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8Experimental values for S(¢) are apparently limited
to values of < 6 A-! [see D. G. Henshaw, Phys. Rev. 119,
9 (1960)]. These results give oscillations in S(&) about
the value unity with a minimum and second broad maxi-
mum in the region of 2=3.0 and 4.7 A“, respectively,
which are 12 and 3% below and above the mean value of
unity. There is a suggestion of a third shallow minumum
at k~5,8A! which is about 1% below unity.

'W. L. McMillan, Phys. Rev. 138, A442 (1965).

8An interesting pedagogical example is afforded by a
one-dimensional harmonic oscillator, with classical fre-
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quency of oscillation w,, for which the exact solution of
S(k,t) can easily be written down in closed form. The
series expansion of this exact S(&,¢) in powers of the as-
sumed small parameter w,/(%%/2m) is seen to generate
the same sequence of terms as those provided by Fii, F,},
etc., for this simple model.

"We have verified that these two terms in Eq. (38) make
negligible contributions to any condensate contribution to
F?-

1, S. Gradshteyn and I. M. Ryzhik, Tables of Integrals,
Sevies and Products (Academic, N. Y, 1965), p. 464,
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Stability of superluminous and subluminous waves propagating transverse to the direction of
the external uniform magnetic field is investigated in streaming relativistic homogeneous plas—
mas. In the relativistic regime for € <ck (Q being the electron cyclotron frequency and % the
characteristic wave number), the superluminous waves remain stable as in the absence of ex-
ternal magnetic field; however, for the subluminous waves, the magnetic field has a tendency

MARCH 1972

towards destabilization.

For Q> ck, the superluminous waves are dynamically unstable for

all streaming velocities U, which are smaller than U,, or for magnetic fields 2, which are
greater than Q,, but for the waves with frequencies w <Q (Q >ck), there exists a minimum

streaming velocity above which the system is unstable.

In the nonrelativistic regime the sys-

tem is unstable if streaming is much larger than the thermal velocity but otherwise stable.
The unstable region is bounded by @, and Qpay; Qpy, being kv, (v, being the electron thermal

velocity) and Qp, being £U.

I. INTRODUCTION

The superluminous waves (waves with phase ve-
locities exceeding the velocity of light), which are
excited in a plasma by thermal fluctuations, do not
exhibit any resonance effects, i.e., there is no
Landau damping or growth'? associated with these
waves. Recently it was shown by the author that
in streaming relativistic plasmas, the superlumi-
nous waves® propagating transverse to the direction
of relative streaming U in the absence of any ex-
ternal magnetic field are absolutely stable, but the
subluminous waves® in such systems are dynamical-
ly unstable for U>0.09¢. Suchrelativistic plasmas
one encounters in nature as well as in laboratory
(thermonuclear plasmas) with the difference that
there is magnetic field associated with them. It
would be interesting to investigate the effect of
magnetic field on these waves. In nonrelativistic
counterstreaming magnetoplasmas, it was shown
by Lee,’ by Tzoar and Yang,® and by Buti and
Lakhina’ that the magnetic field decreases the
growth rate of instability of the transverse waves.

Following Buti,®* here we have considered the

propagation of superluminous (w >ck) as well as
subluminous (w < ck) waves, in counterstreaming
(relativistic or nonrelativistic streaming) relativis-
tic plasmas in the presence of uniform magnetic
field which is taken along the direction of relative
streaming but transverse to the direction of wave
propagation. For strong fields, namely, Q> ck
in the relativistic regime, i.e., 2T <mc? the
superluminous waves are found to be stable for all
streaming velocities U> U,, whereas the waves
with frequencies w << @ are unstable only if the
streaming velocity is greater than a certain mini-
mum velocity. For weak magnetic fields (Q< ck),
however, the superluminous waves are absolutely
stable but subluminous waves are dynamically un-
stable and the region of instability increases with
the magnetic field.

