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Photoabsorption by Ground-State Alkali-Metal Atoms*
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Principal-series oscillator strengths and ground-state photoionization cross sections are
computed for sodium, potassium, rubidium, and cesium. The degree of polarization of the
photoelectrons is also predicted for each atom. The core-polarization correction to the dipole
transition moment is included in all of the calculations, and the spin-orbit perturbation of
valence-0-electron orbitals is included in the calculations of the Rb and Cs oscillator strengths
and of all the photoionization cross sections. The results are compared with recent measure-
ments.

I. INTRODUCTION

Applied to alkali-metal-like atoms, the Hartree-
Fock approximation neglects the polarization of the
core by the valence electron and treats the filled
shells of the core as a spherically symmetric con-
figuration. Bersuker, and Hameed et al. showed
that the dipole moment induced in the core uni-
formly reduces the alkali-metal-atom principal-
series oscillator strengths.

The valence-electron transitions in alkali-metal
atoms are also affected by the spin-orbit inter-
action. The spin-orbit perturbation of valence-P-
electron orbitals is responsible for the anomalous
~I' line-strength ratios in cesium3 and for the non-
zero minimum in the photoionization cross sections
of ground-state Na, K, Rb, and Cs atoms. Fanos
demonstrated that it causes electrons, photoejected
from alkali-metal vapors by circularly polarized
light of certain wavelengths, to be strongly polar-
ized.

In Sec. II the modification of the dipole transition
moment due to core polarization and Fano's
analysis of the various spin-orbit effects are re-
viewed, and alkali-metal valence-electron poten-
tials are given. Computed oscillator strengths,
photoionization cross sections, and spin orientation
of photoelectrons are presented in Sec. III. In
Sec. IV the results are discussed and compared
with recent measurements.

then first-order corrected atomic wave functions
are used to compute dipole transition moments.

The effect of the polarization interaction on the
wave function of the tightly bound core electrons
is small, whereas the effect on a penetrating Ryd-
berg orbital of the valence electron can be con-
siderable. Consequently we outline below an al-
ternative derivation of the core-polarization cor-
rection, in which the polarization interaction is
treated as a perturbation of the core wave function
but is included in the valence-electron eigenvalue
equation which is solved numerically. This ap-
proach is based on the derivation by Caves and
Dalgarno~ and leads to the result given by Bersuker.
Atomic units are used throughout.

In a manner analogous to the Born-Oppenheimer
treatment of diatomic molecules, we make the ap-
proximation that the N core electrons, located at
r& (j = 1, 2, . . . , N), respond instantaneously to the
(relatively slow) changes in position of the valence
electron, located at r. Then, if exchange between
the valence electron and core electrons is neglected,
the (%+ 1)-electron wave function may be written
in a parameterized form,

~.(r&, r) = g(r&
~
r)4.(r),

where go is the ground-state core wave function
and g is the orbital of the valence electron.

The total electrostatic Hamiltonian H is conven-
iently separated in three parts,

II. THEORY
H = H~+ T„+H) (2)

Using stationary perturbation theory, Hameed
et al. derived a core-polarization correction to
the one-electron dipole moment for alkali-metal
valence-electron transitions. In this derivation an
unperturbed alkali-metal wave function is taken to
be the product of a valence-electron orbital and a
wave function for the undisturbed core. Neither
the valence-electron Hamiltonian nor the core
Hamiltonian includes the potential arising from the
core-valence-electron polarization interaction.
This interaction is treated as a perturbation and

where the N-electron core Hamiltonian is H„ the
valence electron's kinetic-energy operator is T„
= ——,

' V'„, the electrostatic interaction Hamiltonian
is

N

a, = — +Z ~r, -r-~-' (3)r
and the nuclear charge is Z. An unperturbed core
wave function y, (r& I ~) = y,"' is an eigenfunction of
H, with eigenvalue E,' '.

The substitution of the wave function (1), with
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r held constant, into the Schrodinger equation yields
the eigenvalue equation for yo,

[H, + H, —V(r) —Eo ' ] Xo(r&
I
r) = 0,

where [V(r)+Eo" ] is the r-dependent eigenvalue.
The eigenvalue equation for P is then readily ob-
tained,

(4)

[T„+V(r) a ]P (r)=(-'o(r)P (r) . (5)

v(r)=&xo" IH; I
xo" &+&xo"

I H& I
xo")

This potential has the asymptotic behavior

V(r) -+Sr ——,'n r —,'c(qr—

(6)

where z„and z, are the static dipole and quadru-
pole core polarizabilities, so by solving the eigen-
value equation (5) directly we include the full effect
of the polarization interaction on the valence elec-
tron. As we show below, to a good approximation
the perturbation of the core wave function can be
treated analytically.

The dipole moment for the valence-electron
transition n - 8 is defined as

M(( =&4'(( Id+D I@ ) (10)

where d= —r and D= —
g& r& are the valence- and

core-electron dipole operators, respectively. Us-
ing Eqs. (1) and (6), through first order this be-
comes

where the "effective" dipole operator is

0(r) = &xo"
I

d+D
I
xo" &+ &xo"

I
d+D

I
xo" &

+ &xo"
I
d+D

I
xo") .

