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The L &0 phase shifts 5z for low-energy scattering by a van der Waals ~ potential are cal-
culated using the two-potential formula of scattering theory. We calculate tang& up to and
including the k~" ink term. We compare our results with those obtained using the Born ap-
proximation.

I. INTRODUCTION

It is well known that the van der Waals x poten-
tial appears as the dominant long-range attraction
in atom-atom collisions. It also arises in electron-
atom scattering as a correction to the static dipole
polarizability z potential, and has its origins in
both the static quadrupole polarizability of the atom
and the dynamical response of the atom to the inci-
dent electron.

The purpose of this paper is to present a deriva-
tion of an effective-range expansion for the van der
Waals potential. Following Hinckelmann and
Spruch, we consider a scattering potential which
consists of a short-ranged part V(x) and a long-
ranged part U(r) such that

V(x) =0 for r &d,

U(~)=0 for ~~d .
Since V(x) is short ranged, the scattering-phase
shift from V(r) is given by conventional effective-
range theory:

and Neumann functions, respectively, and
U= (2m jk )U. The potential U is a van der Waals
attraction:

U(~) = -~'~ ', ~ d

where y characterizes the strength of the interac-
tion, and has the dimensions of a length. Hinckel-
mann and Spruch have discussed s-wave van der
Waals scattering based on the formula (3). In what
follows we will discuss van der Waals scattering
for the higher partial waves. Qur results are pre-
sented in Sec. II. In Sec. III we compare our re-
sults with those obtained using the first Born ap-
proximation.

II. EFFECTIVE-RANGE EXPANSIONS

Basically, the determination of an effective-
range expansion according to the formula (3) in-
volves the evaluation of the integrals I(L), J(L),
and Z(L).

A. Evaluation of I(L) for L)0

tan5 =-~„k"" '~ ~' k"'+O(k"') (2)
On inserting (7) into (4) and making the substitu-

tion g = kg, we obtain

I(L) = f(ky)'j'(k~)U(y) -d~,

Z(L) = f (k~)'I, (u )n, (k~}U(~)d~,

&(L) = f, (k~)'[j,'(k~)+n,'(k~) t U(~) d~ .

(4)

(5)

Here jr, (kr), n&(kr) are the usual spherical Bessel

Here L is the orbital-angular-momentum quantum
number and DI.„AJ.„y~, are the phase shift, scat-
tering length, and effective range, respectively,
when the scattering potential is V alone. When the
scattering potential is U+ V, the phase shift, scat-
tering length, and effective range will be denoted by
51„AI., and xl. , respectively. Starting from the
radial Schrodinger equation, Hinckelmann and
Spruch show that to first order in the long-range
potential,

tan5 =tan5„. -k '(1-tan 5„)I(I.)+2k 'tan5„Z(L)

-k-'tan'5„Z(L)+O(U'), (3)

where

I(L)= -z my k f z Jg,gg(z)dz . (8)

The integral in (8) may be evaluated for L & 1 by
dividing the range of integration into two parts, one
part extending from zero to infinity, and the other
from zero to kd. The integral with range zero to
infinity may be evaluated using Eq. 6. 574-2 of
Ref. 3. We find

f z cd ggz(z) dz = 6k(L) L & 1

where

k(L) = [(2L+ 5)(2I +3)(2I + l)(2I, —l)(2I —3)] ' .
(10)

Equation (9) is only valid provided L &1. In other
words, the p wave must be treated separately from
the higher partial waves. To evaluate the integral
from zero to kd, we may use the power-series ex-
pansion for the square of a Bessel function (Eq.
5.4 of Ref. 4):
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dL+1/2(z) ~ (II m 2
m=o

where

B. Evaluation of J(L) for L&0

On inserting (7) in (5), and making the substitution
g=kz, we obtain

(-1)"(2L+ 2m+1)!
2 ' ""(2L+ m + I)![I'(L +m + —' )] m I

2I(L) ( 1) 2 &Y k f2 z 2IL+1/2(z)d-L-1/2(z) dz' (20)

It follows that

'dL'. 1/2(z) d z

The integral in (20) may be evaluated by dividing the
range of integration into two parts, one part extend-
ing from kd to 1, and the other from 1 to . To
evaluate the integral with range kd to 1, we use the
power series (Eq. 5.4 of Ref. 4)

$1(z) = sill z/z —cos z/z (i5)

&Lm (kd)2I +2m-2

~ o 2k+2m —3
(13)

Combining (8), (9), and (13), we obtain the value of
I(L) for L &1:

I(L &1)= --,' 2y'k'

X GP I. -~ " kd ~'"-3
m=o ™

Considering the case I.= 1, we make the substitu-
tion z =kr in Eq. (4) and use the fact that'

~L+1/2(z)~-L-1/2(z) 2 f/Lmz
m=O

where

(- 1)"(2m)!
2 "(m!)'I"(L + m + )I'(- L +—m + —')

%'e note that

!.o= [(-1)'/.] [1/(L -'. )],
f)L1= [(-I)'/)/I ~2 g(L),
5„=[(- I)'/~]12k(L) .

