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equal to N~/16 for zero energy, '0 the radiation rate

(R~ )= —,'N(-,'N+1) —o+ W- W'=~~6 N' (21)

(-,'N+ m)! (-,'N- m)!(o)= - (2 ". (22)

The variation of g'2'(r, 0) against time Nw is plotted
in Fig. 5 for different N. For sufficiently large N,
g' '(r, 0) decays from roughly unity to a. nonzero
value. A straightforward calculation shows that with
the initial conditions given by Eq. (22), the rela-

is proportional to N . So, at time 70, the state of
our system obeys the superradiant conditions
(W=O, (R, R ) =N ). But these conditions do not seem
to ensure a coherent radiation field.

We have also perf ormed calculations with systems
prepared by an intense laser —,'p pulse, i. e. ,

tion (13), which expresses the correlations as a.

function of the radiation rates, is valid for large
N[i. e. , the quantity (R,(tz)R (tz)A, (t,)R (t,) fac-
torizesj. Then, by introducing the classical radia-
tion rates9 [Eq. (13)] the asymptotic value of
g' '(r, 0) is found to be 1-4/(N+1). Clearly, for a
large system, g' '(w, 0) is constant and equal to 1. The
radiation field emitted by a system prepared as Eq.
(22) is coherent (at least) to the second-order.

As the initial values of the energy and the radia-
tion rate are approximately the same in the two
cases illustrated by Figs. 4 and 5, the different be-
haviors of the intensity-fluctuation function are
due to the p „(vo) distribution. If one hypothesizes
that a property of a superradiant state is coherent
emission. This implies not only conditions for the
energy and radiation rate of the system but also
for its preparation.
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The full nonlinear governing equations for the quasistochastic model, which describes the
motion of a Brownian charge carrier in an external electric field, are solved for the stationary
current response. We find that the nonlinear response is identical to the linear response ob-
tained earlier by Lebowitz and Rubin.

I. INTRODUCTION

The classical theory of Brownian motion, which
ls based on an ab initio stochastic description, can
be formulated in terms of the Fokker-Planck equa-
tion'

—+v. -++ —E. =B v . f - Inf/f, ). (1)
sf ~ Bf e ~ sf 9 8

In order to describe the higher-order response it
is necessary to consider a more detailed descrip-
tion of Brownian motion than that given by (1).
This is of interest since at present only formal re-

suits for nonlinear response coefficients have
been obtained in the literature. The case of con-
duction by Brownian charge carriers offers a
physically relevant problem, e.g. , for the area, of
electrolyte theory, ' which should be easier to treat
than the general problem of conduction by arbitrary
carriers.

A generalization of (1) which eliminates the
stochastic content in the description and proceeds
instead directly from the Liouville equation has
been obtained by several authors 4 (the first of these
references will be referred to as LR hereafter).
They find a kinetic equation for the Brownian par-
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ticle in which the collision term [corresponding to
the right-hand side of (1)]is expanded in the square
root of the ratio ya= m/M, m the solvent particle
mass. The leading term in this expansion is of
the Fokker-Planck form, so that higher-order
terms (in y) would have to be considered to obtain
the corrections to the Ohmic current. This was
not done by the above-mentioned authors, who only
consider the linear (in E) kinetic equation. Another
possible means for obtaining the higher-order re-
sponse is to consider the quasistochastic model in-
troduced by LR. This is a formal model with both
stochastic and dynamical features, and may be con-
sidered as being midway between the pure dynam-
ical and pure stochastic descriptions. The advan-
tage shown for this model by LR was that it was
amenable to explicit calculations to all orders of y
in the linearized (in E) response regime, the re-
sults obtained being formally equivalent to those
found in the dynamical description. Since models
which are both instructive and exactly solvable are
not very common in nonequilibrium statistical
mechanics it seems worthwhile to consider non-
linear response theory in the context of the quasi-
stochastic model. The main result of this paper
will be to show that the full nonlinear response can
be computed for this model, and that, in fact, there
is no additional contribution beyond the Ohmic cur-
rent. Thus, in order to describe the higher-order
response either a generalization of the stochastic
theory' or, preferably, the higher-order dynamical
description must be used. This latter approach
will be discussed in connection with the related
problem of Hall conduction in a separate report.

