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A method is presented to remedy the defects of the projection-operator technique for cal-
culating electron resonances in scattering from many-electron targets. Specifically it is
shown that if the projection operator (i. e. , idempotent) Q is replaced by a quasi-projection
operator Q such that limQ+ =0 as any r~- ~, then the spectrum of QHQ is discrete, and can
be made to be in essentially a unique correspondence with resonance energies. Belaxation of
the idempotency requirement allows us to define two forms of Q operator. The simpler of the
two forms is tested on e-H and e-He' systems; the two lowest resonant energies differ by
less than 0. 01 eV from rigorous QHQ results. For many-electron targets it is further ar-
gued that replacement of the exact target eigenfunction (yo) by reasonable approximations
(V 0) tn constructing Q will affect neither the discreteness of the spectrum QHQ nor the prox-
imity of its eigenvalues to the resonant energies. Calculations of He using two different
(open and closed shell) yo's and an angle-independent total wave function as well as a con-
figuration-interaction wave function containing up to 40 configurations are carried out. The
difference between open- and closed-shell ground-states results is about 0. 02 eV, and the
latter yields F.„,( S) =19.363 eV plus a width I' =0. 014 eV. No other resonances are found
below the first excited (2 ~S) He threshold.

I. INTRODUCTION

is such that it does not change the asymptotic form
of the exact (scattering) solution

limP+ = 4 as r,
so that

limQ4' = 0 as r, -~

(1.2a)

(1.2b)

To these Feshbach' has added the requirement of

The most clean-cut technique for calculating
resonances in electron collisions with atomic sys-
tems arises from the projection-operator formal™
ism of Feshbach. ' The effectiveness of the method
stems from the fact that "Feshbach" resonace
energies E„, which are part of a continuous spec-
trum (region of scattering solutions) of the
Schrodinger equation, are in a unique correspon-
dence with eigenvalues of a projected Schrodinger-
like equation whose spectrum is discrete and which
can be solved as an ordinary bound-state problem.
Specifically this means that resonant energies
emerge automatically from the calculation and do
not have to be hunted for (and perhaps missed) as
in a scattering calculation.

The projected problem QHQC „=8„4„depends
on an operator Q whose complement

idempotency,

P=P, Q=Q (1.3)

which is eiluivalent to the statement that Q and P
are projection operators.

Rigorous calculations using the formalism are
restricted to one-body targets, because only in
that case can explicit and rigorous P and Q oper-
ators be given. En the case of many-electron
targets, Feshbach' has given a formal expression
for these operators which is not really practical
because (a) it requires knowledge of the exact
target wave function pre(1, 2, . . . , N), and (b) it re-
quires the eigensolutions of a homogeneous integral
equation to take care of the antisymmetric identity
of scattered and orbital electrons. Problem (a)
is common to any scattering problem; in practice
it can be handled by using a suitable approxima-
tion of yc. However, problem (b) makes it im-
practical to use Feshbach's Q for anything but a
separable approximation of y, .

II. QUASI-PROJECTION OPERATORS

This has led us to reexamine the idempotency
requirement. Some consideration shows that the
asymptotic conditions (1.2) can be satisfied by P
and Q which are not projection operators. Further-
more one can show (cf. Appendix A) that the
counterpart of condition (1.2b):
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limQ@=0 as any r, (2. 1)

leads to a discrete spectrum associated with the
Hayleigh-Ritz variational principle

, (Qe, ega)
(C~, Q~)

(2. 2)

X+1

9, =- Q (I -P, ) (2.3)

and

M+1

Q2-=I-2 I'1 (2. 4)

In fact the restriction of a trial set of functions
to be quadratically integrable is implicitly equiv-
alent to using a quasi-projection operator on a
totality of wave functions which might otherwise
include nonvanishing scattering wave functions ~

In accord with our general theorem, this implicit
restriction of quadratically integrable function
leads to the mell-known and obvious result that
diagonalizing the Hamiltonian yields a discrete
spectrum of energies. Such a naive procedure
yields mostly nonautoionizing states, and methods
of picking out the autoionization states from among
them have been developed by Holy'ien and Midtal, '
Lipsky and Russek, Taylor and co-workers, '
and Perkins. These methods generally go under
the name stabilization of roots; unfortunately with
the exception of Perkins work' (which rigorously
applies only to one-electron targets) they do not
correspond to an exact prescription nor do they
distinguish between Feshbach resonances (i.e. ,
compound atom or core excited) and shape reso
nances. Furthermore, aside from the work of
Hazi and co-workers ' one does not get a prescrip-
tion for the width from this formalism. And finally
all these methods implicitly assume the use of a
configur ation-interaction-type wave function.