(21)

(22)

(23a)

(23b)

(23c)

thus obtaining

I(L =1)= -y'k' 1 (z 0+z 'sin z

sin2z —z sin z)dz . (16)

The last three integrals in (16) may be evaluated by
integration by parts. After somewhat tedious but
straightforward algebra, we obtain the following
expansions:

I(L =1)= —y k 2+II -I2-I24 g 1 I I I

5(kd) where

11 —) " (22)" 4) (22)
m-~ 2m -4

1IL91/2(z)d-L 1/2(z) dz 4 L-O
41

g(L) = [(L -'. )(L —.')(L --.')] ',
and k(L) is defined by (10). Using (21), Eg. (20)
yields the following result:

5(kd) 9(kd) 45kd 315 1-gbr, g+bgaln2 + ~
2 41n3 m (26)

kd 2(kd)
42525 +0(k )

5(kd) 9(kd)' 15kd 45

We note that B is independent of k. Inserting (23a)-
(23c) in (25), we obtain the result

/I(L)k'
4(2L + 1)d 8d'

skd 4(kd)
315 8505

3(kd)' 3kd 15 45" kd

+ +O(k') .(kd)'

Finally, we have

(1sb)

(18c)

—99(2)9'ln~ 22d~ O(2')) . (29)

C. Evaluation of E(L) fort)0
In order to evaluate the integral K(L), we insert

(7) in (6) and make the substitution z = kr, which
gives

K(L & 0) = —2 1/y k f„z [JL,1/2(z) +4 L 1/2(z)] dz

k mk dk d k8
1(1.= 1)= 2' —+ —

92 1222- O(2")), (19)
(2s)

The integral in (28) may be evaluated with the aid
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of the identity (Eq. 9.62 of Ref. 4)
I

~L+1/2(2) +~-L-1/2(2) + cLm2
~~ m=o

where the coefficients c~ are given by

2" "(2L-m)! (2L - am)!
[(L —m)! ]2m!

From (28) and (29), we obtain

~4 L (kd)2m-2L
/ c.a 2

~

=o 2m -2

(29)

(3o)

(31)

A, =A1, + y'~,
6= —(7A1, —6A1,d + jjd )/d

y1A1=y1,A1 +y 6,2 2 4

(45 d I5 Alsd 6 318A18d
2 8 4 5 1 2 3

(ssa)

(ssb)

(33c)

+ —,
' A,', d'+ +

3 „A,',)/d' (33d.)

Inserting (2), (14), (27), and (31) into (3), we ob-
tain an effective-range expansion for the higher
partial waves:

4 k(L )k4 A k2L+1 A2k 2L+3

+ I ay'ALk(L)k"'In~ akd ~+O(k"'), L & i
(34)

It is now possible to calculate the phase shifts
from Eq. (3). Inserting (2), (19), (27), and (31)
into (3), we obtain an effective-range expansion for
the p wave:

t»&1 = -&1&' —35 &W & —2 &1&1&4 4 1 2

—,—', y4A, k'In~ akd ~+ O(k'), (32)

where

V(~)=-y'(r'+5') ', ~ 0 (36)

using the first Born approximation. This potential
asymptotically approaches the potential (7) of the
present paper. It was found that for the p wave,

In Eqs. (32) and (34) the coefficient of k2L'ink
actually contains Al, , rather than A&, but the re-
placement of Al., by Al, is legitimate since the error
introduced is of second order in the long-range po-
tential. For the p wave, Eq. (32) shows that the
dominant term in the expansion of tan51 at low en-
ergy exhibits a 42~'1 dependence, which is charac-
teristic of short-ranged forces. The expansion of
tan5, also contains a higher-order logarithmic term
0'ink, which is a consequence of the long-ranged
nature of the potential. For the higher partial
waves, Eq. (34) shows that tan5L varies as k at
low energy. The expansion for tan5L (L & 1) also
contains a higher-order logarithmic term k2 ' ink.
The expansions (32) and (34) combine the charac-
teristics of short-ranged potentials [i.e. , they
contain effective-range terms of the form given by
Eq. (2)], with the characte, ristics of long-ranged
potentials (i.e. , they contain a k term and a loga-
rithmic term k "ink). Corresponding studies
with a polarization ~ ' potential have yielded results
with the same general features.

