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6Experimental values for S(k) are apparently limited
to values of k & 6~ [see D. G. Henshaw, Phys. Rev. 119,
9 (1960)]. These results give oscillations in S(k) about
the value unity with a minimum and second broad maxi-
mum in the region of k = S. 0 and 4. 7 A ', respectively,
which are 12 and 3% below and above the mean value of
unity. There is a suggestion of a third shallow minumum
at k = 5. 8 A ', which is about lVo below unity.

W. L. McMillan, Phys. Rev. 138, A442 (1965).
"An interesting pedagogical example is afforded by a

one-dimensional harmonic oscillator, with classical fre-

quency of oscillation &~, for which the exact solution of
S(k, t) can easily be written down in closed form.
series expansion of this exact S(k, t) in powers of the as-
sumed small parameter ~, /(k /2m) is seen to generate
the same sequence of terms as those provided by E&~, E2',
etc. , for this simple model.

~We have verified that these two terms in Eq. (38) make
negligible contributions to any condensate contribution to
E2.

I. S. Gradshteyn and I. M. Ryzhik, Tables of Intervals,
Series and Products (Academic, N. Y. 1965), p. 464.
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Stability of superluminous and subluminous waves propagating transverse to the direction of
the external uniform magnetic field is investigated in streaming relativistic homogeneous plas-
mas. In the relativistic regime for 0 &ck (~ being the electron cyclotron frequency and k the
characteristic wave number), the superluminous waves remain stable as in the absence of ex-
ternal magnetic field; however, for the subluminous waves. the magnetic field has a tendency
towards destabilization. For Q»ck, the superluminous waves are dynamically unstable for
all streaming velocities U, which are smaller than U~, or for magnetic fields 0, which are
greater than O~, but for the waves with frequencies ~ «0 (O»ck), there exists a minimum
streaming velocity above which the system is unstable. In the nonrelativistic regime the sys-
tem is unstable if streaming is much larger than the thermal velocity but otherwise stable.
The unstable region is bounded by Qm&~ and O~; Q~„being kv& (v& being the electron thermal
velocity) and 0 ~ being IU.

I. INTRODUCTION

The superluminous waves (waves with phase ve-
locities exceeding the velocity of light), which are
excited in a plasma by thermal fluctuations, do not
exhibit any resonance effects, i. e. , there is no

Landau damping or growth'~ associated with these
waves. Recently it was shown by the author that
in streaming relativistic plasmas, the superlumi-
nous waves propagating transverse to the direction
of relative streaming U in the absence of any ex-
ternal magnetic field are absolutely stable, but the
subluminous waves in such systems are dynamical-
ly unstable for U& 0. 09c. Suchrelativisticplasmas
one encounters in nature as well as in laboratory
(thermonuclear plasmas) with the difference that
there is magnetic field associated with them. It
would be interesting to investigate the effect of
magnetic field on these waves. In nonrelativistic
counterstreaming magnetoplasmas, it was shown

by Lee, ' by Tzoar and Yang, and by Buti and
Lakhina that the magnetic field decreases the
growth rate of instability of the transverse waves.

Following Buti, s' here we have considered the

propagation of superluminous (u»~ck) as well as
subluminous (~ & ck) waves, in counterstreaming
(relativistic or nonrelativistic streaming) relativis-
tic plasmas in the presence of uniform magnetic
field which is taken along the direction of relative
streaming but transverse to the direction of wave
propagation. For strong fields, namely, 0» ck
in the relativistic regime, i.e. , kT'«rnc, the
superluminous waves are found to be stable for all
streaming velocities U& U„wherea, s the waves
with frequencies ~ «Q are unstable only if the
streaming velocity is greater than a certain mini-
mum velocity. For weak magnetic fields (n& ck),
however, the superluminous waves are absolutely
stable but subluminous waves are dynamically un-
stable and the region of instability increases with
the magnetic field.