These difficulties derive basically from the fact
that Q in these methods is not only implicit but

uncontrolled and, therefore, not necessarily fixed
from one approximation to the next. The idea that
we shall project puts forward explicit forms for Q.
Once a form of Q is given, all the difficulties men-
tioned above can be readily overcome. Two forms
of Q readily present themselves

l1I. ONE-ELECTRON TARGETS

To see this, consider the one-electron-target
case in which the total wave function can be written

11 (x„x,) = 4 (r„r 2)ps(1, 2) (3. 1)

where y, is the total singlet (S= 0) or triplet (S= 1)
spin function. In calculating the variational prin-
ciple (2. 2), one will be led to calculate matrix
elements of Q, (called Q hereinafter) between two
different functions (C,@@2), where 4, and 1I2 are
of the form of (3.1). [ip2) can be considered to be
HQ4') of Eq. (2. 2) for example. j I et us expand
the spatial functions 4,. associated with 4, in terms
of a complete set of product-target eigenstates
3„(r):

~, =7 C&"3„(r-,)3„(r,)b„

+Z ~& C„'„'[3„(r,)a„(r2) ~e„(r2)&.(r )), (3.2)
n&v

where iso explicitly indicates that the diagonal
terms only arise in singlet states, and the + ( —)

sign refers to singlet (triplet) states.
Straightforward substitution of (3. 1) and (3. 2)

into (C,Q4'2) leads to

asymptotic conditions on Eq. (2. 1) in the energy
domain in which only elastic scattering is allowed.
Note that the subscript labeling P, refers to the
particle coordinates which are absent from the po.
Thus, i labels the scattered particle. The x refers
to both spatial and spin (one-half) coordinates of
each electron. The explicit inclusion of spin in
these operators makes them applicable in principle
to many-body targets in contrast to Feshbach's
form, ' which in addition to the difficulties mentioned
above also appears to depend only on spatial co-
ordinates. Notwithstanding this, Q, is more com-
plicated to use, particularly if one contemplates
increasing the accuracy of yo as well as 4.

In using Q, we shall see directly below that in
the discrete set of states associated with Q2HQ„
there may be states which do not correspond to
autoionization states. Hozvever there are only a
finite number of such spurious states, and they
can be identified in advance.

In both cases we define (+19@2/ (@P2)12 (( 30)1 (30 )1)2 (3.3)
P, 2=-1 —Q, 2

and the projectors P; are given by

(2. 5)
where Q from (2.4) has been used and is explicitly
for %=2

0 0(xi' &xi-it xi+is s x@+1))
NS

Q= 1 —P1 -P~ (2. 4')

(0 0( 1 ~ ' ' ' r 1-1t i+it ' t N+1)

(2. 6)

An examination will show that both Q's satisfy the

In (3.3) the subscripts on the kets indicates the
integrated coordinate in the integral symbolized
by the bra-ket. Now substituting (3.2) and (3.3)
we obtain after some manipulation,
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The second and third eigenvalues then correspond
to the first two resonant energies. Note both the
convergence as function of the number of terms

and the proximity of the essentially converged
50-term values to precision, rigorous Q-operator
results. '

(Eo is the ground-state energy of He'
and H, respectively. )

IV. TWO-ELECTRON TARGETS

We now turn to the electron-helium system which
is of chief interest here, because it is the simplest
example of a more than one-electron target. We
consider in particular the doublet states which are
the only ones that can nonrelativistically autoionize
below the first excited states (2'S) of helium. The
doublet functions can be written

cyclic
(4. 1)

where Xo and X, &o are the spin-0 function (of par-
ticles i and j) and spin- —, function of particle k,
respectively. The sum goes over cyclic permuta-
tions of i, j, k, and the spatial function is again
labelled by 4, but here it is a function of three
vectors r, , rJ, r~. It can be constructed to be an
eigenfunction of whatever angular momentum I.