To reduce Q to a tractable form, we take advantage
of the fact that the valence electron is localized
outside the core, and expand II& in a power series

In Eq. (5), & is the valence-electron eigenvalue
and Co(r) = &Xo l T„ I Xo& is the adiabatic coupling
term' which, in the present case, behaves asymp-
totically as r

If the interaction Hamiltonian H, in Eq.. (4) is
treated as a perturbation of the core wave function

Xo ', it follows that

xo(r, I
r) =xo "(r&

I

") + xo( "(r&
I
r), (6)

where the first-order correction is given by the
familiar expression

x (rg I R

=- 2 'x"'&x"'
I

H
I
xo"'&(E'"-Eo'") '.

'g' indicates that discrete and continuum core states
are included in the summation.

Through first order the potential-energy term in
Eqs. (4) and (5) is

of z. The first term that gives a nonvanishing
contribution in Eq. (I) is the dipole term,

N D ~ d
H, (dipole) = ~ o P, (r& r) =

The replacement of H, in Eq. (7) by this one term
leads to the result

@(-„) q (q 2„. ~' ~(xl." ~ D ~ xl") ~

)-&o(0& (0)

t'
tXg= —r 11-ug r (14)

The derivation by Hameed et al. yields Eq. (14),
but with c(~ replaced by n~((o), the dynamic polariz-
ability of the core at the transition frequency (o.
However, "unpolarized" valence-electron orbitals,
that is, orbitals which are eigenfunctions of the
one-electron Hamiltonian that does not include po-
larization interaction terms, are then used in Eq.
(11) to compute the dipole moment M. (Norcrosso
has pointed out that in Hameed's derivation, the
use of "polarized" valence-electron orbitals leads
to additional complicated terms in the expression
for Q. ) The correct expression for Q at all r val-
ues can only be written down formally [Eq. (12)],
so in either case Eq. (14) must be modified such
that Q remains finite at the origin. This neces-
sary, but essentially arbitrary, modification of Q
makes differences between Hameed's treatment
of core polarization and the treatment of Caves and
Dalgarno difficult to assess quantitatively, though
the Born-Oppenheimer approach, which utilizes
"polarized" valence-electron orbitals, seems
physically more plausible.

Ne have used the form

Q= —r(1 —o.,r '[1 —e xp(-( r/r o)')]J, (15)

+ (c,+ c,r)exp( —r/ ) ro(16)

for the valence electron of Na, K, Rb, and Cs. t/',

is the core potential, computed from Clementi's'

where ~, is an effective core-radius cutoff. Dal-
garno and the author have discussed the sensitivity
of computed dipole transition moments with respect
to different z, values and different forms of the
modification of g, and have shown that, for a given
form of the modified operator Q, one value of r,
may be used to reproduce a variety of experimental
measurements. ' '" The manner in which z, values
were determined for the present calculations is
discussed at the end of this section.

The iterative perturbation procedure described
by Bottcher has been employed to obtain model
potentials of the form

V„(r)= V,(r) —2n„r '(I ——exp[ —(r/r, )'])
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TABLE I. Core radius r~ in the effective dipole opera-
tor [Eq. (15)j. and parameters for the alkali-metal
valence-electron potential [Eqs. {16)and (17)]. All
values are in atomic units.

Cg

C2

+0

(Z-a)

2.350
0.9459
6.9273
0.38514

—0. 10506
1.00
1.00

12.48

4.220
5.331'
4. 1026
1.0793
0, 34470
1.20
1.20

17.33

3.505
8 976c

113.18
—0.97872

0.16158
1.4o
3.75

26. 70

Cs

4. 834
19.06

581.60
—0.79710

0.15052
1.50
4.00

39.77

J. Lahiri and A. Mukherji, Phys. Rev. 153, 386
O.e6v).

"J. Lahiri and A. Mukherji, Phys. Rev. 155, 24 (1967).
I. Johansson, Arkiv Fysik 20, 135 (1961).
J. Heinrichs, J. Chem. Phys. 52, 6316 (1970).

data for Na and K, and from Hartree's' data for
Rb and Cs; the nonlinear parameters ro and r& are
chosen ab initio and the linear parameters X, c&,

and c& are then determined numerically from the
observed alkali spectra. By not requiring that
X = n, in Eci. (16), we can effectively include the
long-range contribution from the adiabatic coupling
term 6, (r) in the valence-electron model potential.
Values of the parameters in Eq. (16) have previous-
ly been reported for sodium and potassium, ' but for
completeness these are listed in Table I with the
parameters for the cesium and rubidium model po-
tentials. It is interesting to note that the Cs model
potential is very similar to the unusual numerical
potential constructed by Stone that reproduces cesi-
um eigenvalues. '

The tabulated model potential parameters are ob-
tained by neglecting the spin-orbit splitting and

matching computed eigenvalues to values of the
measured center of gravity of each of several
terms. The spin-orbit interaction V„(r) has been
included in the total valence-electron potential V(r)
by means of the ansatz

V(r}= V.(r)+ V,.(r)
= V„(r)+ -,'o. '1 s(Z —a)/r',

where z is the fine-structure constant, l and s are
the orbital and spin angular momenta of the valence
electron, and a is a screening constant. For each
atom, the value of (Z —a) listed in Table I was de-
termined from measured n Pfine-structure energy
defects h&„by averaging several computed values
of

(Z —a„)= &~„(-,' o.'( y„, ~

r '
~ q„,) )

' .
To illustrate the accuracy of the valence-elec-

tron potentials, computed and experimental Cs '

eigenvalues are compared in Table II; computed
values of (Z —a„) are given also. For increasing
n, the (Z —a„) converge rapidly to values near the
tabulated avera. ge.

