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The normalized two-time intensity-fluctuation functions are calculated for the spontaneous-
emission radiation from a system of N two-level atoms. The radiated field, when the system
decays from the excited state to the ground state, does not look like a Gaussian or a coherent
field.

Statistical properties of the radiation field emitted
into free space by a system of N identical two-level
atoms (the dimensions of which are much smaller
than the radiation wavelength) have been recently
studied' by means of the single-time second-order
normalized correlation function g'~). When the
system is in the excited state, g' ' roughly equals 2.
This value is typical of the Brown and Twiss effect'
for thermal or pseudothermal Gaussian fields. When
the system decays from the excited state to the
superradiant state, ' the behavior of g'~) is essen-
tially classical: g' ' decrea. ses to nearly 1, which
is the value for a coherent field. But, as the system
decays further to the ground state, the intensity-
fluctuation function calculated in a model in which
the radiation field is quantized is quite different
from the classical one: larger and larger correla-
tions appear as the system is drawn near the
ground state. We can say that the radiation field
becomes more and more incoherent' as the atoms
approach the ground state. In this paper, we pro-
pose to explicate the nature of the spontaneous emis-
sion radiation from a many-atom system by means
of the two-time intensity-fluctuation function.

The two-time normalized second-order correla-
tion function is defined as

(~i, ti, &o, to)

(A-(~„ t,)A (~„t,)A'(~„ t,)A'(v.„-t,) )
(A (v„t,)A'(v„t, ))(A (v„t,)A'(r„t, )) '

It can be shown, by using the Heisenberg equations
of motion for the photon annihilation operators, that
the positive frequency part A' (v, t) of the potential
vector is the sum of the free-potential vector op-
erator and of a term proportional to the retarded
atomic lowering operator R (t —Iv" I/c). (The sys-
tem is located at v'= 0. ) Hence, in terms of the
system operators, the normalized intensity-fluctua-
tion function is given by

(R, (r,)R,(v+ r,)R (~+ v,)R (v, ) )
«.(v,)R (~.) )(R,(r.")R (v."))

—= ——(RQ p+ R.R p —2R pR, ) = A p
4p

2
(3)

for the reduced-density matrix of the system, with
t in units of the radiation lifetime of an atom. The
solution of Eq. (3) is

p(t) = e ""' p(to)

With the help of the quantum regression theorem, v

the intensity fluctuations

G"'(r, r,)=(R.(v,)R.(r, +v)R (r, +r)R (r,))
can be written by using the operator A defined by
Eq. (3) as'

G" '(v, r,) = TrR,R e"[R p(v, )R, ] .

Then, if we define

o(v . v'o) = e ' [R p(v, )R, ],
the normalized intensity-fluctuation function can
be written

K~.p. ..(vo) Z~.p. ..(r+ To)
'

In this equation v = (—,-'X+ m) (~X- m. + 1) with m

As, by its definition, o(r, r„) obeys
the same equation as p(t) [Eq. (3)], we can calculate
g' '(v, v 0) by numerical integration of the matrix ele-
ments p (v) and a (v', vo), with

m, rn( s v0) ~m+1pm+1, m+1( 0) '

In this equation, vo is the retarded time and v = t,
—t, —(I v', I

—
I v'0 I)/c is the delay time, chosen posi-

tive or zero.
Under the Markoff approximation, the quantization

of the radiation fieM leads to the equation
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Let us derive a relation which will be useful to
discuss our numerical results. Consider the dif-
ference

(R, (t, )R, (t,)R (t,)R (t,) &
—(R, (t,)R (t,)R, (t,)R (t,) )

= TrR,R e "~ '&'[R p(t, )R, —R,R p(t&) ] . (10)

N=20 g (TT, j

2

From Eq. (3), we find that

(R, (t,)R, (t,)R (t,)R (t,) ) —(R,(t,)R (t,)R, (t,)R (t,))

=TrR.R e '" ' ' —q(t( = —(&.R ))
d d

t=ty d~ t =tp

(II)
This relation is of some interest, when at time t,
the system is in a, pure state. Then Eq. (11) be-
comes

FEG. 1. Normalized intensity-fluctuation function

g (T 'T p) vs atomic energy W(7 p) jN and retarded time
delay NY for N =20.