This says that arbitrary matrix elements of Q con-
tain only one term referring to the ground state in
the singlet case (S= 0) and no terms in the triplet
case (S= 1). Thus in the singlet eigenvector spec-
trum there will be one eigenvector with the ground-
state coefficient large; for all other eigenvectors
that coefficient will be small. All other coefficients
referring to the ground state in the expansion do
not even arise in the calculation (i.e. , are zero).
The corresponding eigenvalue spectrum will, there-
fore, reflect that fact by having one low eigenvalue
corresponding to ordinary elastic scattering (or
a true bound state of the compound system, as
the case may be). All remaining eigenvalues refer
to doubly excited (i.e. , autoionization) states. In
the triplet case there are no spurious states, and
in fact the operator Q then becomes identical to
the idempotent Q of Hahn et al. 0

The general statement is that the number of
terms in (O', Q4'0& with indices referring to the
ground state of the target is the number of spurious

A A

autoionization states in QHQ, and they are the
lowest ones thai arise. We shall reexamine what
this number is in the e-He system below. In Table
I we give results for 'S autoionization states of
the e-He' and e-He systems using a Hylleraas
form for 4:

S
4(ri, ro)=e """"' Z Ci„„(rtro +ri ro)ru . (3. 5)

4';(12;3)=Z C„"'y„(r„ro)3 (r, ) (4. 4a)

which in an obvious notation we rewrite

4';(12;3)= Z C„"4'„„(12;3) (4. 4b)

We now make a basic assertion which is motivated
by the fact that qo is largely (ls) in character, . so
that by the exclusion principle no 3„in (4.4a) will
contribute to any process if it too is (ls) (i. e, ,
nodeless) in character. Under these circumstances
the B„being used in (4. 4) can always be selected
such that (for all m)

J 3 (r, )yo(r„ro)dr; =0, i =1, 2 . (4. 5)

According to our basic criterion we must examine
(4. 3) for terms connecting to the ground state:
i. e. , when 4„4~ are replaced by Co"4o and

C0,4 „,respectively. Again straightforward sub-
stitution yields

&4'i(12'3)@o(12'3)&0,0~=Co"Co~'5 ~ (4.5)

((4,(12;3)yo(12)&(yo(12)40(12;3))&0 0„=C~~" C~~~„'5

(4. 7)

All other terms in (4. 3) give zero when (4. 5) is
used. Thus, we find

( +1Q+2&on(, og (Com Co~ —Co~'Co~ )5 ~ =0 (4. 8)

In other words Q(= Q«) contains no spurious states
in the helium case.

In Appendix B we have shown that if a closed-
shell target function is represented by a single

one chooses to make it, so that the quantum states
it describes are appropriately labeled I . Finally
in order for 4 to be completely antisymmetric, 4
must be symmetric in its first two arguments:

4 (r&, r&,'r«) =+4 (r&, r&, r«) (4. 2)

We now want to determine (O', QC'0& where in the
present case

A

Q= 1 —P, -Pz —P,

Again straightforward reduction including spin inner
products leads to

&CI,QC'0& = (4', (12;3)40(12;3)& —(4,(12;3)4 o(23; 1)&

—(«4, (12;3)yo(12)&(yo(12)4 o(12;3)»
—((4,(23; 1)y (12)&&p (12)4 (12;3))&

-(&4 (12; 3)wo(12)&&9 o(12)4.(23;1)&)

+«41(23; I)vo(12)&&to(12)40(23; I)»)
(4.3)

where yo is here only a spatial function. To
analyze this further me expand 4 in terms of a
complete set of helium eigenstates p„and associ-
ated one-particle functions 3:
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Slater determinant, then Q, = Q&, and for both,
Q' = Q, which implies P' = P. ' Thus, there are
never any spurious eigenvalues for closed-shell
targets. Although we have not shown it except in
the case of helium, we believe that this absence of
spurious eigenvalues holds even if one represents
the closed-shell atom or ion by a mo~e elaborate
wave function than a single Slater determinant.
Finally, one can show that if one uses the quasi-
projection operator Q, , it will eliminate all spuri-
ous autoionization states below the first excited
state of any target atom or ion (Appendix C).

What about the necessity of using an approximate
ground state cpp'? We first point out that if one re-
places the eigenfunctions p„of Eq. (15) by app»xi-
mate orthonormal eigenfunctions p„, that all the
steps go through as before and quasi-projection
operators constructed from yp will therefore elim-
inate all but a finite number of states containing

The question arises, however, whether the
true ground state yp which may be present in the
approximate excited states, may not effectively
reenter the spectrum or even worse convert it from
a discrete to a continuous one.