The effects of the spin-orbit interaction on radi-
ative transitions from an alkali-metal ground state
may be described conveniently in terms of the
parameter x, introduced by Pano, '

x=(2m, +m, )/(~, -M,),
where M, and M, are the radial parts of dipole mo-
ments for transitions to (j= -', ) and (j=-,') final p
states, respectively,

M, «&
= (ground state

~
Q(r)

~

final state; j = —,'(—,') ) .
(»)

Below the ionization threshold, the parameter x
is defined only at the discrete valence-electron

TABLE II. Cesium eigenvalues~ (rydbergs) and computed values of (Z —g„).

Observed

2

Computed Observed

2
&3)2

Computed {&—a„}
6 —1.8434(- 1)" —1.8532(—1) —1.v929(- 1)
7 —s.vs58(-2) —8.8027(- 2) —8.6208 {-2}
8 —5. 1922{-2) —5.1953(-2) —5.1168(-2)
9 —3.4348(- 2) —3.4356(-2) —3.394o(- 2)

10 —2.441V(- 2) —2.4419{-2} —2.4172(—2)
11 —1.S253(- 2) —1.S252(-2) —1.8094(- 2)
12 —l.4160{—2) —1.4160(-2) —1.cosa(- 2)
13 —1.13O6(- 2) —1.1305(-2) —1.122e(- 2)
14 —9.2362(- 3) —e.2352{-3) —9.1786{-3)
15 —7.6861(-3) —7.6859(-3) —V. 6431(-3)
16 —6.496e(-3) —6.4962(-3) —6.462V(-3)
17 —5.5634(- 3) —5.5632(-3) —5.5365{—3)
18 —4. S1V4(-3) —4. S3O4(-3) —4.ve6o(-3)

~The computed Cs (6s~~2) eigenvalue is -0.28583 By and the observed value
"The notation is —1.8434(- 1) = —1.8434 x 10
'This entry was excluded in the determination of the average value {Z-g).

—1.veo6(- 1)
—8.6206 {—2)
—5. 1150{-2)
—3.3e29(- 2)
—2.4164(—2)
—1.8087(- 2)
—1.4O4S(- 2)
—1.1226(- 2)
—e. 1v62(- 3)
—7.6411(-3)
—6.4615(- 3)
—5.5356(—3)
—4. 8100{-3)

is —0.28620 Ry.

33 862C

37.730
38.984
39.536
39.814
40. 069
40. 001
40. 215
40. 521
39.729
40. 857
40. 389
39.403
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E (eU)

5.140
5. «61
5.275
5.445
5.683
5.989
6. 131
6.283
6.363
6.446
6.620
6.805
V. 316
7.894
8.540

10.04
ll. 81
«3. 85

2409
2400
2348
2275
2180
2068
2020
1972
1947
1922
1871
1820
1694
1570
1451
1235
1050
895

OT (10~ cm)

1.198(-1)
1.142(-1)
8.631(-2)
5.4V3(-2)
2.5vo(-2)
6.432(-3)
2.295(-3)
2.624(-4)
1.191(-5)
2.494(-4)
2.oev (-3)
5.594(- 3)
l.988(-2)
3.sve(-2)
5.867(- 2)
e.«v3(-2)
«.oee(- 1)
1.144(-1)

1.«ve(+ 2)
1~ 155 (+ 2)
1.024(+ 2)
s. 3so(+ 1)
5. 95s(+1)
3.117(+1)
l. 896(+ 1)
6.4«4(+ O)

3.782(- 2)
—6.392(+o}
—l. 938(+ 1)
—3.246(+ 1)
—6.52O(+1)
—9.730(+ 1)
—1.281(+2)
—1.844(+ 2)
—2. 327{+2)
—2. 732(+ 2)

TABLE III. The total cross section Oz and Fano
parameter x for the photoionization of ground-state sodium
atoms. The incident photon's energy E and wavelength
~ are both indicated.