In the nonrelativistic regime, i. e. , kT» mc,
these transverse waves are unstable in a region
Av, & 0& kU provided U» v, . In Sec. II, the general
dispersion relation is derived and Secs. IV and V
deal with the discussion of dispersion relation in
the relativistic and nonrelativistic limit, respec-
tively.
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II. GENERAL THEORY

Let us consider two hot homogeneous collisionless
plasmas in the presence of a uniform magnetic
field B0. The electrons in these plasmas are
streaming whereas the ions are immobile and pro-
vide only the neutralizing background. On using
the relativistic linearized Veasov equation for the
electrons, namely,

8f| p ~fg E p&:Bi . ~sf

my» mcy ~p

(pXBO) = =Q,8fi
mcy 8p

we get the dispersion relation I B I =0, where
~ 222 2 2 Z(d C0&R = (c k —(d ) I —c kk+ —~

dp p
~ N~

B.= a.[4vm'c'y'. ff.(a./y. )] ',
with K2 as the Bessel function of second kind and
y =(1 —U /c )

' . In writing Eq. (2), we have
taken the magnetic field B0 along the z axis and

Let us consider the wave propagation along the
x axis and the streaming along z axis. Further,
if we take the two plasmas to be identical and
counterstreaming, i. e. , U, = —U2 = U, then we can
show that the elements Axe, Azx, Bye, and Azy of
8 vanish and we obtain the following two modes:

Rzz=0, R„„R —R„R „=Q .
Now we shall consider the former mode, which is
linearly polarized, in detail.

III. LINEARLY POLARIZED %AVE

~

~

Q i
Bp' m~y ap' m&uy

lnG = — — [(k P cos8 —m&uy) (Q —
&f&

')
mQ

sf 0

Bp

(2)

On writing k„=k, Rzz according to E(I. (2), is
given by

Rzz = (c'k' —(u )+Z,'-'-— dp pf(&(p) cos8
mc QN~

+k, psin8(sin(t -sin(t ')] . (3)

In E(I. (1) y = (1+@'/m'c')' ' and all the other sym-
bols are same as in Ref. 2. The equilibrium dis-
tribution function fo is given by drifted Maxwellian,
namely,

fo(p) =N B exp[-a (y —U p/mc )],
where o. labels the two plasmas having the mass
motion U and a =mc /kT and

x d U — -- cos8 — — sin8 cosPk U~ /

my m~y

zNy g ikp
&& exp ——((t) —(t) ) — (sing —sin(t) ')0 mQ

which, on using the transformations (P —(t) ')/fl
= ')l and ((t) + (t) )/2 = y, can be rewritten in the follow-
ing form:

r 00 21r

)(ee= (cV —~')sZ ~e" " see' ee cine ccseec(e)f eef eemc N
0 0 0

Pcos8 U kP 2ikp P,r/X exp ivy' — — sin8 cosy s jn —'

mey my 2 mQ 2

The y integration can be immediately performed
and E(I. (6) then reduces to

Rzz= czkz —&uz+g — (I ~ ~ dpp3e ' 'S4zTtco(d a 8
mc'n

(7)where

2igycc) a PVS= d exp -- d8 sin8 cos8 expy -0'
mc

0 0

P co» ik U.p
&& U~ — &0(b sin8)+ sin'-) cosy J,(b sin8),my may

(8)with
b = [2kp/(mQ)] siny .

For b& 1 (which in the relativistic case can be sat-
isfied only if 0) ck and in the nonrelativistic case
if Q&k V, ), E(I. (7) can be further simplified to
give

2 ~ 2K&p~B~ cfP sinhz p . 2 2coshz2k2 — 2 —~M Ib' —p2 U coshz- sinh~ 1+—
2my 8' 8

0
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k p y u) ' sinhz 12 cosh 12

with z= a PU /(mc2). We shall now discuss this dispersion relation in the relativistic limit (a«1) and in
the nonrela, tivistic limit (a» 1) separately.

IV. RELATIVISTIC CASE

ln the extreme relativistic case, y =p/mc and the limits of integration in Eq. (9) are mc ~ 0 ~ mp/2k
Now if we take the magnetic field to be weak, namely, ck& 0& co then on integration and simplifications
Eq. (9) for Rzz=0, yields

~k~ —~ 2mmc wf 08 A
c k

A
m c k 0

A(d =ck
U.

