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Atomic Distortion and the Combining Rule for Repulsive Potentials
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The exponential repulsion between atoms, molecules, and ions with closed-shell structure
arising from the Pauli exclusion principle is examined in the light of a distortion model. The
repulsion energy arises mainly from the distortion of the two atoms, each of which is con-
strained by the presence of the other to terminate at an intermediate surface, which is often
approximately planar. The location of this surface is determined by minimizing the total dis-
tortion energy, with the result that the restoring forces in each atom are equal and opposite.
There results a new combining rule for these repulsive potentials, allowing the potential for
AB to be deduced from those for A2 and B2, which reduces in some special cases to the pre-
viously assumed geometric-mean rule. A further consequence is a relationship between the
instantaneous collisional dipole moments in a family of asymmetric collisions such as HeNe,
NeAr, and ArHe, provided that they are all measured at equal values of the collision force.

The repulsive interaction maintaining the integ-
rity and separation of atoms, molecules, and ions
with a closed-shell structure has long been known
to have a remarkably simple character. It is usu-
ally very well represented by a simple exponen-
tial function over two or more decades in the po-
tential energy, typically covering the range be-
tween 0. 1 and 10 eV or beyond. The physical
source of this repulsion is primarily the Pauli ex-
clusion principle, which effectively prevents the
overlapping of the electron clouds of the outer
shells of the colliding partners. The exponential
form arises from the exponential tai1 in the elec-
tron density distribution about each atom or mole-
cule. This repulsive interaction dominates small-
angle atomic and molecular scattering even into the
keV region, and it has a major role in determining
the interionic or interatomic spacing in the ionic
solids as well as in atomic or molecular liquids
and gases. Considerable effort has gone into the
empirical search for a combining rule allowing the
repulsive potential for a mixed system such as
AB to be deduced from the potentials for two known

systems AA and BB.'
Most commonly, the combining rule is assumed

to have the form of a geometric mean of the sym-
metric potentials:

rule is probably an accident arising from a com-
bination of two circumstances, namely, that the
repulsive potentials are essentially exponential
in form, and that the range of the exponential de-
cay happens to be almost constant in the families
in which the rule has been most carefully tested.
As Fig 2 illustrates, the range (the reciprocal of
the logarithmic slope) is sometimes subject to
fairly large variations.

The exponential potential can be written in sev-
eral equivalent forms:
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where Fp is a standard energy, Fp is a standard
force, p is the range of the potential, and y and x
are lengths characterizing the particular colliding
pair. Obviously, the transition from curve to
curve in Fig. l could be described equally well by
a horizontal shift representing successive increases

A typical example, shown in Fig. I, appears to
give empirical confirmation of this rule, but good
theoretical justification is notably lacking. Indeed,
it is somewhat surprising to find potentials for
large and small atoms being compared at equal
values of r, where the intensity of the disruptive
forces acting on the outer electron shells at afixed
distance such as la„or 2ap must be extremely
different as we pass through a sequence such as
the rare gases from He to Xe or Hn.

The apparent success of the geometric-mean
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FIG. I. Measured potentials for He2, HeAr, and Ar2.
He2 from Refs. 4-8; HeAr from Refs. 7 and 9-11; Ar2
from Refs. 7, 9, and 12-14.
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Equations (7) and (8) give a prescription for com-
bining any repulsive potentials in the region where
they arise predominantly from the effect of the ex-
clusion principle.

If the potentials for the symmetric systems are
exponential in form, application of Eqs. (7) and

(8) shows that the potential for the asymmetric case
is also a simple exponential with a, range p;, , that
is, exactly the arithmetic mean of the symmetric
p s:

&« = ~(&«+&sz) . (9)
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in size as one goes from He~ to HeAr and then to
Ar~, instead of the vertical shift that would be im-
plied by the geometric-mean rule. When the p's
are essentially equal, the combining rule could be
described by either

ol

liX«= ~4'«+Xyy) (6)

x„=-,'(x, , +x„) . (6)

What happens when the p' s are not identical?
This question can be answered by a closer exami-
nation of the effect of the exclusion principle that
creates the exponential repulsion. As Matcha and