E (eV)

4. 342
4. 353
4. 374
4.407
4.451
4. 505
4. 536
4. 570
4. 607
4. 647
4. 689
4. 734
4. 78«
4. 832
4. 885
4. 940
5.060
5. 191'
5.565
6.517
7.742
9.230

11.01

TABLE IV. Same as Tab1.e III,

o.z (10 ' cm2)

6.oov(-3)
5.3V5(- 3)
4.235(-3)
2. 82o(-3)
l.459(- 3)
4.829(- 4)
2.623 (-4)
2. V45(-4)
5.5s6(-4)
1.149(-3)
2. 076(-3)
3.360(-3)
5.o2o(-3)
v. o68(-3)
e.5o6(-3)
1.233(—2)
«. 911(—2)
2.728(- 2)
5.222(- 2)
1.064(- 1)
1.43O(- 1)
l.536(- 1)
1.452(- 1)

2855
2848
2834
28«3
2786
2752
2733
2713
2691
2668
2644
2619
2593
2566
2538
2509
2450
2388
2228
«902
1601
1342
1126

for potassium.

6.64o(+ o)
6.281(+0)
5.56v(+ o)
4. 5oe(+ o)
3.118(+o)
l.414(+0)
4.496(- 1)

—5.84e(- 1)
—1.68V(- 1)
—2. 854(+ 0)
—4. 082(+ 0)
—5.36v(+ o)
—6.708(+ 0)
—8.099{+0)
—9.538(+0)
—l. «O2(+ «)
—«. 411(+«)
—1.V33(+1)
—2. 5so(+ 1)
—4.33S(+1)
—5.996(+ 1)
—v. 449(+ 1)
—S.657(+ 1)

eigenenergies, but x behaves smoothly as it passes
through the ionization threshold and is then a con-
tinuous function of the photoejected-electron mo-
mentum k or, equivalently, of the ionizing photon
energy E.

Both the I' line-strength ratio p and the degree
of spin orientation of electrons photoejected by
circularly polarized light I' may be expressed in
terms of x, viz. ,

of polarized electrons, Baum et al. ' have mea-
sured x(E) for K, Hb, and Cs, and Kessler and
co-workers" have independently measured x(E) for
Cs. Their experiments have accurately determined
the zero of x(E) for these atoms, which occurs near
the photoionization cross -section minimum. These

and

p = (f3/f$) (& i/&3) = 2(x+ l ) /(x —2) (20)
TABLE V. Same as Table III, for rubidium.

P = (2x+ 1)/(x'+ 2), (2l)

(o,

/err�

) = x'/(x'+ 2) . (22)

Equations (20)-(22) are only approximately cor-
rect because nuclear spin effects and the differ-
ence between (j= -,') and (j= —,') valence-orbital phase
shifts are neglected in the definition of x, Eq. (18).
However, Fino has shown that the resultant modi-
fications of the definition of x are quite small, so
they will not be considered in this investigation.

Prompted by Pano's suggestion that, because of
the spin-orbit interaction, photoionization of al-
kali metal vapors might provide a usable source

where, in Eq. (20), f~ and f, are oscillator strengths
for transitions to (j= —,') and (j= —,') P levels with
eigenvalues q3 and &, , In addition, the total photo-
ionization cross section o~, which is obtained by
summing contributions to degenerate (j = —,') and

(j = -', ) continuum levels, and the photoionization
cross section o, obtained by neglecting the spin-
orbit perturbation, are related by the equation

E (eV)

4. 176
4. 208
4.251
4. 311
4. 387
4.481
4. 568
4. 666
4. 774
4. 894
4. 926
4. 958
4. 991
5.025
5.166
5.319
5.482
5. 656
5.841
6.351
7.576
9.072

10.84

2967
2944
2915
2875
2824
2765
2713
2656
2595
2532
2516
2499
2483
2466
2399
2330
2261
2191
2122
1951
1636
1366
1143

o. («O-" cm')

s. eo3(- 2)
8.009(- 2)
6.939(-2)
5.636(- 2)
4.243(- 2)
2. e«4(-2)
l. esv(- 2)
1.242{-2)
v. 2ov(-3)
4.451(-3)
4. 159(-3)
4.O46(-3)
4.051(-3)
4.232(-3)
6.480(- 3)
«. «O«(- 2)
1.v54(—2)
2.572(- 2)
3.521(-2)
6.2«V(- 2)
l.137{—1)
1.443(- 1)
l.515(—1)

5.3«s(+ o)
5.o69(+ o)
4. 749(+ 0)
4.308(+o)
3.754(+ 0)
3.oe5(+ o)
2.497{+0)
1.843{+0}
l. 137(+0)
3.856(- 1)
l.911(-1)

—5.S25(- 3)
—2.O53(-1)
-4.ovo(- 1)
—l. 236(+ O)
—2.096(+0)
—2. 982(+ 0)
—3.892(+ o)
—4. 820(+ 0)
—v. «96(+ o)
—1.206(+ 1)
-1.687(+ 1)
—2. 148(+ 1)
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TABLE VI. Same as Table III, for cesium.