In the nonrelativistic regime, i.e., 27> mc?
these transverse waves are unstable in a region
kv, < Q< kU provided U> v;. In Sec. II, the general
dispersion relation is derived and Secs. IV and V
deal with the discussion of dispersion relation in
the relativistic and nonrelativistic limit, respec-
tively.
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II. GENERAL THEORY

Let us consider two hot homogeneous collisionless
plasmas in the presence of a uniform magnetic
field ﬁo. The electrons in these plasmas are
streaming whereas the ions are immobile and pro-
vide only the neutralizing background. On using
the relativistic linearized Veasov equation for the
electrons, namely,

D ~ pxB,\ @
zf‘_x+_r)_.if;1_e(El+p BL)._};Q
ot wmy oX

we get the dispersion relation IR =0, where

R = (2% - W))T - CZEE+§ “—"—‘fﬂ—f P
af o of
X — |50 0
f do’ [ap mw'y (k ap’ )
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InG= P [(Ryp cos8 = mwy) (p — ')

&-p) 3fo] ,
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+k, psind(sing ~sing”)] .  (3)

In Eq. (1) v=(1+p%/m%>?)'/? and all the other sym-
bols are same as in Ref. 2. The equilibrium dis-
tribution function f, is given by drifted Maxwellian,
namely,

Fe®)=NyByexpl~a,(ly - U, -p/mc?)], (4)

where « labels the two plasmas having the mass
motion U, and a, =mc?/kT, and
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By =a,l4mm3c VK J(a/v )],

with K, as the Bessel function of second kind and
Yo=(1=U%/c®)2, In writing Eq. (2), we have
taken the magnetic field B, along the z axis and

p=(p,6,¢) =(p,6,9")

Let us consider the wave propagation along the
x axis and the streaming along z axis. Further,
if we take the two plasmas to be identical and
counterstreaming, i.e., U;=- U,=U, then we can
show that the elements Rxz, Rzx, Ryz, and Kzy of
R vanish and we obtain the following two modes:

Rzz=0, y = Ry, =0

Now we shall consider the former mode, which is
linearly polarized, in detail.

Rx ZRS’

II. LINEARLY POLARIZED WAVE

On writing k, =k, Rzz according to Eq. (2), is
given by
(c?R? = w?

Rzz= )+ 20 &L—a"‘ / dp pfy () coso

o (‘QN

]
xf d¢>'< a__p_ cose—pkU
 w my mw

% sind cosqb')
Y

X exp [—-— (p—-o¢") - Zkg (sing -sind)’g ,
(5)

which, on using the transformations® (¢ — ¢')/Q
=nand (¢ +¢')/2=y, can be rewritten in the follow-
ing form:

3 2 T % ar
Rzz=(c®k? - w?)+2 %gf}—:‘]a—"‘/ dp p® / d6 sind cosefo(ﬁ)'/ dn/ dy
[+3 [+ 0)

<y _pcost _ U, kp
¢ ey mwy

The x integration can be immediately performed
and Eq. (6) then reduces to

. 2
2.2 2 ditww;,a,B,
kzz=c% "~ w +E~—~—’;~2

3 -aqy
TS A dppe 'S,

(7

where

. . .
S= / dy exp(»z%"’% f d6 sind cosé exp

0 0

agp Uy
mc?

J

2 © ( ; >
Ezz=cPh—? ) &rﬂfﬁi[ i—p pleta? {Ua<coshz - il.rgﬁ) _b [sinhz <1 +;22> - ZCOZS‘M]
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. 2ikp . )
siné cos (x - EZZ-TL)] exp [iwyn —;% sinf cosy sin 5 ] . (6)

. tkUyp . .
)Jo(b sing)+ iy sin? cosy J,(b smeil,

!
« l:( - p cosb
my
with
b=[2kp/(mQ)]siny .
For b<1 (which in the relativistic case can be sat-
isfied only if ©> ck and in the nonrelativistic case

if @>kV;), Eq. (7) can be further simplified to
give

(8)

my z
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with z2=q,pU,/(mc?). We shall now discuss this dispersion relation in the relativistic limit (@<< 1) and in

the nonrelativistic limit (a> 1) separately.