1+ 2 2+ 4 3 (10)

m c 2 e + 2 8 - 1 mO aQ
A, = - 1+—— — 1 — — +, , (E,(a,) —E,(a )) —,a-

2 „a5 a a6 a a6 ' ' ' 8k
[

2ck

mc 5 12—Eo(a,) —E3(a )+ (E,(a ) —E,(a,)) —,, (a Eo(a ) —a E, (a )+ a,E,(a,) —a,E,(a,))

0
+ 3 3 (a (1 —a ) E3(a ) —a, (1 —a,)E3(a,) +a E,(a ) —a,E,(a,)) — a - " —, (12)

and

1 1 3 1 1 3 1 1 1
(1 —5)E3(a ) -—— 25+ 5 -25 + 352

—
2 2+2 -2 —2,- —(1+5)E3(a,)

(
1 3 1 1 3 1 1 1 (1 —52) 1 aQ

352 2 2+2 52 252 +
2 2 Ey(a-) Ey(a ) 252 a

2 k y (13)
25 2ck

E„, (z) = (z/n)[E (z) —E„(z)], n & 1 . (14)

For contrastreaming identical plasmas with A',

=N2=N/2, Eq. (10) simplifies to

(@3+ (u 4(&A, —czk ) + c k A2(u + Am c k Q A3 = 0,
(15)

A= a&@& [2Um cy3 K2(a/yo)]

with

y =(1 —U'/c )

Note that Eq. (15) offers at least one negative root
for co if A3 & 0, which will ensure dynamic instabil-
ity for the superluminous waves.

For (aQ/2ck) «1, E3 and E, in Eq. (13) can be

with

5= U,/c, a, =a, (l, +5),

E3(z) = e '/z, E,(z) = f dt e "/t . -

» Eqs. (11)-(13), [a- aQ/2ck] means the entire
expression in the preceding square bracket with
(a) replaced by (aQ/2ck). Moreover, in writing
Eqs. (12) and (13), we have made use of the follow-
ing relation for the exponential integrals:

expanded and on simplification we obtain

)'aQ' 1 5 2 42ck a
(15)I2ck 653 10 5 g g 2ck

which shows that for instability for 0» ck, we
need to satisfy the condition U& U, or 0 & Q„where
U, /c = (5aQ/4ck)' and

Q, 25 t 5

2ck 5a & 10

Note that the latter condition can be satisfied only
for relativistic U. For other values of (aQ/ck),
U, is found by numerically evaluating Eq. (13) and
the variation of U, with the magnetic field is shown
in Fig. 1.

Low-Frequency Vfaves

Equation (9), which is valid for Q& ck, in the ex-
treme relativistic case for low frequencies (v «Q)
can be integrated to give

g 27T (0~~B~m c2

co =ck
U

x a, +a. . . +a3 . . , , (1'l)
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+ —[E,(a,) —E,(a )], (18)
1

mc 12 2 2 5 1B2= 1+ 2 2 +—+ z
— 1+—E()(a )

2a~g a0, 5 a a a~5 a

12 1 1 5
+ 1+ 2 2 +—1+—— 2+ — Eo(a, )a 5 a, a,

m'c' 4 & 3 5 3BB= Zo(a ) 1 ——
i
1 ——— 1+—2a5 a & a a5 a

2g2 + + W a a2y+ 2 g2 3g3

+Z, (a,)(5--5} . (20)

Once again f5- —5}stands for the expression in the
preceding curly bracket with 5 replaced by (-5).
We may point out that in deriving Eqs. (18)-(20),
the upper limit of integration, which should be
(mcQ/v), was replaced by ~; this is justified be-
cause Q» &u and large values of P in Eq. (9) con-

q=c2k2/&u~, $ =c k~/Q2, C, =B,a U/m c

C = B (2a5/m c'), C, = B,(2a5/m'c'),

(I 52) [2g52ff (gl/2 ul /2)]-1

Equation (21) is valid for identical counterstream
ing plasmas and this guarantees the existence of
instability only if the right-hand side of Eq. (21) is
positive which as shown in Tables I and II, occurs
if U exceeds a certain minimum velocity U „.
It is also evident from these tables that the growth
rate increases by increasing e and 0 and it de-
creases by increasing U and v&, i. e. , the tempera-
ture of the plasma and the streaming velocity have
a stabilizing effect, whereas the magnetic field has
the destabilizing effect on these low-frequency
waves. Large values of e are not taken because
these transverse instabilities' are important
for E- l.

