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Corrections to the impulse approximation for scattering from a many-body system are de-
rived in the form of a series in inverse powers of the momentum transfer k. The coefficients
in this series are written in terms of the two-body interaction potential and the particle-den-
sity matrices. Application is made to the case of high-energy neutron scattering from liquid
helium. Evaluation of correction terms corresponding to a single helium-helium collision
during the neutron-helium interaction time indicates (a) a shift in the peak of the incoherent-
scattering cross section toward lower energy by a constant amount, and (b) an asymmetry of
the cross section with respect to neutron energy loss about its peak value. Numerical esti-

O

mates are given for these two effects for 0 =14.3 A . Evaluation of condensate broadening
due to multiple He-He collisions sho~s that the condensate-scattering contribution has a width
proportional to k, and is thus distinguishable from the main noncondensate peak whose width
is proportional to k. Estimates are given for requirements on experimental-resolution func-
tions necessary to preserve this evidence of a distinct condensate contribution.

I. INTRODUCTION 2vS(k, &u)= f dte '"'S(k, t), (2)

The inelastic cross section for neutrons on He
liquid is given in the Born approximation by

d „ky
2

dodet 4)(hk;

where hk=hk; -8k& is the momentum transferred
to the helium, S~ = e; —e& is the energy transfer,
and 0& =1.13 b. 2 The dynamic structure factor
S(k, (0) is the Fourier transform of the density-
density correlation function S(k, t):

where

~S(k t) )~ ( -ik r) (0) ik r) (i ))
j, f

The average value of the time-dependent density-
density correlation function in E(l. (3) is in general
taken over a canonical ensemble in equilibrium at
temperature T. In the present work, we will re-
strict ourselves to T= 0. E(luation (3) contains the
Heisenberg operator r, (t) defined for all j and t by
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iHt/t) iH t-lk1"
ye

The complexity of the liquid ground state makes
it necessary to employ severe approximations to
calculate S(k, ~). The most widely accepted ap-
proximations are limited to either small momen-
tum transfers or to asymptotically large values of
k. Little progress has been made in the evaluation
of S(k, ~) for intermediate values of k.

The interest in inelastic neutron scattering for
large momentum transfers is largely based on the
fact that the approximation asymptotically valid in
this region, the impulse approximation, provides a
fairly direct connection between liquid helium's
single-particle momentum distribution and S(k, t)
[see Eq. (24) below]. This connection has been
employed to compare a theoretical prediction of the
He -momentum distribution with experimental de-
terminations of S(k, ~). A problem with this ap-
proach is that experiments have been limited to only
moderately large values of k, for example, 14.3
A ', and a strict criterion for evaluating the ac-
curacy of the impulse approximation has been lack-
ing.

This paper presents a derivation and evaluation
of correction terms to the impulse approximation.
In Sec. II, we express the exact S(k, t) as a series
in inverse powers of k, the momentum transfer.
In Sec. III, the coefficients of these powers of /~

are expressed in terms of the two-body interaction
potential and the two-particle density matrix. In
Sec. IV, these general results are specialized to
the case of helium.

We find that these corrections shift the peak of
the incoherent scattering toward lower energy by
a constant amount, which depends on the hard-core
radius in the two-body interaction potential. Choos-
ing the hard-core radius to agree with the average
of the observed peak shift in the momentum transfer
region from about 3 to 9 A ', ' we predict a I/p shift
in peak value for k =14.3 A . A concomitant slight
asymmetry of the cross section with respect to
neutron energy loss accompanies this peak shift.
The condensate scattering contribution, which is
given by a 5 function in energy in the impulse ap-
proximation is broadened by interactions into a
curve with a width proportional to k ~ . Since the
main noncondensate peak has a width proportional
to k, the condensate contribution remains visible as
a distinct spike in the dynamic structure factor for
large k. Such structure is broadened by experi-
mental energy resolution, and we find that with en-
ergy resolution of about 3.4 meV, corresponding to
experiments performed at 0 = 14.3 A, the shape
of the scattering cross section versus energy trans-
fer has only a single broad peak. A reduction in
this energy resolution by about a factor of 2 is
found to preserve the distinct condensate contribu-

tion in the inelastic scattering cross section.

II. DERIVATION OF SERIES EXPANSION

Substitute Eq. (4), with its right-hand side mul-
tiplied by unity in the form e'"'J e i"''j, into Eq.
(3). The result, putting &= I, is

/)/S(k f) p ( ik (r/-rt ) -ik ~ r) iHt ik r) i/it )-(5)
jr'

Now make use of the identity
-ik rj iHt, ikvrj iH't

where
fH -=H(r„. . . , r„p„.. . , p,. +k, . . . , p„)9

=H+ e„+L, ,
with

~k=k /2m, L, =k p;/m

The density-density correlation function now has
the form

/)/S(k t) tukt )~ ( ik (r/-rt ) t(H+1 ) )t iHt
) -(8)

j, l

The proposed expansion results from utilizing the
following relation, valid for arbitrary operators A
and 8:

A

Here T, is an operator, similar to the time-order-
ing symbol, which arranges operators containing
the parameter ~ so that in the series expansion of
the exponential, the operator associated with the
smallest value of A. appears farthest to the right.
In Eq. (7) we make the identifications

A. =iL;t =ztv„~ p;, B=zHt,

where v, =k/m. With these substitutions, the inte-
grand in Eq. (7) becomes

( /) tk(vttt )' r/H tk(vkt )'r/

where
1f

H =H( I'I, ~ ~ ~, I' —/(Vtt t. . . I'H,' pi, . ~ ~, pH)

—= H(r, —)(vkt) .