Our answer to these questions is first to point
out that the mere presence of some ground state in
a function does not imply anything about the energy
associated with that function. Consider for ex-
ample the N-elect;ron target system. If we take a
linear combination of the approximate ground and
first excited state

+=C090+Cl

then the Hylleraas-Vndheim theorem" says that
the diagonalization of the N-electron Hamiltonian
will yield eigenvalues Ep and E, which are greater
than true energies Ep and E„respectively. Never-
theless, if one expands the corresponding eigen-
function g, of the first excited state, it will in gen-
eral contain a nonzero amount of the true ground
state pp, Wllat the Hylleraas -Vndhei m theore m
in effect guarantees is that the amount of qo in g,
is sufficiently small so as not to ruin the bound.

The above example is not rigorously applicable
to the case at hand, because it requires the diag-
onalization for both eigenvalues be done simul-
taneously, ' and it is confined to the N-electron
problem, whereas here we go from the N to the
(N+ 1)-electron system.

This question has been further studied by Hahn. '

By explicit calculation he has shown in the '8 e-H
system that simple orthogonalization to an approxi-
mate ground state can produce an excited-target-
state energy helot the true excited-state energy.
In those cases the H autoionization-state
energies can also appear below the true excited-
state energy, even though with his crude total wave
function there should be no such autoionization
states. However even in those cases the ordering
is never reversed, i. e. , the autoionization-state
energies always appear helot the lowest excited-
state energy associated with a function orthogonal
to the approximate ground state.

It is clear, therefore, that the intelligent thing
to do in judging the reality of an autoionization state
is to compare its energy with the lowest energy
one can achieve with an ansatz orthogonal to the
approximate ground state being used. Hahn' has
further argued that simple orthogonalization will
prevent the excited state from descending too far
below the true excited state.

Before turning to the calculations we make one
final point to make more credible the fact that
(2. 2) can give rise to a discrete spectrum even
when yo used in Q is not exact. The calculational
problem defined by (2. 2) is a completely different
one from the variational principle for H itself.
Even if one used an exact solution of HC =E4 there
is no reason to expect that it would have any special
minimal or stationary properties with respect to
(2. 2). To be sure there will be extra energy shifts
associated with the use of Q (in place of Q) and with
the use of yo (in place of yo) however, one has
every right to believe these shifts will be small
providing the approximations are reasonable. A

minimum condition for a reasonable yp is that its
energy Ep is such that

TABLE I. S eigenvalues (in eV) of QHQ for one-elec-
tron targets. Eo is the ground-state energy of the target
system.

E - &0~~ &~ (4. 9)

System

13
22
34
50

Precision QHQ

A,

&2-Eo

33.2415
33.2290
33.2281
33.2278
33.2267

A

~3-Eo
37.506
37.4825
37.4785
37.478
37.471

e-H

8, -Eo

9.5607
9.5431
9.5410
9.5406
9.5387

Based on a 50-term Hylleraas calculation of Bhatia,
Temkin, and Perkins, Ref. 9.

V. CALCULATED RESULTS, e-He SYSTEM

We have done two independent sets of calcula-
tions for the autoionization states of He below the
first excited state (2'S) of He. The first is strictly
for S states using an angle-independent spatial
function:

inn

(5.1)
and two forms of the He ('S) ground state, a closed
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Pp

hg -Eo
Closed

$1 -E(,
Open

F
Glosed

F
Open

TABLE II. ~S auto|onization state of He using angle-
independent wave function (5. 1). Results in eV; nonlinear
parameters optimized only for the %=70-term results.

the 2 S state, it being the Schulz' resonance at
19.3 eV. It is not unreasonable to expect that some
component of the angle-independent QC is trying
to represent that resonance. With that assumption
we have calculated the width using the general
formula'

10
22
34
50
70

20. 55
20, 14
20. 06
20. 02
19.99

20. 66
20. 14
20. 05
20. 01
19.98

0. 0087
0. 0029
0. 0044
0. 0039
0. 0044

0. 0092
0. 0054
0. 0027
0. 0053
0. 1553

I'=2k 1(~'IHIP'@) I' (5.4)

In this formula Q4' is the resonant function as-
sociated with (5. 1) and (2. 5b). The nonresonant
scattering function + is taken to be of the exchange
approximate form; i. e. , 4 in (4. 1) is replaced
by 4':

shell

(closd} e-27(r1+r2 /16
Pp

and an open shell'

(5.2)

y (oyen) [e-(3.1832~g 1.188B&g) + (1 2)] (5 3)

The purpose of this first set of calculations was
to confirm that the lowest eigenvalue was conver-
gent to a value well in the continuum of the e-He spec-
trum and to ascertain that the results were reason-
ably insensitive of the form of the ground state.
For it is to be emphasized that, i.n spite of its sim-
plicity, the open shell yo of Eg. (5.3) is truly non-
separable, and cannot even be expressed as a single
Slater determinant. Furthermore the ground-state
energies coming from these two functions are quite
different from each other.