Z (ev)

3.890
3.923
3.965
4.025
4.101
4.195
4.305
4.433
4.461
4.489
4.518
4.547
4.578
4.608
4.640
4.672
4.739
4.808
4.955
5.113
5.555
6.066
7.290
8.786

10.56

3183
3156
3123
3077
3019
2952
2876
2794
2776
2759
2741
2723
2705
2687
2669
2651
2613
2576
2499
2422
2230
2042
1699
1410
1174

~, (10-«cm2)

1.oos(- 1)
9.1V2(-2)
8.158(- 2)
6.936(- 2)
5.ev 1(- 2)
4. 5oo(—2)
s. 55v (- 2)
2.9S6(- 2)
2. 856(—2)
2.v9o(—2)
2.V41(- 2)
2.705(- 2)
2.686(- 2)
2.682 (- 2)
2.693(- 2)
2. V35(—2)
2. 814(- 2)
2. 96e(-2)
S.424(- 2)
4.Oel(—2)
6.185(- 2)
8.580(—2)
1.238 (—1)
1.366(—1)
1.287(- 1)

1.772(+ 0)
1.evl(+ o)
l.541(+ O)

1.362(+ 0)
l. 137(+0)
8.693(—1)
5.626(-1)
2. 211(-1}
1.490(—1)
v. 5v2(- 2}
1.288(- S)

—7.428(-2}
—l. 5O9(- 1)
—2. 286(- 1)
—s.ov4(- «)
—3.8vo(—1)
—5.493(-1)
—v. l51(-1)
—l.056(+ 0)
—l.4o9(+ o)
—2. s2e(+ o)
—3.274(+ 0)
—5.178(+0)
—6.974(+ 0)
—8, 568(+ 0)

measurements provide the most precise determina
tion of the cutoff parameter r, in the effective-
dipole operator Q. The values of r, listed in Table
I reproduce the zero point of x for potassium and
for rubidium as measured by Baum et al. and the
average measured zero point of x for cesium. For
sodium, r, was determined from the measured
photoionization cross section at threshold. " These
r, values are used in all of the calculations pre-
sented in Sec. III.

III. COMPUTATIONS

Bound and continuum orbitals have been obtained
from the numerical solution of the valence-electron
eigenvalue equation

(T„+V„+ V„—e )(„=0.

The spin-orbit interaction V„was not included in
the determination of bound-P-state orbitals for sodi-
um and potassium since the observed P line-
strength ratio is approximately 2 for all principal-
series transitions of these atoms.

Tables III-VI list the total photoionization cross
section o~ and Fano parameter x computed for
sodium, potassium, rubidium, and cesium. The
effect of the spin-orbit interaction on each photo-
ionization cross section can be found easily from
these tables by using Eg. (22). Some of the potas-
sium results have been reported previously, "but
are presented again for the sake of completeness.

Sodium and potassium principal-series oscillator
strengths f„, computed by neglecting the spin-orbit
interaction, and rubidium and cesium principal-
series oscillator strengths f, and f, are listed in
Table VII. The sodium f values have been reported
already, 0 but the other f values are new, having
been computed with the accurately determined value
of the core radius r, for each atom.

In Sec. IV these numerical results are discussed,
and comparisons with recent measurements are
ma.de.

IV. DISCUSSION

(a) Sodium. The computed sodium photoionization
cross section o~ is compared with the cross sec-
tion measured by Hudson and Carter" in Fig. 1.
Both the computed value of the cross section at its
minimum o „and the computed position of the min-
imum A. ,„are given in Table VIII, which also in-

TABLE VII. Oscillator strengths for alkali-metal-atom principal-series transitions gp S-g I'. f indicates the

oscillator strength computed neglecting the spin-orbit perturbation of p orbitals; f&&3& indicates the oscillator strength for
the transitions to the j= 2(2) level of the P state.

(g -np)

0
1
2
3
4
5

7
8
9

10
11
12

Sodium

9.694(- 1)
1.sve(- 2)
2.o99(- 3)
6.4V8(- 4)
2. 8O1(- 4)
1.468(- 4)
8.vo5{ —5)
5.612(—5)
3.84e(- 5)
2.V59(—5)
2.011(—5)
1.570 (- 5)
l. lv8(- 5)

Potassium

fQ

9.vs2(-1)
8.svv(-3)
8.230(-4)
l.vve(-4)
5.V42(-5)
2.38S(-5)
1.170(—5}
6.4eo(-e)
3.924(- 6)
2.54V (-6)
1.v18(- 6)
1.249(-6)
9.138(—V)

S.499(-1)
s.473 (- s)
4.2V8(-4)
1.117(—4)
4.238(- 5)
2.011(-5)
1.112(-5)
6.848(-6)
4.426(- e)
s.o22(—6)
2.182(-6)
l.es4(-e)
1.261(-6)

Rubidium

V. 114(-1)
9.58o(- s)
1.442(- 3)
4.396 (-4)
1.878(- 4)
9.V55{-5)
5.vvv( —5)
s.v4o(- 5)
2.508(- 5)
1.794(—5)
l.ssl(- 5)
1.020(- 5)
7.990(—6)

Cesium

3.5S8(- 1)
2.o35{-s)
1.555(-4)
2.429(- 5)
5.s18(—6)
1.394(-6)
3.989(—V)

l. loo(-v)
2.626(- 8)
5.151{—9)
1.62s(—lo)
4.083 (—10)
2.155(-9)

7.404 (—1)
l.050(- 2)
1.639(- 3)
5.120(-4)
2. 2S1(-4}
1.1V1(-4)
6.886(—5)
4.485 (—5)
3.067(- 5)
2. 2O9(- 5)
l. 6O9 (- 5}
1.2es(—5)
l.001(—5}
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TABLE VIII. Alkali-metal-atom ground-state photo-
ionjzation-cross-section minima. The tabulated cross
sections are in units 10" cm and the tabulated wave-
lengths in A.