—,(R,R ) =(R, (t,)R,(t,)R (t,)R (t,))
t=tg

-(R.(t,)R (t,) &«.(t,)R (t, ) &. (»)

Then, the normalized intensity-fluctuation function
is

«.(r.)R (r.) &

tonically decreases from its initial value to zero.
But, as the system decays further to the ground
state, g~ '(r, ro) begins to increase from g~2'(0, ro)
when Nr goes up [see Fig. 1 for W(ro)/N& ——,']. To
confirm our numerical calculations we can calcu-
late the g' '(r, r,) derivative at r=o. With the help
of the Eqs. (3) and (7)-(9), we find

x —ln(R, (r+ r,)R (r+ r,)) . (13) g &(r r,), = — —, Pv v, (m —k)

Let us first consider the system in the excited state
at time 7O= 0. Figure 1 shows g' '(r, 7'o) as a func-
tion oi del"-y N7' for different values of the system's
normalized energy W(r, )/N, where we have chosen
N= 20. In the plane ¹'=0, we have reported Fig.
1 of Hef. 2.

For times ro so that W(ro)) 0, g' '(r, ro) mono-

&& [v~+y p(„(p~+y, ~+& vs+(p(. i, ((+&pm, m & ~
(y43

The p 's distribution given by Eq. (3) is a smooth
function of m, and monotonic near the ground or
excited state (see Fig. 4 of Ref. 2). In these two

cases, we can approximate Eq. (14) by

g ( ~ 0)
( ) )3 P rnv(((m —k)p(t ((pm, m( m+1

—v((+1)(
(p 2

.=0 &. 70& ~o

2= —
( ( ) ( )&3

g v~vp(m —k) (m+ k+ 1) pg gp~ ~.
+ 70 70 m&a

So, one clearly sees that the g' '(r, ro) derivative
at v'= Q is negative when the populated states have
a positive energy, while it becomes positive as the
system approaches the ground state. However, as
the system decays further in such a manner that
the only populated states are ~

—,'N+ 2), l
—,N+ 1&—, —

and )
—,'N&, the g'~'(r, ro) —derivative at r = 0 be-

comes again negative [Eq. (14)j. For a two-atom
system, one finds that g(~'(r, r,) =g(2'(o, ro)(1+ 2r„)/
[1+2(ra+ 7) j is a. decreasing function of the time r.

To illustrate the behavior of g'~'(r, ro) in the re-
gion of negative energy, we refer to Fig. 2. v0 is
chosen so that W(r„)/N is equal to —0.4. For N=4

one has the situation described by the third case
of Eq. (14) discussed. For larger N, g' '(r, 7'o)

reaches a maximum before decreasing to zero. It
is not apparent how to explain why the fluctuations
are maxima for a time delay different from zero.
We can only presume that the radiation field is not
Gaussian because g'~'(r, ro) is not maximum for
zero time delay.

For s0 = 0, as the system is known to emit in-
coherently, we can compare the exact g( '(r, o)
given by Eq. (13) with the expression

gp.'(r, O) =1+ ~g (r, O) ~,
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FIG. 2. Normalized intensity- fluctuation function

g (T "Tp) vs retarded time delay Nw with W(&p) /N= —0, 4,
for different values of ¹

FIG. 4. Normalized intensity-fluctuation function

g (7, 7p) vs lV~ with W(v'p) = 0 for different /V.

where g"'(v', 0) is the two-time first-order normal-
ized correlation function. The relation (16) ex-
presses that the photoelectron counts obey the Bose-
Einstein statistics.