E'""' ' ——77. 476 eV E"""= —78.234 eV .

Nevertheless, the actual results, given in Table
II, relative to the "exact" gxound-state energy'~

Ep = 79.0016 eV reveal amazing insensitivity to
these differences. The results are also significant,
because, to our knowledge, . they are the first com-
pletely free variational calculations [it is empha-
sized that no restrictions whatsoever are put on
the parameters in (5. 1)] for a more than one-elec-
tron target which converge to a nonzero value in
the continuous spectrum. (This statement is in-
tended to apply only to Hayleigh-Ritz-type methods
applied to noncomplex energy calculations. )

It is to be emphasized in this connection that the
energy of these initial calculations would not allow
us to predict such a resonance, because it is above
the first excited (2~S) state'4 of He (E, =19.8282
eV). [Note that since the first excited (2 S) state .

of He has opposite symmetry from the ground
state (1'S), any portion of the excited state in (5. 1)
must correspond to an energy equal to or greater
than the true excited state. ] Thus, we can be sure
in the angle-independent approximation that QC

describes primarily scattering from the 238 state.
Despite this fact we know very well both experi-
mentally and from the extended calculations to be
described below that a resonance does exist below

4 '(r „rz, ra) = yo(r, , rz)[u(r, )/r3] (5. 5)

The scattered orbital u(r~) is determined from the
exchange-approximation integrodif fer ential eq ua-
tion, "and the normalization assumed in (5.4) is'6
(rydberg units are used throughout)

1
k

lim u(x) = —sin(kr + q) (5.8)

k is the scattering energy at resonance:

k $1 Eo ~ (5. 7)

(Differences between the exact and approximate
ground-state energy are negligible as far as the
nonresonant continuum problem is concerned. )
Finally the form of po used in deriving the scatter-
ing equation is the same one for which each reso-
nance calculation is done.

The results shown in Table II do bear out the
expectation that the widths are rather insensitive
to the form of the ground state used (as long as it
is used consistently). However by the time one
reaches &=70 terms, the QC has become almost
completely continuum in character, and there is
no longer any resemblance between the closed-
shell or open-shell' widths or between the latter and
experiment. Thus, these width results should be
considered suggestive as to their dependence on
the form of the approximate ground state.

Since our purpose has been to consiruct a varia-
tionally sound, interpretatively unambiguous, and
hence, predictive method of computing resonances,
we have therefore undertaken a second set of cal-
culations which we now describe based on a much
more general wave function than (5.1).

The wave function is a general configuration-
interaction wave function which can be written

4'~ ~.,~3=3 ' Q C(C~„~R„,(r, )R„(xz)R„(r3)
[nJ

x J(l)E)L„l~;L)$(~ ~Si, p, ~)) . (5. 8)

Here 8 is the antisymmetrizer; ~ are the orbital
angular eigenfunctions describing particles 1 and
2 coupled to give L„which in turn is coupled to
the l3 of the third electron to give the total orbital
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angular momentum of the state L; similarly S repre-
sents the total spin-except here there are only two
possible values of the intermediate spin S, = 0, 1. For
S,=O, (5. 8) is of the generalformof (4. 1), andthe
spatial function must be symmetric in its first two
arguments (4. 2). If S, = 1, however, the spatial func-
tion is antisymmetric in its first two arguments.

The radial orbitals have the Slater form

If„(r)=e (5.9)

In general there are as many linear parameters
as there are sets (n) where

ln)=—In, n2n3 (lgl2) $ 13 S$ L) . (5. 10)

$,„„(S)—Z =19.31+O.O3 eV (5. 11)

In order to be sure that this result does indeed
correspond to a resonance, it is necessary to find
the lowest 2'S energy obtainable from a function
orthogonal to the approximate yo of our calculation.
As stated above this is necessary, because if such
an energy were below the 2'S threshold and below
our calculated QHQ, then our Q4 would have to be
interpreied as describing elastic scattering from
such a lowered 2 'S state and it could not be inter-
preted as a resonance.