Nesbet have remarked, the exclusion principle
causes the electron clouds in each of a pair of col-
liding atoms to be distorted and flattened as if there
were an impenetrable barrier surface between the
two atoms. In symmetric (AA) collisions, the sur-
face is obviously a plane equidistant from both nu-
clei; in asymmetric cases (AB), the surface may
often be approximated by a plane lying at some un-
known distance r~ between the two nuclei. It is
plausible to assume that the repulsive energy is
simply the sum of the distortion energies internal
to the two atoms A and 8 and therefore dependent
only on the distances r„and r~ =r —r„:

V„~(w r„)= 2 V„~(2r„)+ —,.' Vea t. 2(& —&„)1 . (7)

Clearly, the distortion plane will settle at such a
distance r~ as to minimize the total energy; the
result is that the restoring forces in the two atoms
are equal and opposite:

FIG. 2. Potentia1s for He with H", He, Li', and Be
H He: Ref. 15. He2. curve 1, combined experiments,
Refs. 4-8; curve 2, Ref. 16; curve 3, Ref. 17. Li'He:
curve 4, Ref. 18; curve 5, Ref. 19; curve 6, Refs. 20-22.
Be He: curve 7, Ref. 23.

The appropriate form for the potential is that of
Eq. (4), and the atomic sizes x combine exactly by
Eq. (6). Unlike the range p, the size x depends
on the choice of a standard force I'0.

x„=p, , ln(A, , /p, ,FO) . (10)

q= (r —x„)/p;, . (12)

This variable is a direct measure of the repulsive
force:

Fo(r)/F0= e ~ .
Equations (4), (6), and (9) [or Eqs. (4), (9), and

(11)j give the combining rule in the distortion mod-
el. If the ranges p happen to be the same, the re-
sult is identical with the geometric-mean rule, but
it deviates significantly from that rule if they are
not the same.

This combining rule can be used in several ways
to predict potentials for various systems from a,

knowledge of those for others. A particularly
stringent test is shown in Fig. 3 and Table I, where
Matcha and Nesbet's calculated potentials~ for the
three systems HeNe, HeAr, and NeAr are used to
extract the potentials for He2, Ne2, and Ara. The
superiority of the distortion combining law over the
geometric-mean law is clear, and the symmetric
potentials extracted are in most gratifying agree-
ment with the best existing direct calculations. In
the cases of He& and Ne~, they are also in very
satisfactory agreement with the experiments, but
all the molecular-orbital calculations for Ar~ are
still significantly higher than the experimental po-

However, if the potential is expressed in the form
of Eq. (2), it is seen that the combining rule does
not really depend on Fo, instead it is expressed by
Eqs. (9) and (11):

(A„/p;, )"~~ = (A„/p, , )'«(A, , ip, ,)'~' .
In comparing interactions in different colliding
systems at the same value of the restoring force,
it is sometimes useful to introduce a reduced
variable common to all the systems:
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tentials.
In the case of the neutral rare gases, the ranges

p vary only slightly from each other. As a result,
to prove experimentally that the distortion combin-
ing rule is superior to the geometric-mean rule
would require data of unattained accuracy and con-
sistency. Current experiments are consistent with
either rule. The discrepancies between experiment
and the best molecular-orbital calculations2~2' for
the systems containing Ar are all consistent with
each other: For both HeAr and NeAr the experi-
mental potentials fall below the calculations by a
factor of about 0. 6, and for Ar2 the discrepancy
is a factor of roughly 0.4; in all cases the experi-
mental logarithmic slopes are somewhat greater
than the molecular-orbital predictions (see Ref.
2V for a presentation of the data).

The combining rule arising from the distortion
model can be used to make new and interesting con-
nections between repulsive potentials for atom-
atom, ion-atom, and ion-ion systems. For ex-
ample, using information currently available for
the pure rare gas systems and for the ion-atom
collisions of K' and Cl with He, Ne, and Ar, one
can estimate the short-range repulsive parameters
for the systems (K')3 and (Cl )z, and thence the
short-range repulsion term in KCl, for comparison
with information obtained directly from the alkali
halide molecules and solids. These and other ap-
plications to the alkali halides are being reported
elsewhere. ' Gilbert has treated the alkali halides
in an analogous manner, and suggested on empiri-
cal grounds the combining rules for p and x that I
have derived here from the distortion model.