IV. RELATIVISTIC CASE

In the extreme relativistic case, y=p/mc and the limits of integration in Eq. (9) are mc<p<mQ/2k.
Now if we take the magnetic field to be weak, namely, ck< Q< w then on integration and simplifications

Eq. (9) for Rzz=0, yields

22 27,2 2 4,242
WP =R -2 ZWmCL‘,vaBa [A1+Cwl§ Ay + Z4k 2z As:l ’ (10)
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1 3 1 1 3 1 1 1 A - 52) 1 aﬂ]
~ o _ 1\ (a-6) _ A a@ .
X (aot +;§ aa6+25 +a262 a252+2aa62 2§2>+ 252 (El(a-) El(a+)> 252 a ock s 13)
[
with expanded and on simplification we obtain
6=Ua/c’ a¢=aa(1i6), 7

Ey(z)=e*/z, El(z)=flwdte"‘/t )

In Egs. (11)-(13), [a— a/2ck] means the entire
expression in the preceding square bracket with

(a) replaced by (a2/2ck). Moreover, in writing
Egs. (12) and (13), we have made use of the follow-
ing relation for the exponential integrals®:

E,.4(2)=(2/n)Ey(2) - E,(2)], n>1. (14)
For contrastreaming identical plasmas with N,
=N,=N/2, Eq. (10) simplifies to

w8t wHRA, — PF%) + cPRPA,wP + RmPc kP QPA,=0

(15)
where

E=aw?[2UmPcyE Kyla/v)] ™!,
with

Yo = (1- UZ/CZ)-I/Z .
Note that Eq. (15) offers at least one negative root
for w?if Ag>0, which will ensure dynamic instabil-

ity for the superluminous waves.
For (af/2ck) <1, Eyand E, in Eq. (13) can be

_J(a@\ 1 6% 2 4<ch aQ
A""{<2ck> 65° [“10_56 Zﬁ)] “[ch‘“] , 16)

which shows that for instability for Q> ck, we
need to satisfy the condition U< U, or Q> §,, where
U, /c = (5a9Q/4ck)*’* and

o oy

2¢k  5a 10/ °

Note that the latter condition can be satisfied only
for relativistic U. For other values of (a§/ck),
U, is found by numerically evaluating Eq. (13) and

the variation of U, with the magnetic field is shown
in Fig. 1.

Low-Frequency Waves

Equation (9), which is valid for Q> ck, in the ex-
treme relativistic case for low frequencies (w < )
can be integrated to give

RIS @%Mﬁ
3 %
K? kPw?
x [Bl +By oz B B por s ror 4 I am)
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FIG. 1.
netic field for ¢ =0.01.

Variation of U, with mag-

tribute negligibly anyway. The rate of growth of
unstable waves represented by Eq. (17) is given by

(1)~ (1055 ac) Lev ey darcol, 2

e=c/wl, E=cK/Q¥, C,= Bla?j U/m?c® |
C,=B3(2a5/m%c"%) ,
A=(1-6%[2a02K,(at 2at/?)]| T .

Equation (21) is valid for identical counterstream
ing plasmas and this guarantees the existence of
instability only if the right-hand side of Eq. (21) is
positive which as shown in Tables I and I, occurs
if U exceeds a certain minimum velocity Up,.

It is also evident from these tables that the growth

E STREAMING INSTABILITIES IN RELATIVISTIC...
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+Eo(a+){6-—6}]. (20)

Once again {6 ~ — 5} stands for the expression in the
preceding curly bracket with 5 replaced by (-5).
We may point out that in deriving Egs. (18)-(20),
the upper limit of integration, which should be
(mc9/w), was replaced by «; this is justified be-
cause Q> w and large values of p in Eq. (9) con-

J

m&

rate increases by increasing € and  and it de-
creases by increasing U and v;, i.e., the tempera-
ture of the plasma and the streaming velocity have
a stabilizing effect, whereas the magnetic field has
the destabilizing effect on these low-frequency
waves. Large values of € are not taken because
these transverse instabilities!® are important
for €<1.

Weak Magnetic Field (§2 < ck)

In this case, it is better to derive the dispersion
relation from Eq. (5) rather than Eq. (7). In the
limit ©/ck—0, if we use the relation®

imf((ﬁ)

wd /E‘I’( I)_
f@ PR TR o men TR

im P

P -mwy) 9

[(E . gn-wr(r?ojv)]

o m o m¥@)
TS o) 55 TP oo 56 [T p )l
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TABLE 1. Variation of growth rate with a=mc?/KT, &=c%%/Q?, and U/c for €=c*%%/w};=0.01. Dots indicate the
absence of instability.