The substitution of Eq. (7) into Eq. (6) therefore
yields

t) ei~kt )~ ( ik ~ (r/-rt ) t(vkt ) )))
9

j, l

xT, exp[I't J H(r; —)(vkt)d/(]e "").(8)

Using pictorial arguments, a physical interpreta-
tion may be made of the above equation. Consider-
ing the jth term in Eq. (8) as representing the in-
teraction of a neutron with the jth helium atom,
co, +L, may be taken as the kinetic energy trans-
ferred to the atom. Similarly, the shifted Hamil-
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tonian, H(r, . v~-tA), .arises from the motion of the
jth atom through the media of its neighbors. The
combination of the two Hamiltonian operators in
Eq. (8) measures this change in interaction energy
of the helium atoms during the neutron-helium col-
lision time t. Neglecting operator noncommuta-
tivity, Eq. (8) represents the addition of these
changes in kinetic and potential energy of the struck
helium atom.

We next introduce new variables x= v„t, y= A.x.
With these replacements, the Fourier transform
indicated in Eq. (2) becomes

2vtiv~S(k, e)= f dxe ' " ~&(e' ""e'" "
j, l

where

x T, exp[(i/v, ) f H(T, —y) dy] e '""'"& (9)

0 = ((d —(0~)/vy (io)

& T.e~«i/v. ) J»(r -y) -Eojdy]lto& (»)
The y-ordered exponential is thus seen to generate
a series in decreasing powers of g, .

T, e p(x(i/ )vf,"[H(r, y) —.E—o]dy]
l

tto&

Using the abbreviation

= ' (1/v, )"l&.& (»)
n=o

Uz(y) = Z [V(r; —y, r ) —Y(r, , r„)]
my'j

and noting the relations

H(r, -y) =H+ U, (y),
(H-E.)U;(y) &.&=[H, U, (y)] e, &,

(13)

the "states"
I g„& appearing in the expansion, Eq.

(12), can be simply expressed in terms of the ground

state I~)Io &:

I ti& = i f [H(r; —y) -Eo jdy to&

=i f, U, (y)dylan, &,

l(2&=i J dy[H(r,: —y) E,]-
x f dy [H(r; —y') —Eo]lryo)

= i' f, dy f dy'( U, (y)U, (y')

A simplification in the remaining calculations
results from the fact tha, t the average ( ~ ~ ~

& is to be
taken over a, single state, the ground state I ~to&.

Let Eo =HI go) represent the energy of this state.
Equation (9) can then be written as

2ii&v„S(k, ~) = f„dxe ' "5 (~tpole"' '& "'e'" '&'

+[H, U;(y')7]14&

and so on. In the discussion which follows, explicit
expressions for other I g„& are not needed.

At this point we recall that in the separation of
S(k, &u) into an incoherent (i) and a coherent (c)
part,

S(k, u)) =S'(k, cu)+S'(k, (u).

The incoherent part S '(k, e) is obtained by sum-
ming, in Eq. (3), only those terms having j = l; the
coherent part S'(k, &u) is the sum of the remaining

jest

terms. The substitution of Eq. (12) into Eq.
(li) thus yields a series for coherent and incoherent
parts of S(k, ~):

2vv„S'(k, (u) = ~~ (1/v, )"E„'(fi),
n=O

2~v„S'(k, ~) = G(i/v, )"Z„'(k, a),
n=o

where

tie„*(n) = f dx, *" g, (~, l,. ** ~
l ~„&,

iVE (k, n)= f"dxe '""

~ ' (pole'"" '~'8'*'~lg„& . (20)
j&l

The energy transfer cu appears in both incoherent
and coherent series expansions only through the
variable 0= (~ —~„)/v„. A simple physical inter-
pretation of'this quantity is provided in the discus-
sion of the impulse approximation, given after Eq.
(25) below.

The momentum transfer k appears in S'(k, ~) as
a power series in 0 ', the expansion coefficients
depending only on the variable O. The coefficients
of k in S'(k, ~) depend not only on 0, but also on

k through the phase factor e' ' 'j 'l'. For large
momentum transfer k, we expect rapid oscillations
in this phase factor which will result in very small
coherent contributions. Thus at large momentum
transfer, the dynamic structure factor S(k, ~) can
be well approximated by retaining only the first few
terms of Eq. (17).

We now proceed to evaluate the first few expan-
sion functions E„. It will be seen that Fo' is inti-
mately related to the single-particle momentum
distribution, and thus to the one-particle density
matrix. Next, two-particle correlations will be
shown tobe represented by Fo' and F, ', for which
description the two-particle density matrix is re-
quired. Progressing in this fashion, one sees that
successively higher-order terms in the preceding
series describe the participation of increasing
number of particles in the system response char-
acterized by S(k, &u).
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III. EVALUATION OF TERMS

We first evaluate Fo'. In Eq. (19) replace the
sum of N terms by a single term multiplied by N.
We then have

Fo'(II) = J dxe '""((ole'*'"I qo) .

Letting qo be the real-valued ground -state wave
function, this becomes

Fo'(0) = f„dxe-'""f f d'r, d'rz d'r„

&& yo(r» ra~ . ~
~ ry)V'o(rs+x r2 ~ ~ ~ rN)

The expectation value in Eq. (25) is

(~go e' ""o'e'" '~ $ )= f Jd r ~ d r
ik ~ ( ry- rg)

9 0(rl ' '' rN)9 0(r1+» ' ' rg)

=
I.N(N —1)] ' f d rg d'r e'" "'''o'

x p2(~1 r2i ~y+x, r2), (26)

where p2(rq, r2,' rq+x, ro) stands for the two-
particle density matrix:

po(rg, r, ; rg+x, ro) =(q (rg)$ (ro)q(r$+x)~P(r2)) .

