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Phase Transitions and Soft Modes
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The stability of an equilibrium phase is described in thermodynamics in terms of certain con-
vexity properties of the free energy. The phase is said to be unstable with respect to an equilib-
rium phase transition if the isothermal response of the system to a static external field is in-
finite. It is also known that associated with several second-order and some first-order transi-
tions there are "soft collective modes" (for instance, in ferroelectric, antiferromagnetic, liquid-
gas, and structural phase transitions). In this paper we show that in systems where the order param-
eter can be treated as an ergodic variable, and which possess collective excitations, at least one
of the collective modes must go soft when the system undergoes a second-order phase change
(or more generally, at the stability limit of the system). Implications to discontinuous first-
order transitions are also briefly discussed. Examples of soft modes associated with phase
changes are given.

I. INTRODUCTION

An equilibrium state of a system consists of one
or more macroscopically homogeneous regions—
called phases. These equilibrium states can be
described by thermodynamics, and can be param-
etrized by a finite number of thermodynamic param-
eters which determine all the thermodynamic func-
tions. It is believed that thermodynamic functions
depend piecewise analytically on the parameters;
the singularity corresponds to changes in the phase
structure of the system or in other words "phase
transitions. " The characterization of these singu-
larities is believed to be the central problem in the
theoretical understanding of phase transitions. The
change of phase of a system usually involves a
"symmetry breaking. " In the liquid-solid transi-
tion, for example, the continuous translational
symmetry is broken. The precise symmetry which
is broken is sometimes more subtle. In order to
characterize this symmetry breaking Landau intro-
duced the concept of an order parameter ~t).

' The
order parameter is defined in such a way that it
has nonzero positive or negative value in the less
symmetrical (or low-temperature) phase and is
zero in the symmetrical (or high-temperature)
phase. In continuous phase transitions the suitably
defined order parameter vanishes continuously as
one approaches the transition temperature from
below. In discontinuous transitions there is a dis-
continuous jump in the order parameter to zero at
the transition temperature. Examples of order
parameters are the spontaneous magnetization vec-
tor of an isotropic ferromagnet, the mean value of
the rotation angle of the B06 octahedra in structural
phase transitions in perovskite-type crystals, the
density difference (pz —p~) in the condensation of
gas, etc.

A state in thermodynamic equilibrium corresponds
to a state of maximum entropy and of a minimum

free energy. To be more specific, for an equilib-
rium phase (i) with all other parameters fixed, the
free energy must be a convex upwards function of
the temperature, and (ii) with all other thermody-
namic parameters fixed, the free energy is re-
quired to be a convex downward function of the order
parameter —in fact, this condition determines the
other parameter for the equilibrium phase. These
general thermodynamic principles correspond to a
requirement of the positivity of the heat capacity
and the isothermal susceptibility (which is the static
response of the system to an external field). An

infinite response indicates that an equilibrium state
is not a stable state. In this connection one singles
out the response of the system to a field that cou-
ples to the order parameter. This is done because
it is believed that the response to such a field ex-
hibits the most singular behavior at the stability
limit. Alternatively, one may use this as a crite-
rion for the choice of the order parameter. Exam-
ples of such fields that couple to the order param-
eter are uniform magnetic field for a ferromagnet„
or a "staggered" field for an antiferromagnet. It
should be remarked upon that such "ordering fields"
are not always physically realizable.

One may also study the stability of a many-body
system differently. We can examine the dynamical
response of the system to an infinitesimal time-de-
pendent field. It is well known that the dynamical
response is related to the excitation spectrum of the
many-body system. We can then discuss the sta-
bility of the system in terms of the stability of
these excitations. The particular excitation which
becomes unstable, as the system approaches the
stability limit, is called a "soft mode" or "crit-
ical mode" —there may be more than one of these.
More precisely, the system becomes unstable
against the excitation of these modes. Examples
of these are well known, ' for instance, at the ferro-
electric phase transitions, the paramagnetic-anti-
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ferromagnetic transitions, ' several (second-order)
structural phase transitions, ' the liquid-gas
phase transition, and the X transition of He.

In this paper we attempt to unify the two above-
mentioned points of view. More specifically, we
show that in realistic systems (with dynamics), as-
sociated with all second-order phase transitions
there must be at least one soft mode.

In Sec. II we discuss in detail the stability of an
equilibrium state against an infinitesimal stationary
perturbation that couples to the order parameter of
the phase. It is demonstrated that at the limit of
stability the static response function diverges.