In addition to the potentials, Matcha and Nesbet2
concerned themselves with the electrostatic dipole
moment induced in each atom by the distortion of
the electron cloud and with the resultant transient
dipole moment of the diatomic system. If the dis-

FIG. 3. Test of combining rules. Potentials for He2,
Ne2, and Ar2 deduced from data of Ref. 24 for HeNe,
HeAr, and NeAr: 1, curves deduced by distortion rule;
3, curves deduced by geometric mean. Direct calculation:
2, curves of Ref. 25; 4, points from Ref. 17.

I"~g = &&y~

we find y=1. 032, 0. V81, and 0. V95 for HeNe,
HeAr, and NeAr, respectively, i.e. , yis always
close to 1. It is thus convenient to remove the
principal exponential dependence by writing

M(g(q) = p.(ge (17)

and to examine the quantities M, &(q) for their obe-
dience to the cyclic relation of Eg. (15). Matcha

TABLE I. Collision parameters for systems containing
He, Ne, and Ar.

HeNe"
I-IeAr"
NeAr

He ~

Ne

Ar c

He2 ~

e

Ar, '

Ata. u. )

33.418
31.395
92. 544

9.2954
128.370
76. 508

8. 6997
150.430
129.110

P(ap)

G. 4307
G. 5308
0.5200

0.4414
0.4199
0.6201

0.4466
0, 4085
0.5814

x(ap)~

1.8740
2. 1656
2.6945

1.3451
2.4029
2.9861

1.3262
2.4137
3.1413

Assuming Ep = 1 a, u.
"Data from Ref. 24.
'Calculated from data of Ref. 24, using Eqs. (6), (9),

and (11).
~H.eference 25.
'Reference 26.

tortion model is correct, dipole moments should
be compared at equal values of the restoring force,
that is, at equal values of q. Furthermore, since
the resultant dipole moment is the difference be-
tween two atomic moments,

u»(q) = ~&(~&(q)) —v, (~, (q)),

we expect a cyclic relation to hold,

»a(q)+ ~ac(q)+ ~c~(q) =O

Departures from Eq. (15) would reflect a deviation
from the assumptions of the distortion model, es-
pecially that of planarity of the distortion surface
between the colliding atoms. Indeed, one might
expect the combining rule for potentials to be much
better obeyed than the combining rule for dipole
moments, because the dipole moment represents
higher-order corrections than the potential; even
an overlap between two unperturbed atoms without
dipole moments will provide a reasonable estimate
of the potential. Thus, Eg. (15) is a more strin-
gent test of the distortion model than the combining
rule for the potentials themselves.

Matcha and Nesbet's results showed that the di-
atomic dipole moments could be represented mod-
erately well by simple exponentials. Using q as
the variable in the form
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PIG. 4. Relation between dipole moments as a function
of distortion force E. q=ln(E/Ep) Ep=l/ap a n, ~ M&g
= p, &&e~. Solid lines are least-squares fits; dashed line
represents Mgr He ~HeNe ~NeAr'
24.

and Nesbet's data for HeNe, NeAr, and ArHe are
plotted in this form in Fig. 4. The data for HeNe
and NeAr are quite linear over the range of q
covered by the calculations, and the ArHe results
are either noisy or nonlinear. Least-squares fits„
with error limits quoted as cr, the standard error,
give the following linear equations:

M „,= (0. 740 t 0.010) —(0. 014 t 0. 046)q,

MN, „,= —(1.863 + 0. 017) —(0. 521 + 0.049)q,
(18)

M„,„,= (l. 093+ 0. 105)+ (0. 621 + 0. 363)q,

ZM„= —(o. 030~ o. lo7)+(o. 086~ o. 369)q .

Within the apparent scatter of the data, the rela-
tion (15) is seen to be obeyed.