%'e have done a reasonably definitve calculation
of this energy. In fact Such a calculation can be
done in terms of an idempotent projection operator

For each (unantisymmetrized) term there are in
principle three nonlinear parameters, however this
choice is somewhat restricted by the requirement
that the term does not vanish when antisymmetrized
[for example we know trivially that all the n, l, and
o, of the orbitals in (5. 8) cannot be the samej. In
practice the number of nonlinear parameters used
is very much smaller than the maximum, but
nevertheless, of sufficient number to give accurate
results.

For the above type of wave functions the basic
program for diagonalizing II is due to Browne and
Matsen. ' It is of interest to note that the modifica-
tion of the original program from H to QHQ con-
sisted of adding about 100 IBM cards. The program
automatically searches in the nonlinear parameter
space chosen for the minimum of a specified root.
An example of results of an intermediate calculation
using the open-shell ground state (5.3) based on a
12-configuration expansion is given in Table III.
This table shows that the expansion contained seven
nonlinear parameters (Is, 2s, 3s, 2P, 3P, 4s, 4P)
of which three (3s, 4s, 4P) were varied in this cal-
culation. The program automatically varies the
particular nonlinear parameters in order to min-
imize a specific eigenvalue, in this case the first.
One can see that the eigenvalue has been lowered
decisively below the 2 S threshold and is already
within 0. 1 eV of the experimental value"

TABLE III. S autoionization state of He using 12-
configuration-interaction wave function (5.3). Results
(in eV) based on a 12-configuration expansion ls (2s)
ls(2s3s) ls(2p) (Is2p) 3p (ls2s)4s ls(2s4s) (ls2s)3s
ls(3s) (ls2p)4p ls(2p4p) ls(3p) ls(2p3p). Th.is table
gives results with respect to the variations of the non-
linear parameters specified. The remaining nonlinear
parameters were approximately optimized from previous
calculations and had the values 0,'~ = 1.995, n2, =0.5508,
~»=0. 6008, and O. ~=0.4455.

0. 3378
0. 3412
0.3446
0.3480
0. 3514
0. 3548
0. 3582
0. 3617

19.4232
19.4227
19,4223
19.4219
19.4217
19.4215
19.4214
19.4214

0. 9743
0, 9837
0. 9930
1.0024

~4~ ~i -Eo

19.4206 0. 4973 19.420 33
19.4205 0. 5023 19.420 28
19.4204
19.4203

E s
—Eo=20. 601 eV

2 s

This is indeed above the 2 ~S threshold (but it is
slightly below the exact 2'S threshold at 20. 614
eV). " Thus, we can be sure that these eigenstates
do not correspond to scattering from the 2 'S state
either.

Final results are given in Table IV; as can be
seen they go up to 40 configurations, and they have
been done for both open- and closed-shell ground
states. The comparison of these results and ex-
periment is gratifying, nevertheless, they indicate
that the major part of the shift comes from the
inexact ground state.

Results of other calculations are given in Table
IV. Of these the most significant are those of
Perkins and gneiss and Krauss. o The former
is a quasirigorous upper bound of QHQ using an
angle-independent ground state; the latter corre-
sponds to using Q with a Hartree-Fock (HF)
(closed-shell) ground state. In practice Weiss and

Krauss used a 12-term configuration-interaction-
type wave function with all s orbitals orthogonalized
to the HF s-orbital of He. Their results are seen
to compare very well with our own. From a prac-

q(12), where

q(12) =-1 —y, )(P,
by minimizing

(q@Hq@)
(@q@)

Note that this is strictly an N= 2 particle problem
[as opposed to (2. 2) j. Using the Hylleraas form,
(3. 5), for 4' we obtain a minimum for %= 50 terms
at y=1. 2 corresponding to
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TABLE IV. Configuration-interaction results in eV for He .

State

Physical quantity

Ground state

Nonresonant
continuum

No. of configurations

12
28
40

Open

19.420
~ ~ ~

19.386

Closed

19.403
19.388
19.363

Exchange

0.0158
0. 0130
0.0144

Closed

Exchange
adiabatic

0. 0151
0. 0124
0. 0139

Open

19.959
19„927
19.862

Experiment

Other calculations

Young'
Perkins
gneiss and Krauss~
Burke, Cooper, and

Or monde"

19.31+ 0.03

19.67
19.69
19.369

19.24

0. 015 —0. 020
0. 008

0. 039

These 2P values lie above the 2 3S threshold and do not correspond to resonances. The second ~S eigenvalue lies
above the same threshold (cf. text).