II. QUASISTOCHASTIC MODEL

The fully dynamical theory of Brownian motion
proceeds from the Liouville equation, the various
particle pair interactions that occur being described
by specific potential functions. In the quasisto-
chastic model the description is simplified by as-
summing that the Brownian particle interacts with
only one solvent particle through a potential func-
tion, U, and the effect of the rest of the solvent is
described stochastically. Instead of Liouville's
equation, the basic governing equation is the gen-
eralized two-particle Liouville equation

BP, E 8jL(,

BV

dr dv K r, v, r, v, B,V p, B,V, r, v, t

velocity of these particles,

BU 8 BU
H=V ~ + v ~ ~— ~ ~ — ~ ~

BR Br M BR BV 8 r Bv

is the Hamilton operator for the motion of the two-
particle system in the absence of E, and K is a
stochastic kernel describing the effect of the re-
maining solvent, which acts as a resevoir and is
assumed to only indirectly interact with the Brown-
ian particle. For convenience we have set the
charge on the Brownian particle and the solvent par-
ticle mass both equal to one. As in LR we now

take

K(r, v, r ', v ', R, V) = p 0/&f~ = Po/r

and

U= —,
' & ', (R —r) = —,'&

0 R 0 .
The first of these assumptions is discussed by LR;
the second appears reasonable in the context of the
model and allows us to carry out exact calcul, ations.
Although we know of no other work based on this
specific model, various of its distinguishing fea-
tures have appeared in several independent des-
criptions of the liquid state. '

With the above form for K the model Liouville
equation becomes

E ~p, fPo- p
Bt jg 8V

LR only treat the linearized (in E) version of this
equation, but we shall be interested in the full
equation. However, we are only interested in the
steady-state current, so we will only need to de-
termine the moment

j = 1im f d R d V d r d v V p, (t)
gw ao

of the solution which we can do without explicitly
finding JU, .

III. STEADY-STATE CURRENT

~e proceed by formally solving (3). First, we
write p. = p.o+ p. , where p, o is the equilibrium value
of p, , so that p. satisfies the following equation:

I I
Bp, I E 8P, I

8 t
+Hp + ' PV 'E po =(f Po tt )

M 8V '7

(4)

with f'= f drdv p. '. A formal stationary solution to
(4) is

—K(r ', v, r, v, R, V) p (R, V, r, v, t)]. (2)

Here p= p, (R, V, r, v', t) is the joint distribution
function for the Brownian particle and interacting
solvent particle, 0,V and r, v the position and

E 8 1
tL (~) = — dt exp —t H+ —.—

7 M 8V

xp. ' +~PV ~ E, 5
'()

fo
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which differs from the linear solution found by LR
[their Eq. (C19)] in that the exponential streaming
operator contains the full, field-dependent Hamil-
ton operator 8+ (E/M) &/&V instead of the field-
free operator. Note also that we have not used the
scaled velocity variable Vy ' here as we are not
interested in a y expansion, but rather an exact re-
sult for the model. For the full streaming oper-
ator we find that where

f'(") .,&v E)
0

1 y2m4 Q)g 2

1+ (~~)'

1+ (~~)' —y'm*(~~)'
+ ~~ 1+ (~)'( IE 7

exp s H+ —
~ - V

=V+ y~m* (v —V)(l —cos&S)+ &5o sin&s

I= —,
' fd V V ~f0.

The second equation above follows from the first
and (5) after an integration by parts (or change of
variable). Rearranging terms in (7) we then find
that

+ y~m*E(S= sin~s), (6)
I = (piy'~,'~) [1+ (~o~)']&E (6)

where the reduced mass m~, and are identical to
thequantities defined in LR [note (C22) has a, mis-

printt],

m*= (1+y')-' ~= ~,(1+y')'"
Since the full streaming operator which appears

in (5) does not commute with po the integral equa-
tion for f becomes considerably less tractable
than the corresponding linear equation, and it is
no longer practical to attempt to solve directly
for this quantity. However, the steady-state cur-
rent can be calculated fairly directly

j= dVdHdv'dr Vp, ~

dVdRdvd r

x dt exp t H+ — - —— V

which is identical to the linear result which one ob-
tains from the results of LB when these are ex-
pressed in terms of the physical velocity V [cf.
(C24)].

The result that there is no nonlinear, response in
the quasistochastic model is instructive in that it
indicates that the transport coefficients associated
with this current cannot be expressed solely in
terms of functions of the linear-transport coeffi-
cient, i. e. , the friction coefficient, but depend on
higher-order correlation functions, which vanish for
this model. This conclusion could not have been
made on the basis of the linear results found pre-
viously from the dynamical theory. Finally, it is
interesting to note that the same "solution tech-
nique" used in this paper can be used to obtain ex-
act solutions for some other nonequilibrium prob-
lems, e. g. , the nonlinear heat flow in a linear
harmonic chain. We are currently carrying out
the computations for this problem.
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