particular, we
note certain arbitrariness in the separation of the
total Green’s function and the scattering functions
into several components, and this feature is used
to reduce the FE into sets of two-coupled equa-
tions for particular explicit channels. We obtain
in Sec. III the sets which are symmetric as well as
asymmetric in the channel labels. One of the re-
duced forms turns out to be identical to that ob-
tained earlier by Watson™® and also by Lovelace,
In order to improve further the applicability of the
equations, we consider ways to introduce distortion

potentials into the FE and the reduced sets so as
to minimize the coupling effect among the re-
arrangement channels. This is described in some
detail in Sec. IV, again following the original pro-
cedure of decomposing the total Green’s function,
as has been done in Secs. II and III. The treatment
of the implicit channels using the channel projec-
tion operators is also briefly discussed. ® Finally,
a general reduction method is outlined in Sec. V,
which allows one to immediately generalize the
preceding results to systems involving more than
three particles in a very trivial way.

Throughout the paper, we formulate the problem
in terms of pairwise potentials and Green’s func-
tions in configuration space. Description of the
problem and various possible formulations in terms
of the differential scattering equations and scatter-
ing wave functions seems to be more direct and
simple. It would, of course, involve a straight-
forward algebra in rewriting our result in the
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forms of integral equations and two-particle am-
plitudes. However, we see no apparent practical
advantage in doing so, at least at this stage of the
treatment.® A sample derivation is given in the
Appendix as an illustration.

Thus, the procedure outlined above may circum-
vent some of the difficulties (i)-(iii) and facilitate
applications of the Faddeev-Watson-type equations.
A preliminary study to determine the potentials Y,
and Y, of (4.9) in the case of high-energy proton-
hydrogen charge-exchange collision is being car-
ried out, ° and the result will be reported on else-
where. The main result of the paper is contained
in (4.9), (4.10), (4.11), and (4.17) for the breakup
reactions.

II. FADDEEV EQUATIONS

We briefly summarize the results of Faddeev*
which are relevant to our discussion and point out
several essential steps in the derivation of the FE
which will be useful later on, For definiteness, we
consider the elastic scattering of the particle 1 by
a bound state of (2+ 3), with the coupling to other
channels 2+ (1+3) and 3+ (1+ 2) taken into account
explicitly. The elastic amplitude is given by

fa= (@ Vi ¥), 2.1)
where

H=H;+V;, i=1,2,3=channel labels

2.2
(H;~E)®,=0, (2.2)
with
H;=Hg+ Vy,, Vi=Vy;+ V. (Gk cyclic). (2.3)

The total wave function is
¥, =®,+GV, 9, , (2. 4)

where

c™ = (E‘*’ —H)1'=Gy+G,VG , G<0+) - (E(” —Hy?,

VEVy=Vig+ Vig+ Vgg=H -H, . (2.5)

In order to simplify notations, we will drop the (+)
in G’s and E without loss of clarity. Following
Faddeev, we set

3.
G:Go+i>:/ G'" | (2.6)
=1

with
G =G,V,;,G (ijk cyclic) . 2.7)

Substituting (2. 8) into (2. 7) and rearranging the
terms, we obtain

GV =GV ;Go+ G VG + Gy V,, (G + G
=G VjuGo+ G Vi (G4 Gy | (2.8)

where

Gi= (B —H) =G+ Gy VG, . (2.9)

On the other hand, the form (2. 6) for G immediate-
ly suggests that ¥, be separated into components as

VU, =®,+ GV, @42 G V@, =0, ¥ (2.10)
where

W q)lJrG(l) V,@, ,

VD = GoV,38,+G PV, 8y, (2.11)

V-G V,,8,+ GV, 2,

Combining (2. 8) and (2.11), we can rewrite ¥'* in
the forms

VW 2 1 Gy Vg (B2 4+ ¥y (2.12)
VP =G,V (B 4+ D), (2.13)
\1,(3)____(;3 Vla (\1,(1>+\I,(2) ) . (2 14)