a=1.0x10" a=0.,05

AN 0.001 0.01 0.05 0.001 0.01 0.05

1,0%x10™ oo coe oo 2.3410% 103 2.3408%10? 4.6817%10!
1.0% 1073 oo ces e 2.4777% 10! 2.4641x10° 4,9279% 107!
1,0% 10" 1,3291X 10 1.3217x10"10 2.6420x 101 cee ce e

0.1 3.1654% 1070 3.1586% 10710 6.3160%x 101 8.7245x% 10 8,0287X 10 1.5802x 107
0.2 2.7362%10"° 2.7311x10°10 5.4612% 101 7.7993% 1074 6.9785% 1075 1.3722% 10
0.3 2.2250% 10 2.2216x 1010 4, 4425x 101 6.5371x 10" 5.6808% 1075 1.1159% 106
0.4 1.7317% 10"° 1.7296% 1010 3.4589x% 101 5.1852X 10~ 4,4235% 10 8.6876x 1076
0.5 1.2849x% 10 1.2838x 1010 2.5674% 101 3.8585x% 107 3.2798% 107 6.4469% 1078
0.6 8, 8859% 10~10 8. 8803 x 10-11 1.7760% 10~ 2.6324x10™ 2.2631%107 4,4572%107°®
0.7 5.4564x 10710 5.4541x10-11 1.0908% 10-1 1.5715%x 10 1.3847% 10 2.7355% 107
0.8 2.6710% 10710 2.6704x 10-!1 5.3407x 10"12 7.3884% 1075 6.7477% 108 1.3380% 107
0.9 7.4185x 1011 7.4177x10°12 1.4835x% 10712 1.9537% 1075 1.8644% 106 3.7128%107"
0.95 1.9621x10"1 1.9621% 1012 3.9241x 1071 5,0338%10"® 4,9180% 107" 9.8154% 10"®

then Eq. (7) to order ©? reduces to
2 g . . :
Rez= 1% — @43 wwmaa'/ @ p cosb f,(p) {[Ua _pcosd _kpU,sing cosqb] _ikp U, sind

« Noc? & p-mwy) my mwy wy
9 cos¢ mQPrpU,sind 8 [ - 4 9 cos¢
X— = b k‘ - w -\ = . 23
ap [(k-p-—mwy)] T ey EY) (k- p - mewy) 3¢ (k~p—mwy @3)
N
For Q=0, Eq. (23) goes back to the result obtained Rzz=0, for contrastreaming identical plasmas
in Ref. 3. Note that @ term is odd in ¢ and hence can be simplified to give

vanishes on ¢-integration, and ©? term for super-
luminous waves for y=p/mc, is of the order of
©%/w? (which is much less than unity) compared to where
first term in the integral and hence can only add a
real correction term to the dispersion relation,
which one would get in the absence of external with
magnetic field.® Thus superluminous waves in the
presence of weak magnetic field remain stable.

For subluminous waves, however, Eq. (23) for and

1+n% = (aw?/c?k?) (62 - F) , (24)
1= >Imw/ck)

Inf <1

TABLE II. Variation of growth rate (Imw/wp)?, with a=mc¥/KT, £=c%*/Q?, and U/c for €=c*%?/w}=1.0. Dots
indicate the absence of instability.

a=1.0x10" a=0.05

U/c ¢ 0. 001 0.01 0.05 0.001 0.01 0.05

1.0%x10™ oo oo co 2.3532x10° 2.3409x10% 4,6817%x108
1.0%10"3 s o ce 5.5138%10° 2.4776x10% 4.9290x 10!
1,0%107? 2.1533% 1077 1.4041x 108 2.6750%X10™? 5,1465% 101 cee cee