Present work
am~n

Seaton
(Bef.4j

Omgg

Experimental
0'mgn min

Na 0. 0009 1940 0. 001 &0, 3
&0. 1

1920 +30~
1950+50~

K 0. 022

Rb 0.40

Cs 2. 68

2500

2685

0, 03

0. 4

3. 0

0. 4 + 0. 2 2725 + 15
0.2+0. 2 2675 +75

0. 8+0.3 2480 +25

2650 +25

Marr and Creek, Bef. 18.
Hudson and Carter, Bef. 19.

'Hudson and Carter, Bef. 20.
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FIG. 1. Sodium photoionization cross section. The
curve indicates results obtained by including both the
spin-orbit interaction and the core-polarization correc-
tion to the dipole transition moment. The filled circles
are measurements reported by Hudson and Carter, Ref.
19.

eludes an estimate by Seaton and the measured
values of these quantities. The agreement among
the different entries is very good. As with all
previously reported calculations (see Ref. 18 for
a compilation), the present cross section does not
rise as steeply on the short-wavelength side of the
minimum as the experimentally determined cross
section does. The reason for this persistent dis-
crepancy has not been established yet.

Because the spin-orbit perturbation of Na orbitals
is small, x(E) is large except very near the cross-
section minimum. Consequently, no measurements
of x have been made for sodium.

50 I i I ) 1 ) ) ) ) i ) ) )

O

POTASS iUM

O
20—

C3
Ld
M

l5-
O
CC

IO—

( HUDSON )
Qfld
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C)

t4

C&
)I

CI 0~)) I ) I ) I ))) I )

2700 2300 I 900 I 500

CL PHOTON WAVELENGTH (A)

I IOO

FIG. 2. Same as Fig. 1, for potassium. The fi11ed
circles are measurements reported by Hudson and Carter,
Ref. 20.

The computed sodium oscillator strengths are in
accord with those predicted by Marr and Creek, '
and with those suggested by Dalgarno and Davison.
Except for the resonance transition, however, the
present results are not in harmony with the f values
tabulated by Wiese et al. These last oscillator
strengths resulted from calculations that did not in-
clude the effect of core polarization either in the
valence-electron Hamiltonian or in the dipole
transition moment.

(5) Potassium. In Fig. 2 the calculated potassium
photoionization cross section is compared with
Hudson and Carter's measurement. As with the
sodium results, the agreement is good from thresh-
old through the region of the cross-section mini-
mum, but at smaller wavelengths the measured
cross section rises much more steeply than the
computed cross section does. The minimum values
o „and A „computed for potassium are compared
with the estimate of Seaton and with experimentally
determined values in Table VIII. Again the over-
all agreement is very good.

The calculated values of the Pano parameter x
are plotted in Fig. 3, together with the values of
x determined by the experiment of Baum et al.
The sensitivity of computed x values to the size of
the core radius r, is also illustrated. If the core-
polarization correction to the dipole moment is
neglected, the computed zero-point of x(E) is more
than 0. 5 eV greater than the measured zero point,
and the computed photoionization cross-section
minimum occurs at p „-2475 A, as opposed to
the observed position A. „-2725 A.
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FIG. 3. Perturbation function x(E) for potassium. The
filled circles are results obtained with ~, =4. 220a0, the
crosses are results obtained with r~ =4. 635a0, and the
triangles are results obtained by neglecting the core-
polarization correction to the dipole transition moment.
The shaded area represents the width of 1 standard
deviation in the experimental determination of x by Baum
et al. , Ref. 16.

computed for Rb are given in Table VIII and again
the present results are consistent with the results
of Seaton and of Marr and Creek. '

The values of x for rubidium that are listed in
Table V and that have been determined by Baum et
al. are plotted in Fig. 6. The calculated x values
agree with the measured x values from the ioniza-
tion threshold through the region of the cross-sec-
tion minimum. However, for photon energies
E & 5. 2 eV, the theoretical and experimental results
for x(E) are not in harmony, in contrast with the
over-all agreement for the photoionization cross
section.

The computed Rb total oscillator strengths fr =ft
+f, are in accord with the values suggested by Marr
and Creek ' since their f values are based on an
extrapolation of the oscillator density df/de deter-
mined from their photoionization cross-section
measurements. For high-principal-series transi-
tions, though, Dalgarno and Davison's recommended
f values and the values of f, and fs computed by
Warner are not in good agreement with the present
results, and the differences increase markedly with
increasing principal quantum number.