=N f dxe f d rg pg(ry, &1+x), (21)
So, then we have

(27)

where pq(r„rq+x) = (g'(r, )$(r, +x)) is the one-
particle density matrix. Since, by translational
invari ance of the ground state this is independent
of r&, the term +o' can be written as

F,*'(0) = p
' f„dxe '""

p, (O, x) . (22)

I»

p, (O, x) = V-' ~~,N, e"'*,
where V is the volume of the system and N~ is the
number of atoms with momentum p. Then

In order to obtain a relation between Eo' and the
ground -state momentum distribution yg~, we eva luat
the expectation value in Eq. (22) in momentum
representation:

Fo'(k, II) =N ' J „dxe '""fd rgd'r e'"'"& '2'

x p2(r1 r2 rl+x,

= p-' J"„dxe ""fd're"'
x p, (r, 0; r+x, 0) . (28)

The Fourier transform of the sum of the two
quantities calculated thus far is of fundamental
significance. Equation (8) shows that at f =0, the
only nonzero contributions to S(k, I = 0) = f S(k, ~)d~
are those from Foi and Eo'. Taking the Fourier
transforms of these quantities, we therefore have

F, '= 2~n, ~(II)+(2op) ' f Pn, dP, (23)
S(k) =S(k, f =0)

= 1+p-' fd're'""p, (r, O; r, O)

where no is the condensate fraction, and n~=N~/N.
Comparing this result with Eqs. (6)-(8) of Ref. 3,
combined here as

= 1+p fd'«'"' I'. g(r) —I]+N&a, o

where S(k) is the static structure factor, and

(29)

S'"(k, ~) = (no/v, )5(Q)+ (4v'pv, ) fj n~
pn~dp, (24)

we see that

S '"(k, ~) = (2~v, )
' F,'(a) .

Thus the impulse approximation is given by the
first term of the series expansion (17) of the in-
coherent part of S(k, &u). Reference 3 gave a pic-
torial description of the events described in S "(k,&u)

which identified the variable I Ql in Eq. (24) (called
p,„ in Ref. 3) as the magnitude of the sma. liest
helium momentum parallel to k which will give the
neutron the energy loss

We next consider Fo'. The double sum in Eq, (20)
is replaced by a single term multiplied by the num-
ber N(N —1) of such terms. Then

F '(k Q)=(N —1)f dxe ' "(P le' ' " 'a'e'"'i ') ).
(28)

g(r) = p,(r, 0; r, 0)/p'

is the pair -correlation function. Now for large
S(k) =1, ' so the above result supports the previous
suggestion that at large momentum transfer the
coherent contribution will be quite small in com-
parison with the incoherent one .

We now proceed to the evaluation of the next func-
tion, F, '. From Eqs. (14) and (19),

NFg'(0)

=i f„dxe ' "g (pole'*''J
j

&&f ~ I.V(r y r ) I (r r )]dy14) ~ (30)
mph'

Again we replace the sums over j and m by a single
term multiplied by N(N —1). The expectation value
appearing in that term is

&vole**'"J I.I'(» -y, ro) - l (~i, r2)ldy
I to&

= f ' ' fd rg' ' d ryVo(rip ~ ~ ~, ry) Jo dyl. I (rt+x —
yp ra) —I'(rg+x, ro)]go(ry+x, ro, ~, rg)

=I'N(N —1)] J d r~d r2pa(r„ro; r~+x, ro) fo dylV(r, +y, rz) —I (r&+x, rz)] .
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Substituting this into Eq. (30) we obtain

Fg'(&) =ip ' f„dxe '""fd'r p2(r, 0, r+x, 0)

x f"dy[V(r+y) —V(r+x)] . (31)

The coherent part of E&, E,', is obtained from
Eqs. (14) and (20). It is clear from these equations
thatE~' now contains in general. three distinct parti-
cle coordinates: two coordinates r;, r, coming from
the factor e"' '& '~' in Eq. (20) and a third coordi-
nate r from the potential energy of interaction.
Such terms will involve the three-particle density
matrix, and we neglect these, by choosing r =r, .
Then, repeating the steps leading to Eq. (31) for
E,', we get the same expressionfor E,', except that

I

W

a factor g'"' '" '~' must be inserted in the integral.
The total contribution of coherent and incoherent
terms in Ej is therefore

-i &c 3 3NFl=i „dxe ' d rqd r2pq(r» r2, r, +x, r2)

&&
(1+e+'&'s-'2&)

&& f dy[V(r~+y, r2) —Y(r~+x, r2)] . (32)

Finally, we consider the term E2 given by Eqs.
(15), (19), and (20). That part of !$2) in Eq. (15)
quadratic in the interactions V(r;, r, ) yields a
contribution to E~ which we ca.ll Ea'. Utilizing the

same procedure as in obtaining Eq, it can be written
in the form

NF2'=i' f dxe ' "f d'
hard~ r(21

+e'"' "~ '2') p2(r&, r2, r~+x, r2)

x f"dy[V(r, +x y, —r2) —V(r, +x, r2)] f, dy'[V(r~+x —y', r~) —V(F, +x, Fz)]. (33)

In obtaining Eq. (33) we have again neglected terms involving three-particle correlations and also terms in-
volving four-partic]. e correlations.