Kuyatt, Simpson, and Mielczarek, Ref. 19.
Andrick and Ehrhardt, Ref. 23.
Gibson and DoMer, Ref. 21; Golden and Zecca, Ref. 22.

'A. D. Young, J. Phys. B 1, 1073 (1968),
Second paper of Ref. 6.

~Reference 20.
"P. G. Burke, J. W. Cooper, and S. Ormondes, Phys. Rev. 183, 245 (1969).

tical point of view this probably represents the
most reasonable way of applying the present for-
malism to many electron targets. In the case of the
two-electron target one should be able to do better,
and the open-shell ground-state results represent
the first such attempt. The results however are
somewhat unexpected in that for the angle-indepen-
dent wa.vefunction, pro~""' lowered (rather than
raised) the energy (cf. Table II). It would clearly
be desirable to extend these calculations to yet a
better and angle-dependent approximation of yo.

The width has been approximately measured by
several groups. Gibson and Dolder ' and Golden
and Zecca have both measured I =0.008 eV. The
latter have estimated an error of 0.002 eV which
makes their value noticeably different from the
value of I' =0.015-0.020 eV estimated by Andrick
and Ehrhardt, ' Our own results are closer to the
latter value. The variation of our results with
the number of configurations indicate they are rea-
sonably well converged. The results of Table II
illustrate the dependence of the width to the form
of the ground state. (Open-shell ground states are
simply too laborious to be used with a configuration-
interaction type 4' for a width calculation. ) In an
effort to test the sensitivity to the nonresonant
continuum function we have added a polarization

potential n/(r +d ) to the exchange-approximate
equations" with d so chosen that the augmentation
of the phase shift in this adiabatic exchange calcu-
lation just equals the augmentation obtained from a
full polarized orbital calculation over the ex-
change-approximation phase shift. The changes
are seen to be small, and thus, we believe the
present experimental results bracket rather than
represent the true value.

Other small resonances below the first excited
(2 'S ) threshold have been reported. '~'~'2' In an
effort to confirm these we have minimized the
second (S) eigenvalue of our 40-term configura-
tion-interaction wave function; we find 8- Eo
= 19.843 eV, which is 0. 023 eV above the 2 8
threshold, and hence, it does not correspond to a
resonance. We have also calculated P states,
which results are given in Table IV; they are also
seen to be above the 2 S threshold.

There is a truly bound P state (in the nonrela-
tivistic limit). However its energy is too high
[E(4P) = 19.741 eV] to be associated with the re-
ported resonances. The autoionization lifetime
of these state has been calculated to be greater
than microseconds, implying any shift from the
above value must be utterly negligible. Thus, the
existence of such resonances (assuming they are
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%e should like to thank Dr. R. A. Bain and
Dr. 8. R. Junker for help with the configuration
program and E. C. Sullivan for programming the
exchange-approximate continuum problem.

APPENDIX A: DISCRETENESS OF SPECTRUM OF
QHQ

Let us rewrite Eq. (4)

KY=SY (Al)

In this form the consideration of this Appendix will
be seen to apply to the Schrodinger e(3uation itself
(K=H) as well as 3C = QHQ and R= QHQ. The last
case is the one we are primarily interested in.
The solutions of the above equation are assumed
to be quadratically integrable (which is a somewhat
stronger condition than assuming limY= 0 as
r-~). This is sufficient to guarantee that solutions
belonging to two different energies are orthonormal

(Y ($)~
T (8 )) = ogpu (A2)

Since the functions are quadratically integrable,
the right-hand side of (A2) is strictly a Kronecker
5. This mearis that no matter how close 8 is to
8' the inner product is zero unless 8 is precisely
equal to 8'.

Now, contrary to what we want to demonstrate,
let us assume that solutions exist for a continuous
range of 8, so that Y is a continuous function of
S. I.et us further assume that Y can be expanded
in a Taylor series

sT 8'
T(~')=T(&)+(~&) g

+o(~& ) (A3)8 @tag

where 4$ =8' —((&. Substituting (A3) into (A2)
yields

1 + O(bS) = 0 (A4)

Finally, taking the limit AS -0, we have the de-
sired contradiction 1 = 0.