Weak Magnetic Field (0 & ck}

In this case, it is better to derive the dispersion
relation from Eq. (5) rather than Eq. (7). In the
limit Q/ck- 0, if we use the relation'

tribute negligibly anyway. The rate of growth of
unstable waves represented by Eq. (17) is given by

pa

= &+—$ AC3
' &+A Cg+pagC2, 21

f , G (, /m4(g) mQ & m4(Q)
Q (k ~ p —m(()y) (k ~ p —m&uy) 8$ (k ~ p —may)

fmQ' a m s m4(p)
(p p —mmy) pp (p p —mmp) pp (k p —mmy) I

(22)
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TABLE I. Variation of growth rate with a =mc /ICT, $ =c2k~/Q2, and U/c for &=c k /cu&
——0. 01. Dots indicate the

absence of instability.

l. Ox 1O-'

1, Qx 10
l. Ox 10-'
0. 1
0, 2
0„3
0. 4
0. 5
0. 6
0. 7
0. 8

0. 9
0. 95

0. 001

~ 0 ~

1.3291.x 1 0
3.1654x 10 8

2. 7362 x 10-~

2. 2250 x 10 ~

l. 7317x 10 ~

l. 2849x 10 ~

8. 8859x 10-"
5.4564x 10-«
2. 6V1Ox 1O-"
V. 4185x 10
l. 9621x 1O-"

g = l. Ox 10

0. 01

~ ~

1.3217x 1p-"
3.1586x 1O-"
2. V311x 10-"
2.2216x 10 ~0

l. 7296 x 10-"
1.2838x 10 &0

8. 8803xlp
5.4541 x 10 ~i

2. 6704 x 10-"
V. 4177x 10-"
1.9621x 10-i2

0. 05

~ e I

2. 6420-x 10 ~~

6.3160x 10 ~~

5.4612x 10-'~

4. 4425 x 10-&'

3.4589x 10-~&

2. 5674x 1Q "
1.7760 x 10
1 Q908x 10-"
5. 3407x 10 '2

l. 4835 x lP-'2

3. g241x lp "

0. 001

2.3410x ] P

2.4777x 10
4 ~

8. 7245 x 10-4

7.7993x 10-4

6.5371x 10
5. 1852 x 10-'
3.8585 x 10"4

2. 6324 x 10-'
1.5715x lp-4

7.3884x 10 5

1..9537x 10 ~

5. 0338x 10-6

a=o. 05

0. 01

2.3408x ]0'
2.4641 x 10'

0 ~ ~

8. 0287x 10 ~

6.9785 x 10-~

5. 6808 x 10 5

4. 4235x 10 5

3.2798x 10 5

2.2631x 10 5

1.3847x 10 '
6.7477 x lp-6

1.8644 x ] 0-6

4. 9180x 10 ~

0. 05

4.6817x 10'
4. g27g x 10-'

~ 0

l. 5802 x 1O-'

1.3722 x 10-'
l. 1159x 10"6

8. 6876 x lp-6

6.4469 x 10-'
4.4572 x lp-'
2. V355x 10-'
1.3380x 10-'
3.7128 x 10 7

9.8154x 10

then Eq. (7) to order fl reduces to

a a 2 m &~t ~a~ d- p cos9f~(p) p cos9 kp U sin9 cosQ i' U sin9
(k '

p —m~y) " my m(uy ~y

cosp»O kpU, sin9 0
X—' + (k ' p —pl(dp) (23)

0& (k p —m~y) &uy 0& 9$ k p —may

For 0= 0, Eq. (23) goes back to the result obtained
in Ref. 3. Note that 0 term is odd in g and hence
vanishes on p-integration, and 0' term for super-
luminous waves for y=P/mc, is of the order of
0 /&u (which is much less than unity) compared to
first term in the integral and hence can only add a
real correction term to the dispersion relation,
which one would get in the absence of external
magnetic field. Thus superluminous waves in the
presence of weak magnetic field remain stable.

For subluminous waves, however, Eq. (23) for

Bzz = 0, for contrastreaming identical plasmas
can be simplified to give

1+tea = (a~~a/cak') (O' —F),
where

q = (lm(u/ck)

with

(24)

TABLE II. Variation of growth rate Om&/wp), with g =my /I: T, ( =g & /0, and 0/g for & =p 0 /~ = l. Q. Dots
indicate the absence of instability.