The second-term on the right-hand side of Eq. (15) involves the commutator [H, U&(y)] which can be ex-
pressed as

[If, U, (y)]=(2m) '[p,.', U, (y)]= —(2m) '[V, U, (y)+27; U (y) ~ V,. ].

This term contributes a factor E2' to F~:

NF2' ———i (2m) ' f„dxe '""fd rqd'r2(1+e'" '~ '2') 'f dy(x-y)

&& Lp2(r» r2, r&+x, ra) V& [V(r&+x —y, r2) —V(rq+x, rq)]

+2(~i[V(rg+x-y, ra) —V(»+x, r2)])

[&lpga(ri,

r2, rl+x, r2)]l;;-;,)
The results of this section are summarized with the formulas

2pv, S(k, ~) =Fo+ (i/v, )F, + (i/v, )'Fa+ (35)

OO

NFO= f dxe ' " f d rqpq( q, r&q+x)+fd rqd rqe' " '2 p2(rs, rp, rl+x r2)]

00

NF, =—i dxe '"' f d r~d r2 (1+e""~'&') p2 (rq, r2, r&+ x, r2) f "dy [ V(r, + y, r~) —V(r&+x, r2],

(36)

(3')

NF2 —= i f „dxe '"" f d~r~d r2 (1+e' '"~ '2') ((p2(r&, r~;r, +x„r2)

&& f, dy[V(r&+x-y, r, ) —V(r~+x, r2)] f dy'[V(r~+x-y', r2) V(rg+x r2)]

—(2m) f dy(x-y) V, [ V(r, +x —y, r2) —V(r, +x, r~)])

—m-' f, dy(x-y)(v, [V(r&+x —y, r2) —V(r~+x, rz)]) &gpg(rg, r2, rg+x, rp)~ p(=,). (36)

For a free-particle system, only Eo given by Eq.
(36) is nonzero. The second term in this equation
in momentum representation modifies the factor
n~ appearing in Eq. (24) to n~(1 +ng, -„~), the plus
sign for bosons and the minus sign for fermions.
This, of course, is the proper factor for excitation
of a free particle from momentum p to one of

momentum p+ k.
This formulation of corrections to the impulse

approximation appears to be applicable to any sys-
tem for which the particle motions are nonrela-
tivistic. The correction terms given above are
not quite exact, in that we have neglected contri-
butions from three- and four-particle correlations.
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This neglect appears to be equivalent to the ladder
approximation in a graphical representation of the
effect of interactions on S(k, ~). Evaluation of
these correction terms requires knowledge of both
the interparticle interactions and also the off-
diagonal elements of the ground-state two-particle
density matrix.

IV. NUMERICAL RESULTS

In this section we determine the effects of the
above correction terms on the cross section for
the inelastic scattering of neutrons from super-
fluid helium at momentum transfer 4'= 14. 3 A i.
Three effects are produced: (a) a shift in the peak
of S(k, w) from the location '.d, = 0'/2m of the im-
pulse approximation, (b) the introduction of a very
slight shape asymmetry about the new peak loca-
tion, and (c) the broadening, from the 5 function
given in the impulse approximation, of the conden-
sate contribution to S(k, ~).

Effects (a) and (b) above are produced by the in-
coherent part of FI, given in Eq. (31). Consider
a pictorial description of the events which this
term describes. One of the two interacting helium
particles (1 in our notation) is struck by a neutron,
acquires a velocity v& which we take to be along
the z axis, and travels a distance x= v, t in time t.
The term ~'& describes a single scattering of this
helium particle 1 with its neighbor 2 during this
excursion through the distance x, the scattering
occurring at any distance from zero to x. This
intermediate distance is represented by the coor-
dinate y in Eq. (37), and the integral over y mea-
sures the change in the potential energy of a pair
of helium atoms because of their relative motion.
This potential-energy change, brought about by a
displacement x of a helium atom, clearly depends
on the angle between x (taken to be along 2) and the
relative coordinate r& —r» the change being most
drastic for a given value of x when this angle is
zero.
(head-on collision of two helium atoms). The heli-
um-helium potential energy V(r„r2), which we

represent by the I,ennard-Jones potential, has es-
sentially a hard core, becoming highly repulsive
for interhelium separations less than a distance
xp 2 0 A. Final configurations having interparticle
separations less than yp are removed from the in-
tegral in F, by the density matrix p2( I 2 I+»
r2), which prevents displacements x which bring the
two helium atoms within this hard-core region.
However, it is still possible to have intermediate

y coordinates in F, for which V(r+y) is unphysical-
ly large. For example, with r, —r2 in the negative
2 direction, we can choose an x (along 2) larger
than 2+p so that although r, +x —ra is outside the
hard-core region, hence allowed by p~, the smaller
distance r, +y —r~ may be inside the hard-core

x &y, l
y'(r2) q'(rI+x)((r, +x) y(r2) l y, )'i' .