Thus, we finally have the FE in the differential
form

H;—E) ¥ V= v, (W9 w®) (2.15)
The above derivation is, of course, well known,
and the salient properties of (2.15) have been clar-

ified by many workers so that we do not repeat
them here. However, we point out several essential
steps involved in reaching the result (2.15). First
of all, the identification (2.6) is a necessary step
in the derivation of the FE, but such a separation
of G is rather arbitrary. Different separations of
G will naturally lead to different sets of coupled
equations, and will be studied in more detail later.
Secondly, (2.15) does not contain any distortion
potentials on the left-hand side. Instead, all the
scattering in the 7th channel is brought about through
its coupling to the jth and kth rearrangement chan-
nels. This apparent overemphasis of the coupling
to rearrangement channels seems to be one of the
major difficulties in actual applications. In fact,
one rarely evaluates amplitudes beyond the second
term in the multiple-scattering expansion, except
in some special cases.

As the number of particles involved in the colli-
sion increases, the scattering equations become
rapidly more complicated. The compactness of
the iteration kernels of their solution would be of
little practical help, because we cannot iterate too
much. Before the iteration, we first have to re-
duce the equations to a manageable level of com-
plexity. If we denote the initial and final states as
explicit channels and the rest as implicit, then
the simplest possibility may be to treat the explicit
channels by a set of coupled equations, while the
implicit channels are to be handled in some non-
iterative way so that the noncompactness of the
kernels for implicit channels would be the least of
our problems. This point will be elaborated on in
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Sec. IIIL

In the present paper, we will refer to the com-
pactness of the iteration kernels and the connected-
ness properties interchangeably, with the value of
i€ in G’s held at some small nonzero value through-
out the calculation, 3~°

Finally, it is noted that (2. 15) and the result to
follow can be rewritten in terms of two- and three-
particle transition operators, as usually has been

done. !’ However, we express our result in the form

of coupled differential equations in order to avoid
sometimes tedious but straightforward manipula-
tions. The differential form is especially conven-
ient for a configuration-space treatment of the prob-
lem, and also brings out clearly the structures in-
volved.

[II. REDUCED FADDEEV EQUATIONS

In this section, we consider the various possibil-
ities of reducing the FE (2.15) to sets of two-cou-
pled equations. We can proceed either with (2.15)
and eliminate one of the channels, or go back to
(2.6) and (2.10). Both will be considered.

A. Direct Reductions

We start with (2. 15) and eliminate, e.g., the
third channel as in the reaction 1+ (3+2)~(1+3)+ 2,
Using (2. 14), we have

(Hl—E)‘I’m: -V w2 Va3 Gs Vip iy

= VGV ¥'? . (3.1)
(Hy=E) WP = = Vi W'V = Vi3 Gy Vyp ¥V
- VisGs Vi ¥2 . (3.2)

Therefore, we may define the new functions

FO=g0 0 v, w0 | HR w2, gy, U

3.3
and obtain e
[Hy+ Vyp=E] ¥V = — v, 2 3.4)
(Hp+ Vip-E] ¥ Vi 12 ’
with
=W, (3.5)

Obviously, there are other possible choices for ¥'?
which lead to different forms of scattering equa-
tions as long as (3. 5) is maintained—such as the
form ¥ = @), G3 Vi, ¥ On the other hand, it
is important to note that (3. 4) can also be obtained
at an earlier stage by redefining the Green’s func-
tion G. Since (2. 6) was a rather arbitrary choice,
we may set with equal validity "

G=G3+ Gy V3G =Gyt Gy Vay G + Gy Vg G
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Now, following the similar steps that led to (2. 15),
we recover (3.4). In the following discussion, we
prefer this latter procedure of redefining G and ¥,.

When (3. 4) is iterated, we immediately find that
the iteration kernels for the explicit channels 1 and
2 are compact, i.e., connected in the form
&1V13g2 Vas, while the channel 3 component is not
connected, with the kernels G, Vy, and G, V,,. This
is the price we pay when (2. 15) is simplified to
(3.4) [g;= (E'Y =Hy-V;)™ ). The basic assumption
of the present approach is that the effect of non-
compact kernels for the implicit channels may not
be serious as long as we avoid the iterative solu-
tions for this part.