This satisfactory empirical confirmation of Eq.
(15) makes it worthwhile to seek an estimate of the
individual atomic dipole moments as a function of
the distortion force F (i. e. , the parameter q). In
the future, I hope that this dipole moment (and

perhaps higher moments) will be reported with cal-
culations of interatomic repulsive potentials, at
least for symmetric diatomic pairs. In the mean-
time, the fragmentary reported data can be used
for rough estimates. In particular, from very
early calculations on He~ and Nez, Matcha and
Nesbet report the estimated atomic dipole mo-
ments shown in Table II, from which values of M
can be deduced. Unfortunately, these values are
given only for a single internuclear distance r in
each case, whereas we would like to know the de-
pendence of the atomic moments on r or q. How-
ever, by using Etl. (14) it is possible to deduce a

second value for M„, and M„„although this re-
quires combining data from a later and more ac-
curate calculation for the asymmetric system Hewe
with results of earlier and less accurate~9 calcula-
tions for He& and Ne~.

Taking the results in Table II at face value, it
might appear that MHe and M„, have a very steep
dependence on q. If the M)s are assumed to depend
linearly on q, we would have M„,= 0 at q = 6. 12 and

M„, = 0 at q = 8. 55, but there appears to be no rea-
son to expect such a reversal of the dipole mo-
ments, given the nature of the wave functions em-
ployed in the calculations. It is much more likely
that the disparity between the two values for M„,
or MN, in Table II reflects uncertainties in the
calculations rather than a true dependence on q.
Therefore, it seems best at present to use the
mean values

MH, -2. VD) M„=2. 0D . (19a)

Fortunately, the data of Fig. 4 are consistent with
the possibility that M„, and M„, are independent of

q, and with that assumption we find

M„,= 3. 9+0.52q . (19b)

If we neglect the linear behavior and take an aver-
age over the measured range in q (- l. 3 & q & 5. 4
for the best data M„,„„),we get

M„,=4. 9O. (19c)

Perhaps accidentally, these three values of M, vary
monotonically with p«, and we find roughly that

(M;/p„e) =6, (20)

»(~~) =M~(q)e ', (22)

TABLE II. Atomic distortion dipole moments, Data
on p, r reported ~n Ref. 24; values in parentheses calcu-
lated from the other data by the relationship MH, N, =MB,
—MN9.

7 (He2) 7 (Ne2)

~o&

~He ~Ne ~HeNe ~He Ne

e) e) ei
4.98

Average

8.23 0.0013.4
5.20 6.66

P. 63
0.00056 0.

4.28 (3.65)
(] .&0) 0.-45

2.69 2.05

where e is the electronic charge.
These rough estimates of atomic dipole moments

are useful in predicting the effect of a dipole-dipole
interaction term in the total repulsive potential.
Clearly, the assumption that the repulsive energy
is simply the sum of two distortion terms, one for
each atom, as in Etl. (7), is not strictly correct.
%e must add a term of the form

I'. (p ) = 2u, (~&)es(p s)/p' .
Using the relation
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this becomes

V, (r) =2M„~,e "/r'. (23)

This allows us to compare the distortion energy
V«, with the dipole-dipole energy V, . For exam-
ple, when V«, =0. 1 a. u. , we find, roughly, that

V,/V«, = 0. 5(HeNe), 0. 3(HeAr), 0. 2(NeAr) .
(24)

Thus, the distortion energy should dominate over
the interatomic electrostatic energy until the total
potential is at least several eV.

This conclusion is reinforced by the fact that
Egs. (21) and (23) probably overestimate the inter-
atomic electrostatic energy contribution. Since
we are dealing with distributed electron clouds
rather than point dipoles, higher multipole terms
will partially cancel some of the apparent dipole-
dipole energy, especially at small values of r.
Another way to look at this is to note that the in-
teratomic electrostatic contribution looks like Eq.
(21) at intermediate w, then comes to look more
like a pair of ion-dipole terms varying as r, and

finally like a shielded Coulomb term approaching
r ' behavior at small r. This gradual transition
through the forms

A.e "-&'3e ~- Cr e '"- Dr e (25)

may prove suggestive in finding an appropriate
analytical form30 that goes over from the exponen-
tial at large r to the screened Coulomb at small r
(naturally, the effect of electronic shell structure
must also be taken into accounts').