Assuming that the ground state of liquid helium can
be represented by an everywhere positive wave
function, one can remove the absolute value sym-
bol, yielding

P2(rl r2 r1+ r2) —P 8 (rl 2)g (r2 rI+ x) '

When g=0, the inequality in Eq. (39) becomes an

equality. The equality would also hold for any
two-particle system with an everywhere positive
wave function, for which case the right-hand side
is just the product of the two-particle ground-state
wave functions yo(r„r2)po(rI+x, r2), which is equal
to p~ by definition. For these reasons we expect
the right-hand side of Eq. (39) to be a good approx-
imation to pz for small values of x and all values
Qf 1 g

—1g.
For large values of 'ri —r2) a"d ) i+x 2!, we

expect p2 to be given by the Hartree-Fock approxi-
mation

p2 ( I'I, r2,' I'I + X, I'2)

=- PP, {rI,rI+ x)+ P (r Ir2)IPI(r2, rI+x). (40)

The one-particle density matrices appearing in

Eq. (40) can be evaluated utilizing a. Gaussian fit
to the ground-state momentum distribution, n~
=0.45 e ', with a=0. 642 A . ' Then

p(r„rI+ x) = V '2 ~K~e"'"= po+ pe (41)

region, with nothing in F& to remove such unphysical
configurations. Their removal would apparently
require considering the entire sequence of terms
E„ for all n, and summing their contributions to
build up the necessary two-particle correlations
which prevent core penetration at intermediate
distances y. %e will assume that if one could carry
out this difficult program, the result would be sim-
ply to limit all intermediate distances y to values
such that r, +y —r~ also remains outside the hard-
core region, and hence we will add this restriction
to the integral over y in E,. Since in our final
form, values for x which contribute measurably to
E, are considerably less than the distance 2' at
which the above trouble arises, little effect on our
final results should come from this imposed re-
striction on y. Ne proceed to approximate the den-
sity matrix p2(rI, r2, r, +x, r2) first for small in-
terparticle separations, then for large-particle
separations, and finally, we choose a form which
includes both regions.

Viewing p2 as a scalar product in (N —3)-particle
Fock space,

p2 = (&9 Ol 0'(rI)('(r2)) (0(rI+x) 0(r2)
l Vo)),

the Schwartz inequality yields

&~2 I
("(rI)('(r2) ((r2) 4(rI) I ~0 &"'
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where we neglect the difference between p = p —
pp

(p2= A(0/V) and p in the second term on the right-
hand side of Eq. (41). The exchange term in the
Hartree-Fock approximation is

p1(r1 r2) p1(r2 1+ x)

2 (
- ( 2(-(2) /4a -( r( P2+-x) /4a)—pp+ ppp e

+p e2 -( r(-r2) /4a e-(2(-22+2) /4a (42)

This is small compared to the first term on the
right-hand side of Eq. (40) and we neglect it, so
that the large distance behavior of p~ is taken to be

= p
' g'/'( r„r2)g '/'( r, + x, r,) e " /" . (44)

To this we must add the condensate part, p~'= p pp

valid only for large distances, tr, —r2~)R. Con-
tributions to the scattering coming from this con-
densate part will be considered at the end of this
section, Estimates' indicate that g'/2(1') is zero
for / «2 A, then rises sharply to approach unity
at r = 3 A, and exhibits small rapidly damped oscil-
lations about unity for x~ 3 A. We will replace
the above described behavior of g'/2(r) by a step
function with a core radius of xp,

P2( 1'(, 1'2 ' r( + X, 1'2) = P p2+ P e (43) g' (x) = 8(r —r2), (45)

Noting that the correlation functions in the small-
distance approximation of Eq. (39) both approach
unity as their arguments increase, we see that we
can join the noncondensate large distance part of

p2 given by Eq. (43) smoothly on the small-distance
approximation of Eq. (39) with the single approxi-
mation for all distances,

p2(r(, I'2,' r(+ X, I'2)

where 8(x) =1 for x&0, zero otherwise. Thus we
allow with equal probability amplitude any dis-
placement of the interparticle separation of a pair
of helium atoms outside of the hard core xp, and
prohibit:. ny displacements which would penetrate
the core. We subsequently treat the core radius
'Yp as a fitting parameter.

Then E, ' is given by

E,'=4((p f dx sinQxe" /" f drr2V(x) f dy j, dr/[(8(4 + y —2&y11 —&2)

x 8(~2+ (x- y)'+ 2r(x- y)n- ~(')) —8(~'+ x' —24 xq —4'2)], (46)

where &=cosy, p the angle between r and the z axis,
which is the chosen direction of the momentum
transfer k. The integration over g and y is straight-
forward, but tedious. The following result is ob-
tained:

7o+x

E('=4' I dxe" /" sinQx~~ 1'2V(x)dr

2 2
o x

X ln + r- 4'2 —x . (47)
'Y —7'p

Into this equation we substitute for V(4) the Len-
nard- Jones potential'

V( ) = 4e [( / )"—( / )'] (48)

(r —x2) ln = C2+ C, 4'+C24' + C24' (49)
V —'Vp

to the logarithmic term. The final integration over
x is performed numerically using 20 terms of the

power series expansion of sinQx, enabling E&' tobe
expressed for a given value of xo as a polynomial
in Q.

The results of these calculations are presented
graphically in Fig. 1, in which the leading correc-
tion (24(hv„) 'E, '(Q) to the quantity v„S'"(0,&u) is

(e = 10.22'K, o'= 2. 556 A). The subsequent integra-
tion over x is simplified by a cubic fit

depicted as a function of Q for values of xp between
2. 0 and 2. 4 A. Since E, is an odd function of Q,
the correction term is represented for only positive
values of Q. Now v2S/" (/2, &u) is an even function
of Q, so the dominant effect of the addition of this
odd in Q correction term is a shift in peak loca-
tion:

v,s(u, ~) = v,s'"(u, ~) + (2whv„) 'E, '(Q) (50)

—(4(('p) 'Pn~i = (24(Ifv, ) 'dE, (Q)/dQi
p=l&I, I Q=Qy

(»)
Graphical analysis indicates that the solution Q„of
this equation will be small, Q~-0. 1 A '. For these
small values of Q„both n~ for p= Q, and dE, /dQ
can be replaced by their values at Q„=o. Then
referring to the equation for e~ given immediately
above Eq. (41), we have