B. Multiple-Scattering Equation

Instead of the rearrangement scattering consid-
ered in Sec. IITA, we now turn to the elastic scat-
tering 1+ (2+3) -1+ (2+3) and try to eliminate the
channel 1. For this purpose, we write

G=G,+G V13G+G V3G =G+ G P4, V4 |

3.7
where
GmAEGl VieG=g,V12G1+ &5 V1zc(3)A ,
3.8
G4 g, V13G1+ 83 Vis G124 .9
with
82= (Em -Hy- Vz)-l=Gl+ G V1282,
R - 3.9)
g3=(E"" ~Ho=V3) =G+ G, Vyisgy .
Now, ¥; may be written in the form
\I’1=—¢1+‘I’(2)A+ \11(3).4 , (3‘10)
with
V240,46, V38,464V, 8,
=d gy Vi ¥4 (8.11)

V420 46V, 8,+G 24V, 8,=0,1 g, V,, VP4
Therefore, we get

(Hy+ Vog=E) (W24~ &)= = v, w4

H.4 V. EY(UPA_ 6 y= V7, UDA (3.12)
(H3+ Va = E) ( -®)==Vy .

The set of equations (3.12) may be compared with
that derived by Watson" in his multiple-scattering

theory. It is given in our notation as

V=@, +Gytyxa+ Gylsxs, (3.13)
where

X2=P1+Gil3xs, Xs=P1+Gilax, (8.14)
and

bo=Vip+ VisGity, t3=Vig+Vi3Gyty . (3.15)

Noting that
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Gity=8,Vy, and Gf3=g3Vys, (8.16)

we immediately have
V= @148, ViaXa+83 ViaXs= = P14 X2+ X5, (3.17)

with the identifications

@4 ()4,
w ’ ‘y ’

X2= X3= (3.18)
thus, (3.14) is identical to (3.12). A similar form
was also given later by Lovelace, 8

C. Alternative Reductions

Evidently (3.6) and (3. 7) are not the only possible
choices of G, and we study several other possibil-
ities here.

(i) ¥ we write G as

G=Gy+GoVG=Gy+ Gy VG +GyVyG

=G+ G VPGP (3.19)
then we obtain
GWB_ G, VyyGor Gy Vay GPB . 20)
CDB_g V,Gorg, V,GVE '
Now let us define
U =8, 4+ GV, &, =W DB, WPEB (3.21)
with
YVB=g , GOB Vb, = b1+ Gy Vg ¥PP o.22)
‘I,(Z)B:GOV1¢1+G(2)B Vidy =gy Vl‘If(l)B , :
and we obtain
(HI—E) \I’(l)B=— st \1,(2)8 , (3 23)
(Hy+ Vip—E) YRB_ _y Y0E ’
(ii) Instead of (3.19), if we take
G=Gy+GoV3G+GyVi3G =Go+ GHCLG2C
(3. 24)
the resulting equations would be
(Hy+ Viy—E)¥DC- _y,w@C (3.25)

(HZ—E) \P(Z)C: _ Vla ‘I,(I)C .

(iii) A slightly different form of Egs. (3.12) can
be obtained in which V,3 does not appear on the left-
hand sides. For this purpose, we write

G=G,+G VoG +G, V3G =2G, Vs G
=G,+G¥P, ¥, (3. 26)
where
Gi= (E'P ~Ho+ Vi) #G1= (B = Hy= Vi)™ .
Then, with
V=&, 4+ PEPLg@2 (3.27)

where
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‘I’(Z)D= 61 V13 ¢1+ G( 2) DV1¢1 , (3 28)
\1,(3)02(_;1 V12¢1+G(3)DV1¢1 , :
we obtain
(HZ_E)\I)(Z)D___ _ VS‘I,(:))D_ V13 ¢1 ,
(8.29)

(H3 _E)‘I/(3)D___ _ V2 \I,(Z)D_ V1a q,l ,

which would be useful for elastic scattering.