This implies then that the values of 8 cannot
form a continuum. (It does not say that the dis-
crete values S„cannot cluster arbitrarily close
to each other as in fact they do inthe hydrogenic
bound-state problem. ) This demonstration only
applies for a Q operator constructed from exact
target eigenfunctions.

associated with the electron-helium system) re-
mains unexplained.

Finally, it should be pointed out that with the cal-
culation of a well-defined spectrum of autoioniza-
tion states, one can (in principle) straightforwardly
construct an optical potential. This represents
a rather attractive alternate method to the calcula. —

tion of electron-atom scattering both in the reso-
narit and nonresonarit regimes.
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p, p+=0 (i~j) (81)

when the target state from which the P, 's are con-
structed is a closed-shell Slater determinant.
Specifically the target state is

@N( ~ -))

3((r,)o.(1)3,(r, )P(1) 3„&~(r, )P(1)

&((rg ()o'(j —1) ~N(a(rg ))P (j —1)

9(rq„)o.(j+1)~ ~ 3„(g(r),))P (j+1)
a,(r„„)o.(X+1) S~(,(r„.,)P(Ã+1)

(82)
The total wave function 4' is arbitrary but corn-

pletely antisymmetric, therefore insofar as its
projection on 4 "(j ') goes, it is completely equiv-
alent to write 4 in the form

E(ry)Xy(i ) ~ ~ E(ry)X5(j)
4

l

From (83), however, it is clear since y, (j ) is
either o.(j) or P(j) and since all radial orbitals in
@" are occupied, that we can choose:

J E(r)3„(r)dr=0, n=1, 2, . . . , ,'Ã. —

[The nonorthogonal parts of E can only be such as
to make various rows of the determinant on the
right-hand side (83) identical to each other, thus
they make no contribution. ]

Now by straightforward evaluation

(84)

P,+ =C "(j ')E(r, )X,(j),
so that

(85)

P,P, =4 "(i ')(4'(i ')C "(j ')E(r, )X,(j)& . (86)

Expand the 4's by minors:

C""'( ')= Z & (r ) ()C""( ' ')( 1)'".

@(N)( 1) P e (r ) (i)@(g-))( ) -))( I)+gu

Use the orthonormality

(@())(-)&(.-) -))(y(N-)&( . -1 -1))

(87b)

(88)

[which implies ( —1) " ""(& „(&„„=(&„„5„„in (86)]
to obtain

P(P&4' =Z 3„(r()X„(i)(8„(r&)~(j )E(r&)g„(j))

APPENDIX 8: EQUIVALENCE OF Q AND Q FOR CLOSED-

SHELL TARGETS

It can be seen from (2. 4) and (2. 3) that the differ-
ence between Q, and @~involves products of two,
or more than two, distinct P, . %e shall show that
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And now using (84), we have our desired result

I )I)+=0
This proves (Bl), since

N+i C

Q. -Q, =& (-1)' lI (P,P, " )
fybb2 f,g. ..(diet i nc t)

(810)

(81la)

and the number of distinct projectors I', in each
product starts with (o = 2), it follows from (810)
that any larger number of di.stinct projectors acting
on 4 is zero. Hence we have

nates.
First, we note thet matrix elements of Q, be-

tween two antisymmetric wave functions are inde-
pendent of the order in which we write the product

J y, (j ')(1 —P, )X(1, . . . , %+1)dj '=0 .
Since y is arbitrary, we can choose it to be

(cl)

in the definition of Q„Etl. (2.3). Now let (1 —P&)
operate on an arbitrary function x (of no particular
symmetry). Then, we find that clearly

(Q, —Qb)4 =0

From (810) one can also trivially show

Qb b4'= Q, b4'

and

P, b@=P, b4

(81lb)

(812b)

(c2)

(c3)

so that (C1) becomes

where + is antisymmetric. Then, it is clear for
the purposes of taking matrix elements that

(1 —&g)x = Q.@,

APPENDIX C: ELIMINATION OF GROUND STATE BY Q J v'0(j ')QP&j '=0. (c4)

Here we show that Q, operating on any antisym-
metric function 4(l, 2, . . . , %+I) eliminates the
ground state in any subset of N-particle coordi-

However j can be any of the indices 1,, . . . , %+1.
Thus, we have shown that Q, eliminates the ground
state of any antisymmetric function of the (%+1)-
particle variames in any subset of N variables.
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