The function g"'(r, 0) has been calculated in the
same way as g '(r, 0). In Fig. 3, the full line is
the exact result and the broken line corresponds to
Eq. (16) for N= 20. One immediately concludes
that the radiation field is not Gaussian. Even for
very short delays, the photoelectron counts do not
obey the Bose-Einstein statistics. Indeed the deriv-
atives of g'-'(r, 0) and g',3',(7, 0) at time r =0 are
found to be

—g' '(r, 0) ) = —4+ —,
d~

)( g (To)

which is independent of N for large N, and

g)..(&, 0),=0

To have an idea of the variation of g' '(r, 0)
against r, we can take the value of (R,A ) given by
the classical model

(16)

where r, = ln(N- 1). So, Eq. (13) becomes

g' ' (7', 0) =1 —tanh —,.'(¹'-7,), (20)

which gives a good enough idea of the correlations
(see the dotted line in Fig. 3).

For the time ro, in order that W(v'0) = 0,
g '(7, vo) decays from its initial value, roughly 1, to
0 when ¹ increases (Fig. 4). The radiation field
is not coherent. Knowing that the variance 0 of the
system's energy is maximum and approximately

2 ---" N=20 f) 9 ( o)
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FIG. 3. Normalized intensity-fluctuation function

g (7 0) with W(0)/¹+ 2 vs N~ for N=20. The solid
line gives the exact calculation, the dashed line corre-
sponds to the Gaussian field hypothesis, and the dotted
line is obtained by using a classical radiation rate.
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FIG. 5 Normalized intensity-fluctuation function

g ' (~,0) vs N7 for several systems prepared by intense
laser 2m pulse.
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equal to N~/16 for zero energy, '0 the radiation rate

(R~ )= —,'N(-,'N+1) —o+ W- W'=~~6 N' (21)

(-,'N+ m)! (-,'N- m)!(o)= - (2 ". (22)

The variation of g'2'(r, 0) against time Nw is plotted
in Fig. 5 for different N. For sufficiently large N,
g' '(r, 0) decays from roughly unity to a. nonzero
value. A straightforward calculation shows that with
the initial conditions given by Eq. (22), the rela-

is proportional to N . So, at time 70, the state of
our system obeys the superradiant conditions
(W=O, (R, R ) =N ). But these conditions do not seem
to ensure a coherent radiation field.

We have also perf ormed calculations with systems
prepared by an intense laser —,'p pulse, i. e. ,

tion (13), which expresses the correlations as a.

function of the radiation rates, is valid for large
N[i. e. , the quantity (R,(tz)R (tz)A, (t,)R (t,) fac-
torizesj. Then, by introducing the classical radia-
tion rates9 [Eq. (13)] the asymptotic value of
g' '(r, 0) is found to be 1-4/(N+1). Clearly, for a
large system, g' '(w, 0) is constant and equal to 1. The
radiation field emitted by a system prepared as Eq.
(22) is coherent (at least) to the second-order.

As the initial values of the energy and the radia-
tion rate are approximately the same in the two
cases illustrated by Figs. 4 and 5, the different be-
haviors of the intensity-fluctuation function are
due to the p „(vo) distribution. If one hypothesizes
that a property of a superradiant state is coherent
emission. This implies not only conditions for the
energy and radiation rate of the system but also
for its preparation.
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The full nonlinear governing equations for the quasistochastic model, which describes the
motion of a Brownian charge carrier in an external electric field, are solved for the stationary
current response. We find that the nonlinear response is identical to the linear response ob-
tained earlier by Lebowitz and Rubin.

I. INTRODUCTION

The classical theory of Brownian motion, which
ls based on an ab initio stochastic description, can
be formulated in terms of the Fokker-Planck equa-
tion'

—+v. -++ —E. =B v . f - Inf/f, ). (1)
sf ~ Bf e ~ sf 9 8

In order to describe the higher-order response it
is necessary to consider a more detailed descrip-
tion of Brownian motion than that given by (1).
This is of interest since at present only formal re-

suits for nonlinear response coefficients have
been obtained in the literature. The case of con-
duction by Brownian charge carriers offers a
physically relevant problem, e.g. , for the area, of
electrolyte theory, ' which should be easier to treat
than the general problem of conduction by arbitrary
carriers.

A generalization of (1) which eliminates the
stochastic content in the description and proceeds
instead directly from the Liouville equation has
been obtained by several authors 4 (the first of these
references will be referred to as LR hereafter).
They find a kinetic equation for the Brownian par-