(iv) Returning to the rearrangement process
1+(2+3)~—2+(1+3), we try to derive a more sym-
metric form than (3. 23) and (3. 25), in the process
of eliminating the third channel. For this purpose,
we write

G=Gog+GoViG+GoV,G =Gy Vy,G

=(—;3+(—;3 V1G+(_;3 V,G 553+G(1)F+ G'OF

where (3.30)
Gy= (B = Ho+ Vip)™" #Gy .

G'PF can be written as
G PP =Gy V,6=6,V,G3+G, V,G 2T @.31)

GPTF=GyV,G=G,V,G3+G, V,GVF

The total wave function is separated into two parts
as

¥, = ynr, g@F , 332
where
V= GV, @, = @4 GV, BT (3.33)

VAP =G,V,8,+ GPIV,8,=G, V¥V TF
Thus, we finally have the desired coupled equations®

(111 —E) ‘ll(l)Fz _ Vg‘I’(Z)F , (HZ—E)\I’(Z)Fz _ VI‘I’(I)F .
(3.34)

It is thus increasingly clear from these examples

that certain regular patterns are emerging in the

way of reducing the original matrix equations. The

arbitrariness in the choice of G and ¥ can lead to

a variety of sets of equations. In particular, we

advocate the use of (3. 29) and (3. 34) for the elastic

and rearrangement collisions, respectively. In

the Appendix, we give the T-matrix version of

(3. 34) as an illustration. All the other systems

of equations presented here can be converted in a

similar fashion.

D. Breakup Channels

We briefly consider the reaction 1+ (2+3) 1
+ (2+ 3)’ in which the final state is described asymp-
totically in terms of the eigenstates of Hy=H -V,
rather than the distorted three-particle continuum
states of H;, for example. The latter possibility
has the attractive feature that the initial and final
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states are orthogonal, but we do not consider it
here. With the decomposition of G as
G=Go+GVG=Gy+G\VG+Gy ViG -Gy VG
=G+ GiVG 1+ G{ VG =G+ GO GVH  (3,35)

where

Gy=Go~GoVGy, (3.36)
we have

G'O%=GyV,Gh+ Gy V, GV H |

G‘””:GIVGa +G1VG(O)H ) (3'37)
Thus, we define

. =@ VH G OH
with

WOH_ ¢1+G(1)HV14>1,

‘X’(O)H=G(’)V1‘1>1+G(O)”V1¢1 ’ (3. 38)
we get the coupled equations
H,-E) YWE__ygOf g _E) YOH_ _y g DH

(3.39)

1t is especially useful to rewrite (3. 39) in the uncou-
pled form
[Hy+ VGV, —E]¥VH=0 W07 g y wDF
(3. 40)
or

[Ho+ ViG,V-E]¥ - _ v, &, . (3.41)
0

The form (3. 40) would be especially useful in setting
up a coupled-equations procedure to estimate ‘If“’,
and evaluate the amplitude

fa= (‘bolvl‘l’l) .

E. Connectedness Properties

(3. 42)

In their reduced forms derived in this section, the
effect of the third channel is not treated in a mathe-
matically rigorous fashion at the same level as with
the original FE. (2.15). The binding potential V,,
for the third channel appears, e. g., in (3. 34), only
in the coupling terms V, and V, on the right-hand
side. However, as in (3.3), ¥V and ¥'? of (3.34)
should have components of the third channel if they
are open. However, in so far as its effect on the
channels 1 and 2 are concerned, (3.34) may be suf-
ficient to determine the correct ¥'”. This point
will become even more plausible by the introduction
of projection operators, as will be shown in Sec.

Iv.

Thus, the form (3. 34) will iterate with compact
kernels in so far as the explicit channels 1 and 2 are
concerned, while the rest of the implicit channels
will not exhibit such compactness property. How-
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ever, we will partially remedy this situation by the
use of the channel projection operators. (We have
used the compactness and connectedness interchange-
ably in the above discussion, with the convention

that the scattering energy is kept complex with

small + 7€ throughout the calculation. )