0.1 3.9136%x 107 3.2334% 108 6.3460% 107 9.0446% 10"! 9.2880% 102 5.3054% 103
0.2 3.3065% 1077 2,7881x%10°8 5.4840% 10"° 8, 7944 x 101 7.2994% 1072 4.2107x1073
0.3 2.6064% 107 2.2597% 1078 4,4578%107° 8.3150% 10! 5.0888%X 1072 3.0163%x107
0.4 1.9624%10°7 1.7527%10"8 3.4681% 1079 7,5050% 1071 3.2302% 1072 2,0191%x 1073
0.5 1.4115%1077 1.2965% 108 2.5725% 1079 6.2393% 1071 1.8793% 102 1.2764%1073
0.6 9.5003% 1078 8.9418%107° 1.7784x107° 4.4734%10"! 9. 8637%10°3 7.5256% 107
0.7 5,7034X 108 5.4788% 10"° 1.0918% 1079 2.4734x 101 4,4578x107 3.9698x10™
0.8 2.7413% 1078 2.6774X% 107 5.3435% 10710 8.7423% 102 1.5512% 103 1.6819% 10
0.9 7.5034%10° 7.4262x10°10 1.4839% 10-10 1.2424%10"2 2,9244x 10" 4,1369% 107
0.95 1.9726x 10~ 1.9631x 10710 3.9245x 10-11 1.8071%x 103 6.2241%X 107 1,0338% 107
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d9 sind cos?6

n sm'ln
Fz;?."_/' (1 -62cos0)(n? + sin20)!72
()

[(1 +362cos?0) 3a2Q?sin0

4n? - si 29].
(1= ofcos?oe~ lectke 47 —sin’d)

(25)

Equation (24) can be satisfied only if (aw?/c?#?)

>1 and 52> F. The latter inequality puts a lower
limit on U, say U* above which these waves are
unstable. From Eq. (25), it is apparent that
F(Q+#0)< F(2=0) and hence the instability criterion
(62> F) can be satisfied by smaller streaming
velocities, i.e., U*(Q#0)< U*(Q=0). Thus the
magnetic field (< ck) once again has a destabilizing
tendency for the subluminous waves.

V. NONRELATIVISTIC CASE

In this case > 1 and y ~ (1 +p%/2m?c?); on making
these substitutions, Eq. (9) which is valid for Q

> kv, for Rzz=0 can be rewritten as
2_ 2,2 Zp 2
w?=c%k H‘Dl*’(—ﬁ—ﬁa—) , (26)
where

21wi Boe e [ a.p?
=), 2 " paa% 2 -
¥y = ? i [ app exp( Cow Cz)
X {Ua<coshz - sinhz)
V4
_b [Sinhz<1+£2>_gﬂsh_Z]} 27)
m V4 V4
b 22”“’; ka ip exp( agp® 2>

C
x [————C"zhz (1 +%§—> - —T—thz <5 +%2—)] (28)

Equations (27) and (28) can be readily integrated to
yield (for contrastreaming plasmas)

and

by = 2rmkT)*/2 w2 Bexp(- a+mU?/2KT)  (29)
and
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Vo= P k202 (1 + mUE/KT) , (30)

which show that both ¢, and ¥, are positive quanti-

ties. Equation (27) can have pure imaginary root
only if Q%< Q*%, where

*x2 -1 U
gvt <1+ ZﬁkJ ‘ka (1+%—) . (31)

Numerical evaluation of §; shows that for relativ-
istic streaming ay, < c®?, i.e., Q*¥<k%?. So we
cannot have an instability because the inequality
k2% < 9 < ©*% cannot be satisfied. For nonrelativ-
istic streaming, however, ¥,2 c?k? so that

9*2 ( UZ

sztN - ;)?) ’
which shows that instability can occur if U%> 22,
The same conclusions we had drawn in our earlier
paper.!!

For weak magnetic fields, i.e., Q2<k%? if

we use Eq. (22), we recover the dispersion rela-
tion given in Ref. 11. We shall not discuss this
case here.

VI. CONCLUSIONS

The superluminous waves propagating transverse
to the external magnetic field in counterstreaming
relativistic plasmas are stable if the field is
weak, i.e., if Q@< ck, otherwise they are unstable
for U< U, or Q> Q, for frequencies w > Q but for
low frequencies (w << Q), they are unstable for
U*>U> Uyyy. Both U* and U,,,, however, happen
to be nonrelativistic. For U> U, the streaming
as well as the temperature of the plasma reduces
the growth rate of instability whereas the magnetic
field increases the growth rate. The subluminous
waves, which are dynamically unstable in the ab-
sence of magnetic field, are further destabilized
by the field.

In the nonrelativistic plasmas, these waves are
unstable for k%< Q%< k2U? provided U is nonrela-
tivistic but much greater than the thermal velocity.
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