III. COMPARISON WITH BORN APPROXIMATION

van der Waals scattering has been discussed in
the Born approximation in a previous article. Since
the s-wave scattering has been previously discussed
using the present approach and using the Born ap-
proximation, we do not include this case in the dis-
cussion which follows.

In Ref. 6 we calculated the low-energy phase
shifts for the potential

where
I

AL, =21,,+y 4

md2~ ' A,
2""(2L-3)[r(L+-,')]' '2(aL+ i)d'

(35a)
tan5, = + O(k'),my Q

while for the higher partial waves,

tan5 =31/y'k(L)k +O(k'), L &1

(37)

(38)

[(2L)!]'A,'.
2"(az. +5)(L!)'d"' '

A~= K~sAI, s+ P 52 2 4 ~

1/(2 I.+ 3)d'L-'

2 ' (2L —1)[r(I, + —', )]2

(2I, —I)!(2L—2)!A,'.
22L-3(2L y 3)[(L 1)!]2d L+

[(2 )L!]23L AL,
2 2L-1(2L 5)(L!)2d2L+5

AL, g(L) 3 L,AL,
2d2 2(2L + 1)d

(s5b)

(35c)

(35d)

where k(L) is given by Eq. (10).
A comparison between (37) and (32) shows that in

the low-energy limit, tan5, has the same dependence
on k (viz. , k') in the Born approximation as in the
Schrodinger approach. While the effective-range
expansion (32) contains higher-order logarithmic
terms, the Born series (37) does not contain any
logarithmic terms. For the higher partial waves,
the dominant term in the effective-range expansion
(34) and the dominant term in the Born series (38)
are identically equal. As in the case of the p wave,
the effective-range expansion (34) contains higher-
order logarithmic terms which are not present in
Born series (38). We conclude that at sufficiently
low energies, and for partial waves higher than the
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p wave, the Born approximation yields the same
phase shifts as those obtained from a Schrodinger
analysis.

We have just noted the substantial agreement be-
tween the Born approximation and Schrodinger theo-
ry for the case of van der Waals scattering. The
fact that the Born approximation works so well for

long-range forces has been discussed in previous
articles. " Basically, the long-range forces give
additional contributions precisely because of their
long-range character; but at long ranges the poten-
tials are arbitrarily weak, and therefore the leading
terms are obtained exactly in the Born approxima-
tion, just as found above.
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Absolute cross sections are reported here for the ionization of K atoms having laboratory
energies in the range 20-1000 eV when interacting with H2, N2, 02, and CO molecules. The
range of energies covered, E, and the corresponding cross sections op~ for each of the four
target species are as follows: for 0&, 20&E &1000 eV, 8&&10 &Op~&1. 1x10 cm; for N&,

50&E&1000 eV, 2. 5&&10 &opg&4&&.10" 7 cm; for CO, 100&E&1000 eV, 2&&10 &Opg& 2.3
x 10 cm for H&, 150 &E & 1000 eV, 6 x 10 & Op~ & 8 && 10 cm .

I. INTRODUCTION

This paper describes the measurement of the
absolute cross sections for ionization of K atoms
on impact with diatomic atmospheric constituents.
The cross sections are presented as a function of
K-atom velocity from near threshold for the reac-
tion to 1000 eV. From conservation of energy and
momentum considerations, the threshold energy
Eo in the laboratory system for the ionization pro-
cess is

Z; = MgE0/(My+ M2),

where E, is the amount of energy required to ionize
potassium (4. 3 eV) and M, and M2 are the respective
masses of the target molecules and potassium pro-
jectile atoms.

There are a number of reasons for choosing the
alkali metals for the projectile atoms. The alkali-
metal atoms are, in the first approximation, hy-
drogenic and therefore perhaps more amenable to
analysis than other species. The fact that they are
condensible made it possible to build a charge-
transfer-type fast-atom accelerator which has little

or no slow-atom contamination in the beam. The
alkali-metal atoms have large resonant charge-
transfer cross sections, and they can be detected
using surface ionization techniques. The choice of
potassium for the initial measurements is appro-
priate because to date it is the only alkali-metal
atom whose surface ionization behavior has been
investigated as a function of energy for the range
0-1000 eV. ' ' There exist a number of recent
measurements of low-energy ionization cross sec-
tions involving neutral targets and projectiles in the
range from threshold to a few hundred eV. ' ' How-

ever, very few of these include alkali-metal atoms.
In particular, for the ionization reactions considered
here, no previous data appear to exist below 150
eV. For Hz, N2, and 02 comparison is possible
with the data of Bydin and Bukhteev' which span the
range from 150-2200 eV. In addition there are the
higher-energy data of Kikiani et al. ' which go from
3 to 15 keV.

II. EXPERIMENTAL APPARATUS

A. Vacuum System

Figure 1 is a schematic of the over-all experi-