IV. DISTORTION POTENTIALS

As discussed earlier, the set of equations (2.15)
does not contain any direct distortion potentials in
the left-hand sides. Consequently, the scattering
of (2+3) and 1, for example, is brought about by its
coupling to the other two rearrangement channels.
This in turn implies that we have to iterate at least
once to get the first distortion effect. We believe
that this feature is partially responsible for the slow
convergence of the iteration series in some cases
and makes the application of (2.15) difficult. The
situation is the same with (3. 29) and (3. 34). On the
other hand, the sets (3.12), (3.23), and (3. 25) con-
tain spurious distortions on the left-hand sides which
have to be cancelled by the higher-order terms; the
problem becomes especially serious if the two-
particle potentials are either very long ranged or
very singular. It would, therefore, be extremely
desirable from practical point of view to reformulate
the theory of Secs. II and III such that some dis-
tortion potentials could be introduced. This will not
only minimize the dependence of the scattering on
the coupling to rearrangement channels, but would
also improve the convergence property of the mul-
tiple-scattering expansion.

For simplicity of discussion, we consider ex-
plicitly (3. 23) and show how the distortion potentials
Y could be introduced in the left-hand side of the
equations. The procedure we follow is the same as
that used in Secs. II and III, i.e., to go back to ¥,
and redefine G and ¥'*) in some suitable fashion.

Thus, in place of (3.19), we set

G=Go+Go(Vi=Y1)G+Go(Vas = Y3)G
1GoY1G+G,Y3G
=G+ Co(Vi=Y1)G+Go(Vay = Y3)G

G0+G(2)J+G(1)J ,

i

4.1)
where

Go= (B =Hy- Y, - Y3,

The G'*7 in (4.1) may be rewritten in the form

GV =GV = Y36
=Gi(Ves = Y3 G ot G1(Vas - Y GCP7,  (4.2)
G =Gy(V,-Y,)G
:éz(Vl—Yl)éo+G~2(V1‘Y1)G(1” , (4.3)
where
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Gy= (B'” —Ho= V- ¥y)

- ’ (4. 4)
Go= (EW —Ho=V, = Vp)! .

By defining ¥‘?7 in terms of G’ and rearrang-

ing the terms, we arrive at the equations

Hy+ Y —E) ¥V o (V= YWD “.5)
(Hy+ Vip+ Y3 - E) LR (Vi-Yy) LA ’

which is the desired modification of (3.19). The
distortion potentials ¥; and Y3 are completely arbi-
trary so far. Obviously, the compactness of the
iteration kernels in the particular explicit channels
depends on the behavior of ¥, and ¥} in the asymp-
totic channel region.

Various different choices of Y reproduce the re-
sult obtained earlier; for example, the choices

Y,=0 and Y3i=-V,, (4.6)
reduce (4. 5) to (3. 34), while

Y;=V;, and Y3=0 4.7
give (3.4). Furthermore, the choices

Y=Y, and Y3=Y,-Vy, (4.8)
lead to a new form® of (3. 34),

Hy+ Y —E) ¥V = = (V= V) W2 @. 9)

(Hot Yo=E) ¥ K== (v, - ¥y WOF

This is the most general set of equations for the
processes 1+ (2+3)«—(1+3)+2, such as e’H, nd,
and pd scatterings, and also e "H. For the elastic
scattering in the channel 1, we can modify (3. 29)
into a form

(Ho+ Yo=E) WP (V- ¥, ) ¥PE_ V00,

(4.10)
(Hy+ Yy —E) P (V- V) 2P V8,

The form (4. 10) may be convenient for the systems
such as md, in which the m and 7p channels are
explicitly considered. Similar distortion-potential
modifications can be introduced also to the Watson
equations (3. 12) and to (3. 23) and (3. 25). In par-
ticular, the original FE can be modified to a form

Hi+ Yy =E) WMo (7, 7 (B4, 0y

(4.11)
where
Y;=Y{+ 1%

(ijk cyclic). (4.12)

In (4.11), we have to require that all ¥J should
vanish in all three channels so that the compactness
property is preserved. Similarly, in (4.9), Y, and
Y, are to be chosen such that they decay both in the
explicit channels 1 and 2. For the set (4.10), we
are again to choose Y, and Y5 such that they decay
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both in the implicit channels 2 and 3. Furthermore,
their form can be chosen such that the coupling to
the other rearrangement channels may be mini-
mized. There are several approximate procedures
to obtain optimal determination of the ¥’s, and this
has been discussed previously, ® to which we refer
for the details.