2 7TpRl dEj 1
O 45@2 yQ

is a function which attains its maximum value, not
at the free-particle energy &, of the impulse ap-
proximation, but instead at a lower energy „. given
by ((d, —~,) = —

~ Q„~ v2, where Q, is that value of Q

at which v„S "(/2, ~) and (2vhv, ) 'E, '(Q) have opposite
slopes, i. e. , from Eq. (24) Q2 is the solution of
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FIG. 1. The quantity (2zgg&) E&'
(&) given by Eq. (47) vs @ for selected
values of the hard-core radius xo, and
for k = 14.3 A '
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The absolute peak shift

k 0 0 ~A' (52)

is thus independent of 0, whereas the fractional
peak shift

in Eqs. (37) and (38) using a series expansion of
the potential difference term V(r+ x —y) —V(r+ x)
in powers of x and y. Integration over the volume
yields a power series in x multiplied by the factor
e '"", which then has to be integrated over x through-

(&a' —~a) ~~a = 2~a~k (53)

is proportional to k ~.

In the above discussion, the quantities ~, and Q,
depend upon the still undetermined core radius xo,
The value of this adjustable parameter is chosen
to be ro = 2. 1 A by requiring that Eq. (52) reproduce
the mean peak shift &, —&~ = —12 'K observed for
4-A- 9 A '

by Cowley and Woods. ' Then at the
higher momentum transfer k= 14. 3A ', Eq. (53)
predicts a fractional peak shift

~ &, —&, ~/& „=I/p,
which is in agreement with the 0. 6% shift reported
by Harl ing. 4

Having fixed ~, at 2. 1 A, we can assess the asym-
metry in S(k, &u) produced by the E& term. In

Fig. 2 we show, as a line of long dashes, the non-
condensate contribution to v~S~" (k, ~) vs 0 obtained
in Ref. (3) using McMillan's n~ values. ' The short-
dashed line in the figure is the quantity (2~&v, ) 'E, '

(0) for so= 2. 1 A and k= 14. 3 A ', and the sum of
these two quantities is the total v,S(k, ~) represented
by the solid line in Fig. 2. The asymmetry in

S(k, (u) about its shifted peak position is very slight,
and probably within experimental resolution.

Finally, we estimate the condensate broadening.
We have up until now ignored the effects of final-
state interactions on the condensate contribution
coming from the first term on the right-hand side
of Eq. (43) for pa, p po, which should hold for in-
terparticle separations larger than some value A.
One procedure for accounting for these would be to
work out the contributions coming from I, and I'~

I I l l I l I

0.5—

3
0.2—

M

O. l—

fy I I r~ I

I I I I I

-5.2 -2.4 -I.S -0,8 0 0.8

II, (A )

I I

l.6 2.4 5.2

FIG. 2. Graph of v& 8(k, &) vs ~=(-q)/vq. Long-
dashed line is the impulse approximation, p&S (k, co),
omitting the condensate contribution, and utilizing the
computer results of Ref. 7 for yg&. Short-dashed line is
(2m@vz) E&'(&), the correction to the impulse approxima-
tion for F0=2. 1 A, andk=14. 3A . The solid line is the sum
of these tvro.
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out the x region in which the series expansion is
valid. The effects on the condensate given in the
impulse approximation by a 6 function are both a
shift in the position of the peak (induced by terms
odd in x) and an alteration of its shape (by terms
even in x).

A simpler procedure is obtained by summing all
contributions not involving derivatives of the po-
tentials or density matrices [for example, neglect
the last two terms in Eq. (38)].' This sum is
simply an exponential, and yields a total correc-
tion term So(k, 0) for the condensate part So(k, ~)
given by

2vSO(k, &) = pov~'f dxe ' "
J„,

x (exp((i/v, ) fo" [ V(r+ x —y) —V(r+ x)]dy[- 1) .

(54)
We now assume that at large h, where V(h) varies
relatively slowly, a sufficiently good approxima-
tion to the exponential term is obtained by the first
term in a series expansion of the difference in po-
tential in powers of x and y:

f"dv [V(r+ x -y) —V(r+ x)] = ——' q, (55)
p 2 &'

where g is the cosine of the angle between r and
the z axis. Integrating over this angle yields the
result

2mSO(g, Q) = p„v,
' f dxe '""J 4' dh

l3in(nx d V/dh)
(56

(nx dV/dh)

where n= (2v„) ~ . Since all except large values of
x are excluded from the above integration, we
neglect effects of short-range repulsive forces and
use for V(h) only the attra. ctive tail of the Lennard-
Jones: V(h)= —4&(o/h)6. The h integration in Eq.
(56) is performed by expanding the above quantity in
square brackets in a power series and integrating
term by term:

sin(nx dV/dh)

J nx dV/dh

(nx'd V/dR)'"„,(14n —3) (2n+ 1)!

n..4 CRg sin(nx'd V/dR)
nx dV/dR

(58)
which is seen to be zero for a noninteracting sys-
tem. This final-state condensate contribution is to
be added to the corresponding impulse-approxima-
tion quantity

2mv, S,'" (a, &) =n, 1' dxe-'"". (59)

The 6 function of the impulse approximation will
therefore be removed by the (-1) term in square
brackets of Eq. (58) provided that the parameters
C and R satisfy

4mpCR =1. (60)

The following discussion bases the choice of R upon
certain physical considerations. This value of R,
when substituted into Eq. (60), yields a value of C
which agrees well with our previous estimate of
this adjustment parameter.