1.Ox 10
1.0xlp 3

1.Ox lo-'
0. 1
0.2
0. 3
0.4
0. 5
0. 6
0. 7
0. 8
0. 9
O. 95

0. 001

~ ~ ~

2. 1533x 10
3.9136x 10
3.3065x 10-'
2. 6064x 10 '
l. 9624x lp-'
1.4115x 10
g. 5003 x 10"
5. 7034x 10
2. 7413x 10 '
7.5034x 10 ~

l. 9726x 10-'

a= l. Ox 10

0. 01

~ ~ ~

l.4041x 10-'
3.2334 x lp
2. 7881x 10"8

2.2597 x 10-'
1.7527 x 10
1.2965 x 10
8.9418x 10
5.4V88x 1O-'

2. 6774x 10 ~

V. 4262 x 1O-"
1.9631& 1O-"

0. 05

~ ~ ~

2. 6V50x 1O-'

6. 3460x 10 ~

5.4840 x 10-'
4. 4578x 10 '
3.4681x 10-'
2. 5725x 10 ~

1.7784x lp ~

1.0918x 10
5.3435 x 10
1.4839x 10
3.9245x 10

O. 001

2.3532 x 10
5.5138x 10
5. 1465 x 10
9.0446 x 10-'
8. 7944 x 10-'
8.3150x 10-'
7.5050x 10 ~

6.2393 x 10-~

4, 4734x 10
2.4734x 10 '
8.7423 x 10-'
1.2424 x 10-'
l. 8071x 10

g = 0. 05

O. Ol

2.3409 x 104

2.4776 x 10
~ 4 ~

g. 2880 x 10-
V. 2994 x 10-'
5. 0888x 10 2

3.2302 x 10 2

1.87g3 x 10-
9. 8637x 10 3

4. 4578 x 10
1.5512 x 10
2. 9244 x 10
6.2241 x lp-'

0. 05

4.6817x 10'
4. 9290x 1P'

~ 0 ~

5.3054 x 10-3

4.2107x 10
3.0163x 10-'
2. Olgl x 10 3

l.2764 x 10"
7.5256 x 10-4

3.9698x 10-
1.6819x 10-'
4. 1369x10 5

1.0338x 10
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=ck +Pa+ 2 Qa) ~

2 2 2 i 2

where

(26)

I CL 0

x U cosh'

and

smhz 1+—
z

P i . 2 2coshz (27)
m 8' 8

pm'(u kB„( „I,
(

a 0
)

cosh@ 12 sinhz 12
X + +

8 Z2 82 82

Equations (27) and (28) can be readily integrated to
yield (for contrastreaming plasmas)

d9 sin8 cos 8

(1 —5 cos 8)(q +sin 8)
0

(I+36~cos~8) 3a~Q sin 8
(4 2 . z )

(1 —5 cos 8) 16c k

(25)

Equation (24) can be satisfied only if (a&a~~/c~k~)

& 1 and 52& I'. The latter inequality puts a lower
limit on U, say U above which these waves are
unstable. From Eq. (25), it is apparent that
F(QCO) & F(Q=O) and hence the instability criterion
(5 & F) can be satisfied by smaDer streaming
velocities, i.e. , U*(Q&0)& U (Q=O). Thus the
magnetic field (Q& ck) once again has a destabilizing
tendency for the subluminous waves.

V, NONRELATIVISTIC CASE

In this case a» 1 and y = (1+@/2m c ); on making
these substitutions, Eq. (9) which is valid for Q
& k~, for Azz = 0 can be rewritten as

(2= g, k v, (1+m V /KT), (20)

which show that both P, and P2 are positive quanti-
ties. Equation (27) can have pure imaginary root
only if 0 & Q*, where

Numerical evaluation of P, shows that for relativ-
istic streaming aP, &c k', i. e. , Q*2&k2v2. So we
cannot have an instability because the inequality
k2v, & 0 & 0* cannot be satisfied. For nonrelativ-
istic streaming, however, (, ~ c k~, so that

which shows that instability can occur if U» v, .
The same conclusions we had drawn in our earlier
paper. "

For weak magnetic fields, i.e. , 0 &k v„ if
we use Eq. (22), we recover the dispersion rela-
tion given in Ref. 11. We shall not discuss this
case here.

VI. CONCLUSIONS

The superluminous waves propagating transverse
to the external magnetic field in counterstreaming
relativistic plasmas are stable if the field is
weak, i. e. , if 9& ck, otherwise they are unstable
for U& U, or A&Q, for frequencies co& 0 but for
low frequencies (&u «Q), they are unstable for
U* U& Um„. Both U* and Um, » however, happen
to be nonrelativistic. For U& U „the streaming
as well as the temperature of the plasma reduces
the growth rate of instability whereas the magnetic
field increases the growth rate. The subluminous
waves, which are dynamically unstable in the ab-
sence of magnetic field, are further destabilized
by the field.

In the nonrelativistic plasmas, these waves are
unstable for k'v, & 0 & k'U provided U is nonrela-
tivistic but much greater than the thermal velocity.
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