Now, return to (4.9) and consider briefly how we
are going to solve the problem for ¥ V¥ and ¥?%
Incidentally, (4.9) is not restricted to the three-
particle systems, but H; and H, can accommodate
more complex clusters so long as the problem is
to be treated in terms of fwo explicit rearrange-
ment channels. Therefore, in general, attempts
to obtain an iterative solution of (4. 9) will result
in the noncompact kernels in all possible implicit
channels of the problem. A powerful technique
which at least partially circumvents this problem
is the use of channel projection operators.

We define the projection operators P; and @,,
i=1 and 2, such that

(Pi,H;]=0,  P{=Pl=P
B R (4.13)

Qi=1;~-P;, @ P;=0;
but, in general,

(P;, P,]#0, i+#j. (4.14)
Then, (4.9) can be rewritten in the forms
PyH;+Y;—E)P ¥ X PV, - Y,)P ¥ K

- —P1Y4Q{\I’(”K ""Pi(Vj_ Yj)Qj‘II(”K
(4.15)
and
QuH;+ Y, ~E)Q ¥V 1 Q(V, - ¥,)Q,¥ ¥
=- QY PV _Q(v,-Y,)P,¥"E  (4.16)

For channels with two clusters, we may construct
P; in terms of the cluster wave functions, in which
case, all the quantities in (4. 15) are completely
connected in all channels. Unfortunately, this is
not the case with (4. 16), and the problem is then to
make a careful treatment of (4. 16) for @,¥. Here,
the usefulness of Y; and P; become apparent: If

P, contains the initial channel, then the “reason-
able” choice of P; and Y; could make the right-hand
side of (4.15) small. For such a choice, we sim-
ply have to solve a well-defined set of coupled
equations to obtain P,-‘I"“K and the desired ampli-
tudes.

In an exactly analogous way, we can introduce
the appropriate channel projection operators into
(4. 10) for the elastic scattering and also into the
FE in the modified form (4. 11). The coupled equa-
tions for the breakup reactions (3. 39) can also be
modified to include distortions. Thus, we have,

e.g.,
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(Hy+ Y, —E)¥ VR (V- Y ¥

(OR _ (1R (4.17)
(Hoy+ Yg—E)¥ == (V;=-Y)¥ .

Finally, we should point out the possibility of re-
ducing the effect of “spurious” long-range coupling
to the breakup channels in (4.11). As stressed by
Noyes, ! for some E above the breakup threshold,
some components of ¥ and ¥'¥ may have outgoing
waves such that the coupling terms decay only as
R;l, as their respective asymptotic regions are ap-
proached. This in turn makes the configuration-
space treatment of the FE more difficult.

First of all, we stress the fact that such a spuri-
ious long-range effect does not appear as long as
the total energy E is below the lowest breakup
threshold. Secondly, when Y; and Y% are chosen
such that the coupling terms of the form P(V,, - V%)
X (Q;%' + Q,¥®) are made small, the spurious ef-
fect may be minimized sufficiently. However, there
are no satisfactory ways to eliminate such an ef-
fect completely, except perhaps by choosing a very
peculiar form of Y% in the asymptotic region.

V. GENERAL REDUCTION METHOD

Based on the detailed discussions given in Secs.
III and IV, we can now generalize the procedure to
reduce the N-particle scattering equations of the
Faddeev- and multiple-scattering type to sets of
matrix equations of small dimensions and also to
introduce some effective distortion potentials in a
“consistent” way. Such method was presented ear-
lier® for the rearrangement collisions from a more
intuitive point of view, based on the ansatz that the
total ¥ can always be written in several components,
each of which satisfies some parts of the original
scattering equations. Since we have shown above
that such ansatz is valid and the result derived from
it is the same as those presented here, we recapitu-
late the reduction method. It makes the derivation
of all the equations completely trivial, and there
is no need of going back to G and readjusting G‘¥’
and ¥,