The total condensate contribution to S(k, ~) is
thus given by

2mv~SO(k, 0) =n„J dxe '"" (sinax )/ax, (61)

where a= (2v, )
' (dV/dR). The approximations in-

troduced in Eqs. (55) and (57) appear to enhance the
oscillatory character of the integrand in Eq. (61).
Qualitatively, one expects the integral in Eq. (57)
to be a maximum at x2 = 0, and to fall off to very
small values for an x2 value which makes the sine
function go to zero, i. e. , x = 2mv~ /(d V/dR) . Our
result has this behavior but in addition predicts
small oscillations in x, and consequently, in A.
The integral in Eq. (61) can be evaluated in closed
form, and the result is'

jQ j !0 j jQ
2mv~SO(k, &) =n„m S ' —C

a
j

2 a 2&a

comparison with unity, but this assumption appears
to be no worse than that made in obtaining Eq. (55).
Some attempt is made to adjust for the extraneous
factors (14n —3) ' by introducing an over-all multi-
plicative constant C; inspection of the leading term
indicates C =1/11.

Combining Eqs. (56) and (57) we obtain the correction

2wv, S,(k, &)

sin(nx dV/dR)
nx2d V/dR + —(av) t sin —+ —,(62)

2 )(~ 0
a 4n 4

The approximation in Eq. (57) is suggested by the
observation that, except for the factor (14n —3) '

in the nth term, the sum appearing in the first line
of this equation is precisely the power-series ex-
pansion of the quantity in square brackets in the
second line. In making this approximation, we have
assumed that the quantity nx~d V/dR is small in

where 8 and C are Fresnel integrals,

2S(x)=
(

„, I smt'dt,2r 0

C(x) = i(2 cost dt .
2

277 Jp

(63)
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FIG. 3. Condensate contribution p&SO(k, ~) for k =14.3
A . The long-dashed line is the phenomenological life-
time broadened ~ function [Eq. {18) of Ref. 3]. Solid
curve is Eq. {62). Short-dashed lineis obtained from solid
curve as described in the text.

have assumed that the peak of the condensate con-
tribution is shifted equally with that of the non-
condensa, te contribution.

In Ref. 3, a detai1. ed comparison was made be-
tween the experimental inelastic cross section for
neutron scattering from helium at l. 265 'K and the-
oretical predictions of the impulse approximation
(see Fig. 7 of Ref. 3). That comparison indicated
that the experimental data were consistent with
a very sma11 value for the condensate fraction, and
we placed an upper limit of 3% on this quantity.

The only discernible change in that comparison
which is introduced by the present treatment is
the sharpening of the condensate contribution over
the previous lifetime-broadened estimate. Figure
5 shows the experimental data of Harling' and the
theoretica. l prediction, including experimental re-
solution broadening. The instrumental resolution
function has a full width at half-maximum &E= 3.4
meV. As Fig. 5 indicates, the distinct condensate
contribution evident in the dynamic structure factor
of Fig. 4 is so broadened by instrumental resolu-
tion that in the scattering cross section it cannot be
distinguished from the noncondensate contribution.
However, it is evident that the theoretical con-
densate fraction ~0= Q. ll is too large. The dis-
crepancy between theory and experiment can be
removed by arbitrarily reducing the condensate

Numerical evaluation of S„(k,0) requires a choice
of the distance R at which p~ is well approximated
by its asymptotic form. We select 8 by asking for
a. distance at which the pair correlation g(y) given
by computer calculations is within, for example,
10% of its asymptotic value [we may invoke the
same criterion for the normalized one-particle
density matrix p, (0, x)/p with approximately the
same result]. ' This criterion sets A ~ 4 A, and we
take 8 = 4 A, which yields the largest d V/dR, and
hence overestimates the condensate broadening.
The condensate fraction po/p is chosen to be 0. 11,
consistent with computer results of Ref. (7).

A plot of v,So(k, ~) vs 0, shown in Fig. 3 as a
solid line, exhibits the expected damped oscilla-
tions for increasing values of ~. For comparison
purposes, we show as along-dashed line the phenom-
enologically lifetime-broadened v,SO(k (d) pre-
viously utilized in Ref. 3. We arbitrarily remove
the oscillations by replacing the solid 1.ine curve by
the short-dashed 1.ine. This latter curve is drawn
using the fact that the total area under the curve
is fixed by the condensate fraction.

Finally, we combine the condensate contribu-
tion to v„SO(k, ~) (short dashe-d line of Fig. 3) with
the noncondensate contribution (solid line of Fig.
2) to get the total v, S(k, ~) shown in Fig. 4. We

0.9—

0.8—

0 7—

0.5—

0.5—

0.2—

0.0 0
n. ~~'&

FIG. 4. Total v&8{A, ~) for jp =14.3 A. ~, including final
state corrections and a condensate fraction no= 0. 11.
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FIG. 5. Inelastic cross section for neutrons on He4

liquid at 1.265'K vs energy transfer h~. Circles are the
experimental data from Ref. 4. Solid line is present cal-
culation which includes a condensate fraction +p = 0, 11.
The arrow on the top locates &, the free-particle peak.

fraction to a much smaller vatue, which we esti-
mate to be somewhat less than the vat. ue no=0. 03
we previously found in Ref. 3.

It would clearly be desirable to preserve, in
the predicted resolution-broadened inelastic cross
section, the distinct condensate contribution press-
ent in S(k, &u), shown in Fig. 4. To this end, we
have varied the energy resolution AE to see its ef-
fect on scattering cross section, and conclude that
experimental resolutions &E -2 meV wouM pre-
serve in the cross section the characteristic struc-
ture induced by the condensate in S(k, &u).