Finally, it may be noted that when terms such as
Eg. (21) are added to Eq. (7), it is still possible
to minimize the total energy with respect to r„
and therefore determine a combining rule similar
to but more complicated than Ec[. (8). To apply it
reliably, more information will be needed on the
individual atomic dipole moments as a function of
the distortion distance. Some empirical method

of treating the curvature of the distortion surface
as it affects the atomic dipole moments may also
be needed, when the atoms in collision differ great-
ly from each other in size or in tightness of bind-
ing.

Another effect of the atomic distortion caused by
the Pauli exclusion principle is found in the alkali
halide molecules, where the attractive force in-
cludes terms reflecting the polarization of each
ion in the field of the other. Two distinct effects
are to be expected: (a) The exclusion-principle dis-
tortion creates a dipole moment in each ion when
the atoms are close together, which is different
in nature from the electrostatic polarization caused
by the ionic field of the other partner, and (b) the
presence of the electron cloud of one ion restricts
the electrostatic polarization of the other. Con-
sequently, the distortion polarization and the elec-
trostatic polarization are not independent, but both
must be considered together. Their effects will be
seen both in the molecular dipole moment and in the
potential energy function. In the past, these polar-
ization effects of distortion have not been adequate-

ly considered in the diatomic potential function, and

the result has been a systematic discrepancy in the
empirically evaluated repulsive energy term for
the alkali halides when the diatomic molecules are
compared with the crystals. 37'3~

In the future, I expect many useful applications
of the distortion model, both in connection with
electrostatic effects and in the combining rule
for repulsive potentials. In particular, the study
of the binding forces in clustered ions will give
many opportunities &or using and testing combining
rules as they apply to closed-shell molecular
species as well as atomic ones. 33 In neutral gases,
Masons has pointed out that the distortion dipole
in a two-body collision will affect the interaction
with a third body, and thereby contribute to non-
additive effects in the intermolecular forces that
are important in the third virial coefficient.
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By using relativistic Hartree-Fock equations which automatically take the spin-orbit interac-
tion into account, we calculate the single-particle states for photoejected electrons from heavy
alkali-metal atoms. We derive an expression for the perturbation function x. Our results are
in fair agreement with the experiments, but more accurate calculations including electron corre-
lations are desirable.

INTRODUCTION x= I2ft(c, —', )+A(~, —,')J/(B(e, —', ) -A(c, 2)1 (2)

Recently, there has been considerable interest
in the spin-orbit interaction in alkali-metal atoms. '
As pointed out by Weisheit and Dalgarno, the spin-
orbit interaction was used by Fermi in 1930 to ex-
pla, in the anomalous I' line strength ratio in alkali-
metal atoms. Seaton mentioned that the nonzero
minimum of the photoionization cross sections of
alkali-metal atoms is due to the spin-orbit interac-
tion. Fano has shown that the spin-orbit interac-
tion for the valence electron of the alkali metals
leads to a spin orientation of photoelectrons ejected
by circularly polarized light. This spin orientation
has been confirmed experimentally by Kessler and
I.orenz a,nd by Ba.um, Lubell, and Raith.

As shown by Fano, the degree of spin orientation
ls given by

P = (1+2x)/(2+ x'), (I)
where

ft(&, j')= J P(cd'„~)xP(ns,', ~)d~ .
In the above equation, P(epj; x) is the radial part
of the continuum wave function with energy e, and
P(ns~; y) is the radial wave function for the valence
ns electron.

Weisheit and Dalgarno calculated x for potassium
by including a core-polarization correction which
they obtained semiempirically by multiplying the
operator r with a function which contains the effec-
tive core radius r, as an adjustable parameter.
They also adopted the spin-orbit parameter f(x)
= 17.33/x'. By choosing x, = 4. 22ao, where ao is
the Bohr radius, their results for x are in excellent
agreement with the experimental values. In this
paper, we use relativistic Hartree-Fock (HF) equa-
tions to calculate the continuum wave functions and