Consider the N-particle scattering system which
may be described by the matrix equations of the
Faddeev type with the dimensions §N(N - 1). In-
stead, we try to construct a simpler set of equa-
tions of dimension I, where I is a small number
representing the explicit channels of interest here.
The question we are asking is how to construct the
set of equations such that its iteration kernels pos-
sess compactness properties in all I channels and
also contain distortion potentials Y, ¢=1,2,... 1.
The channels are taken here to mean those asymp-
totic states which are eigenstates of the distinct
channel Hamiltonian H,. We denote the I XI matrix
equation as

DY=-Bé, (5.1)
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with

I
U=,

i \11(0) + 611 q)z ’ (5 2)
c=1

where D and B are matrix operators, while ¥ is a

vector, consisting of elements ¥’ &;=1-06p,

and 6,;i=0if I Dj and 6;;=1 if I Di. The elements

D, and B, are obtained in the following way: (a)

The diagonal terms D, are given by

Dcc=H0+ Yc—E ’ (53)
where
I
Y= 2o YS. (5.4)

c’=1,(c’#c)

Y¢ in (5 4) are the distortion potentials which van-
ish in all the I asymptotic channel regions. (b)
For each column c, the off-diagonal elements D,
can be chosen such that

I
) Dy,=H-H,-Y,.

c'#c

(5.5)

Other than this, D...are completely arbitrary, in-
cluding some zeros. Note that (5.4) and (5.5) are
designed so that

I
2, Du.,=H-E

c’'=1

(5.6)

forallc=1,2,...,1I.
as follows:

(c) Finally, B... are chosen

B,.=0 forc#c’,

i (.7
B,.= (HC—HO) 611‘ ’

where Hj is the free-N-particle Hamiltonian. The
entire B term is designed to incorporate the case
such as (3. 12) in which the initial channel compo-
nent is eliminated from the coupled equations. (d)
If we want to reduce the I XI equations obtained in
the above sequence to (I -1)X (I - 1) dimensional
equations, it simply requires the addition of the ele-
ments D.., of the row being eliminated to any of the
other rows columnwise, and then the dropping of
that particular column altogether. This will pre-
serve the sum (5. 6).

The explicit forms of the reduced matrix equa-
tions presented in Secs. III-V provide examples
of this reduction procedure. ®
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APPENDIX: SCATTERING OPERATORS FOR (3.34)

The various systems of coupled equations derived
in this paper can be converted to sets of amplitude
equations. As an example we consider here ex-
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plicitly Eq. (3. 34) for the elastic scattering. The
amplitude is given by

fu=Ffa= (@ Vi|¥)= (@] T]ey), (A1)
where

Ty$,=Te =V, ¥ = V1(‘1’(1) @ ). (A2)
If we define T? by

T=TP+7? (;=1,2), (A3)
with

Ve, =v,v? (A4)
and

TP &= v,v? » (A5)
then we obtain a set of coupled equations

TV=v,+v,6, T? | T?=v,G, TV, (AB)
and

T?=Vv,G, TV . (A7)

The potentials V, and V, in (A6) and (A7) can be
eliminated in a trivial way by writing

Lh=Vi+ VGt =V Qy,

t2: V2+ VZGZtZEVZQZ . (A8)
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Thus, (A6) and (A7) become, respectively,
QTP =4+4,G6,T?, @, T?P=1,6,T", (A9)
and

T® - ', G, TV . (A10)

Since the off-shell #;’s are involved in (A9) and
(A10), we have not gained anything by rewriting
(A6) and (A7) in the above forms: For given #,, /,,
and Gy, we can always construct G;, V;, and ,,
with exactly the same amount of physical contents.

Obviously, we can further decompose ¢, into the
set which involves T; defined by

Ti= Vit ViuGo Ty . (All)
Thus, e.g., we find

ty= t(12)+ L‘(13) ,
where

HP =Tyt T,6, 87, 1Y =To+ 136, 1Y, (Al2)

and
To=Ty+ ToGoT1Go Ty, Ty=Ts+ T3GyT Gy Ty .
(A13)

The procedure is then to solve first for T; of (A13)
and get ;7 of (A12). Then (A9) and (A10) will give
T and T'?,
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