(d) Cesium. Figure 7 shows the computed Cs
photoionization cross section and Marr and Creek's
measured cross section. ' Throughout the range of
photon energies considered, the ratio of the experi-

Figure 4 shows the potassium transition moments
it's and jYi, , defined in Eg. (19), in the region of
the cross-section minimum. The moment M,
computed by neglecting the spin-orbit perturbation
of the continuum p orbital, and the analogously de-
fined moments R3, R&, and R, computed by ne-
glecting the core-polarization correction [i.e. ,
Q(r) - —rj, are also plotted. The behavior of the
quantity R3 —R, in this region is approximately
linear, as Fano assumed. The difference M, -M&,
the quantity actually used in the calculation of
x(E), behaves less linearly than Rs —R, , but this
nonlinear behavior is not as pronounced for the
heavier alkali metals as it is for potassium.

The K principal-series oscillator strengths
reported in Table VII are in harmony with the f val-
ues given by Marr and Creek and by Dalgarno and
Davison, but do not agree with the values suggested
by Wiese et al. Again, this is because these last
f values are based on calculations that do notinclude
any effect of core polarization.

(c) Rubidium . The rubidium photoionization cross
section a&, computed with and without the core-
polarization correction to the dipole transition mo-
ment, and the measurements by Marr and Creek 18

are shown in Fig. 5. The agreement between the
experimental data and the "corrected" cross sec-
tion is extremely good. The values of X „and cr „

0.03
Rl

I M~ R~
0.02—

O

0.0 I—
LU

O
0.0

O
I-
u) -0.0 I—

I-
-0.02—

003 i I i I i I t I i I i I i I i I i I

0.06 0.IO O. I 4 O.I8 0.22 0.26

PHOTOELECTRON MOMENT UIVI (a.u. )

FIG. 4. Potassium transition moments for ground-
state photoionization. The moments 1' include the core-
polarization correction, while the moments R do not.
Subscripts (j.) and (3) refer to transitions to degenerate
(j=2) and (j= &) continuum levels, and the subscript (*)
refers to moments computed by neglecting the spin-orbit
perturbation of continuum p orbitals. When multiplied by
(2/wit) ~, these bound-continuum moments join smoothly
at the ionization threshold to bound-bound moments.



1628 JON C. WEISHEIT

0.12

O

~ O.O8-~

I 1

RUBIDIUM

Z'.
O
~~ 0.04—
N
Z
O
O
O
& 0.00

40 5.0 6.0
PHOTON ENERGY (eV)

7.0

FIG. 5. Rubidium photoionization cross section (1 Mb
=10 cm ). The full curve and dashed curve indicate,
respectively, results obtained with and without the core-
polarization correction to the dipole transition moment.
The bars indicate values measured by Ãarr and Creek,
Ref. 18, and the cross indicates the cross-section mini-
mum calculated by Seaton, Ref. 4.
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FIG. 6. Perturbation function x(E) for rubidium. The
filled circles indicate values computed with r~ =3.505a(),
and the shaded area indicates the width of 1 standard
deviation in the experimental determinatron of x by Baum
et a/. , Ref. 16.

mental results to the theoretical results is very
nearly 2. The source of this large discrepancy is
not established, but if the experimental data are in
error it may be due to molecular Cs absorption:
Creek and Marr ' have reported the Cs molecular-

I
W

O 020I-
O
V)

M

O
O

O 010-
F4
Z'
O

I-O

CL i

0.00
4.0

CESIUM

I I I

5.0 6.0 7.0
PHOTON ENERGY (eV)

FIG. 7. Cesium photoionization cross section (1 Mb
=10 cm ). The full curve indicates results computed
with r~ =4.834ao, the core-radius value obtained from
the experimental determination of x(E). The triangles
indicate results computed with r~ =6100ao, the core-
radius value that yields agreement with the measured
cross section at threshold. The bars indicate values
measured by Marr and Creek, Ref. 18, and the cross in-
dicates the cross-section minimum calculated by Seaton,
Ref. 4.

absorption cross section, in the region of the atomic
Cs ionization threshold, to be as large as 8&&10

cm with an absolute uncertainty of +50%. This
value is some 40 times greater than the cesium
atomic photoionization cross section at threshold.
The present computed value of cr „is consistent
with Seaton's estimate, and the computed value of
~,„is in good agreement with the position of the
minimum given by Marr and Creek. ' All of these
values are listed in Table VIII.

As indicated earlier, the above Cs results were
obtained with the core-radius value determined
from measurements of photoelectron polarization,
r, = 4. 834ao, where ao is the Bohr radius. Re-
sults obtained by using r, = 6. 100ao are also given
in Fig. 7. This x, value reproduces the measured
photoionization cross section at threshold. The
resultant values of A. ,„and o „clearly are not in
harmony either with the calculation by Seaton or
with the measurement by err and Creek. '

Further substantiation for the use of ~, =4. 834ao
in the calculations is given by the fact that there
are two independent determinations of x(E). Data
from both experiments and computed results are
plotted in Fig. 8. The values of x(E) calculated
with z, =4. 834ao are in good agreement with the ex-
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perimental results. In particular, the zero point
of x(E) appears to be well established in the neigh-
borhood of E=4. 52 eV, but the use of z, =6. 100ao
yields a computed zero point of x(E) at E & 5. 20 eV.