V. DISCUSSION

We have found that final-state corrections to the
impulse approximation make only small changes
in the noncondensate part of the incoherent dynamic
structure factor S'(k, &u), for momentum transfers
k= 14 A ', In particular, shape changes of S(k, ~)
as a, function of ~, the energy transfer [which would
destroy the unique connection between S(k, ~) and
ground-state momentum distribution n~j are found

to be insignificant. The broadening of the con-
densate contribution to S(k, &u) by these final-state

effects is found to vary as k'~2, [this can be seen
by expanding the Fresnel integrals in Eq. (63) in
powers of Q for small values of Qj and is less than
that predicted by a phenomenological lifetime
broadening, which increases linearly with k. Since
the width of the noncondensate contribution to the
scattering also increases linearly with 4, it is clear
that the condensate should appear as a discernible
spike in the dynamic structure factor for large 4.
In particular, numerical estimates show that this
large-4 behavior is achieved for 4=14 A ', which
corresponds to experimental conditions using reac-
tor neutrons. Presently attainable experimental
energy resolutions of the order of 3.4 meV obscure
this condensate contribution, producing an ine-
lastic cross section whose energy dependence is
given by a curve with a single broad peak. Com-
parison with Harling's experiment does not mate-
rially change our previous estimate of an upper limit
of O. 03 for the condensate fraction.

Improvement of experimental energy resolutions
by about a factor of 2 over those previously
achieved should preserve the structure in the in-
elastic cross section induced by the distinct con-
densate contr ibution.

Our numerical estimates leading to these resut. ts
have involved two essential parameters of the two-
particle density matrix: the hard-core radius vo

and the interhelium separation distance R at which
the density matrix is judged to have achieved its
asymptotic value. Lacking precise estimates of
the off-diagonal behavior of p2, we resorted to
phenomenological arguments to determine R, and
to experimental results to determine xo.

We have made rough numerical estimates of co-
herent contributions to S(k, (u) (not reported here)
which indicate them to be completely negligible
for k=14 A '. We have unsuccessfully tried to
accurately estimate coherent contributions to
S (k, ~) for lower values of k, in the range from
about 4 to 9 A ', where experimental results show
oscillations in 0 for both peak location and half-width
of the inelastic cross section. ' Unfortunately the
integrations over the variables g and y in Eq. (46)
for these coherent parts have so far proven in-
tractable.
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Stability of superluminous and subluminous waves propagating transverse to the direction of
the external uniform magnetic field is investigated in streaming relativistic homogeneous plas-
mas. In the relativistic regime for 0 &ck (~ being the electron cyclotron frequency and k the
characteristic wave number), the superluminous waves remain stable as in the absence of ex-
ternal magnetic field; however, for the subluminous waves. the magnetic field has a tendency
towards destabilization. For Q»ck, the superluminous waves are dynamically unstable for
all streaming velocities U, which are smaller than U~, or for magnetic fields 0, which are
greater than O~, but for the waves with frequencies ~ «0 (O»ck), there exists a minimum
streaming velocity above which the system is unstable. In the nonrelativistic regime the sys-
tem is unstable if streaming is much larger than the thermal velocity but otherwise stable.
The unstable region is bounded by Qm&~ and O~; Q~„being kv& (v& being the electron thermal
velocity) and 0 ~ being IU.

I. INTRODUCTION

The superluminous waves (waves with phase ve-
locities exceeding the velocity of light), which are
excited in a plasma by thermal fluctuations, do not
exhibit any resonance effects, i. e. , there is no

Landau damping or growth'~ associated with these
waves. Recently it was shown by the author that
in streaming relativistic plasmas, the superlumi-
nous waves propagating transverse to the direction
of relative streaming U in the absence of any ex-
ternal magnetic field are absolutely stable, but the
subluminous waves in such systems are dynamical-
ly unstable for U& 0. 09c. Suchrelativisticplasmas
one encounters in nature as well as in laboratory
(thermonuclear plasmas) with the difference that
there is magnetic field associated with them. It
would be interesting to investigate the effect of
magnetic field on these waves. In nonrelativistic
counterstreaming magnetoplasmas, it was shown

by Lee, ' by Tzoar and Yang, and by Buti and
Lakhina that the magnetic field decreases the
growth rate of instability of the transverse waves.

Following Buti, s' here we have considered the

propagation of superluminous (u»~ck) as well as
subluminous (~ & ck) waves, in counterstreaming
(relativistic or nonrelativistic streaming) relativis-
tic plasmas in the presence of uniform magnetic
field which is taken along the direction of relative
streaming but transverse to the direction of wave
propagation. For strong fields, namely, 0» ck
in the relativistic regime, i.e. , kT'«rnc, the
superluminous waves are found to be stable for all
streaming velocities U& U„wherea, s the waves
with frequencies ~ «Q are unstable only if the
streaming velocity is greater than a certain mini-
mum velocity. For weak magnetic fields (n& ck),
however, the superluminous waves are absolutely
stable but subluminous waves are dynamically un-
stable and the region of instability increases with
the magnetic field.

In the nonrelativistic regime, i. e. , kT» mc,
these transverse waves are unstable in a region
Av, & 0& kU provided U» v, . In Sec. II, the general
dispersion relation is derived and Secs. IV and V
deal with the discussion of dispersion relation in
the relativistic and nonrelativistic limit, respec-
tively.