On the other hand, oscillator strengths computed
with x,= 6. 100eo agree much better with f values
reported by previous investigators' ' ' ' than do
oscillator strengths computed with ~,= 4. 834ao.
The f values that are computed with r, = 4. 834eo
(listed in Table VII) are consistently smaller, ex-
cept for the resonance transition oscillator
strengths f, and f, , than those calculated or mea-
sured by others. These comments are illustrated
in Fig. 9, which shows ratios of selected f values
to the f values given in Table VII.

In light of this disagreement, the neglected cor-
rections to Eqs. (20)-(22) were examined. Neither
of the corrections mentioned in Sec. II changed the
computed zero point of x(E) by more than 0.05 eV.

There is an independent means of resolving the
discrepancy between the measured oscillator
strengths and photoionization cross section, and
the oscillator strengths and photoionization cross
section computed with x, =4. 834ao, the core-radius
value that reproduces the measured zero point of
x(E). Baum et al. noted that their polarization
measurements indicate x= 2 below the cesium-
ionization threshold. According to Eq. (20) this
implies a, pole in the P line-strength ratio p, and
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FIG. 9. Ratios of selected cesium oscillator strengths
reported by other investigators to the f values listed in
Table VII of this paper. f~ and f3 denote f values for
transitions to (j = ~) and (j = &) I' levels, respectively.
The displayed data are from the following references:
(Q)-J. K. Kink, J. Opt. Soc. Am. 56, 1195 (1966); (+)
—I . Agnew, Ref. 25; (~)—P. M. Stone, Ref. 15; ( i)
—present investigation, but with ~~ = 6. 100ao.
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Baum et al. searched the literature for confirma-
tion of the existence of this pole. (See Ref. 16 for
a complete bibliography. ) Invariably the measured
doublet line-strength ratio increases with increas-
ing principal quantum number n, for n=6 to n=10.
However, for higher principal quantum numbers the
results are conflicting: Some measurements of p
indicate that a pole exists, while others indicate
that a pole does not exist.

Our calculations with r, = 4. 834ao yield a pole
very near the 6s —16p transitions. Both the cal-
culations with z, = 6. 100ao, the core-radius value
that reproduces the measured photoicnization cross
section at threshold, and the experimental deter-
mination of x(E) by Kessler et al. indicate that
x= 2 above the cesium-ionization threshold (see
Fig. 8), and hence that no pole in the doublet line-
strength ratio exists.

-2.0 I

5.8 4.2 4.6 5.0
PHOTON ENERGY E(eV)

FIG. 8. Perturbation function x(E) for cesium. The
filled circles and triangles are results computed with
w~ =4. 834ao and x~ = 6. 100ao, respectively. The shaded
area indicates the width of 1 standard deviation in the
experimental determination of x by Baum et al. , Ref.
16; the full curve indicates the quadratic least-squares
fit by Kessler et al. , Ref. 17, to their experimental de-
termination of x(E).
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Bremsstrahlung Rate and Spectra from a Hot Gas (Z = 1)
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An interpolation between the quadrupole and extreme relativistic electron-electron brems-
strahlung contribution to the emission rate and spectra from a Maxwell-Boltzmann electron gas
is carried out. These results are then added to the "exact'" electron-ion results already in the
literature to give the total emission for the temperature region 1 keV —kT~ 0.3 MeV. It is
found that quadrupole corrections are sufficient until the temperatures reach kT~= 100 keV.
At higher temperatures all multipoles must be included in order to describe the emission ac-
cux ately.

I. INTRODUCTION

In a previous publication, the quadrupole elec-
tron-electron (e-e) contribution to the bremsstrah-
lung spectrum of a hot Maxwell gas was given. It
was found that sizable corrections to the short-
wavelength portion of the spectrum occur when
kT, & 20 keV. There also exists in the literature
an integration of the Bethe-Heitler cross-section
for electron-ion (e-i) bremsstrahlung over a rela-
tivistic Maxwell-Boltzmann distribution of elec-
trons. 2 A simple formula3 was given for including
corrections to the well-known dipole spectrum.
For e-i oremsstrahlung, successively higher-order
multipoles will be down by a factor kT, /mc~ from
the previous order, whereas the factor will be
(kT, /mca)~ for e-e bremsstrahlung, since only the
2+ (n = 1, 2, . . . ) poles contribute.

One of the important applications of this work

is in the field of observational x-ray astronomy.
It is standard practice, nowadays, to fit the spec-
trum of an x-ray source with a black body, thermal
bremsstrahlung, or synchrotron model and thereby
determine the electron temperature from the data.
In this way a temperature of 8. 1x 10~ K (7 keV)
was measured for SCOX-1 and a temperature of
3. 5x 108 K (30 keV) was measured for CYG X-1.'
Measurements also show a strong variation in in-
tensity over periods ranging from fractions of a
second to months.

In this paper, an interpolation between the quad-
rupole and extreme relativistic e-e bremsstrah-
lung rate and spectra is carried out.

In Sec. II the method of interpolation is discussed
and graphs of the e-e spectra are given for several
different temperatures. In Sec. III, the e-e and
e-i contributions are added together to obtain the
total bremsstrahlung spectra and rate over the