In Sec. III we study the dynamical response of the
system to a time-dependent external field. We
show, following Kubo, that the zero-frequency
Fourier component of the dynamical response func-
tion is equal to the static response function dis-
cussed in Sec. II. Such a step involves assuming
that the order parameter is an ergodic variable.
We then show that at the stability limit at least one
of the collective excitations of the system must go
"soft." That is, the complex frequency of that
critical mode tends to zero. Since it is well known

that for certain modes of linearized hydrodynamics
the complex frequency vanishes with wave vector
at all temperatures, the question of how to take the
limit of the complex frequency tending to zero is
discussed briefly. Finally, we relate the preceding
discussion to some concepts of Kohn and Shering-
ton"

Section IV is devoted to some examples of such
soft modes, and also comments on the validity of
the above discussion to first-order phase transi-
tions.

II. STATIC RESPONSE AND STABILITY LIMIT

We shall now discuss in greater detail the concept
of thermodynamic stability and its relation to the
response of the system to a time-independent ex-
ternal field from the point of view of equilibrium
statistical mechanics. Consider a many-body sys-
tem in thermodynamic equilibrium and let us subject
it to an external field V,„,(r), which couples to a
local order parameter +( r ). We may write for the
Hamiltonian of the system

&+(r)&=»[p@(r)] .
Here p is the full density matrix defined by

-8H/Tr - 8H

with g= 1/kHT. Provided that the external field is
weak one can invoke the formalism of "linear re-
sponse theory" to obtain for the static response'

y. 8,~(r, r ') = f [(e'"'@(r')e '"o@(r)&0

—(+(r ')&,&~(r)),]d~,
where (@&8 refers to an ensemble average with re-
spect to the equilibrium density matrix, viz. ,

For classical systems or more generally, if the
order parameter commutes with the unperturbed
Hamiltonian H8, Eq. (5) reduces to

&e~(r, r')=Pa~+(r r'),
where

g8, 8, ( r, r ') = ([e( r ) —(4'( r )&8][e(r ') —(e( r ')&8]&,

is the "pair correlation function. "
I.et us now return to the discussion of the stabil-

ity of the system. We observe that the free energy
of the system under consideration can be written
as"

~=~.[(~(r)&]-f V. (r)(e(r )&dr,

where E is a universal functional (independent of
V,„„)of the variational parameter (4(r )). This
means, in particular, that all those (4(r)) have to
be rejected which do not correspond to a local min-
imum of E[(4( ))]r.

Invoking the minimum property of the free en-
ergy in this (restricted) local sense and the con-
vexity of E„we obtain

».[&~&]/~&~(~)&~.,= V.„„(.), (lo)

s'z, [(e&]/r (e(r )&C(e(r ')&i., & O . (11)

Equation (11), which expresses the convexity of F,.,
can be rewritten to read [see Eq. (2)]

a=a, —f V.„,(r)~(r)dr .
T

~&~(,-)&~(~(,- )&

= [~ (»I 'o ~ (12)

5(e(r ))
gV ( ~) X@4(rr r ) t

where

(2)

An example of such a local order parameter is the
local magnetization in a magnet; one refers to the
external field which couples to it as the "conjugate
ordering field. " The static (isothermal) response
function X ++ may be defined as'

This states that for equilibrium ensembles the static
response of the system to a time-independent field
must be positive. When the response function tends
to be infinite the equilibrium state is no longer a
stable state. At this point it is useful to introduce
the corresponding functions in Fourier space. If
we assume that in the absence of the external field
the system is translationally invariant we can write

y8~(Q) = fe'@""'x (r -r ')d(r -r')
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For classical systems we have [Eq. (7)],
X'(Q) = t5(Q),

where S(Q) is the familiar structure factor and is
the Fourier transform of the pair correlation func-
tion g(r —r ) [Eq. (8)]. We now define the stability
2$vlst as

X44( Q)

When this limit is reached the system evolves to a
new state with the new free energy a (local) mini-
mum. If such a process occurs in the absence of
any external field due to, say, a change of the pa-
rameters that determine the thermodynamic func-
tions, then one speaks of a phase transition. At
the stability limit X(Q) may diverge at one or more
wave vectors, which we shall call the critical wave
vector Q, . The specific value (or values) of this
critical wave vector will influence the symmetry
properties of the new stable phase. An instability
at Q, =O is associated with the divergent fluctuations
of a macroscopic (long-wavelength) order param-
eter. Examples of such an instability are the para-
magnetic-ferromagnetic transition and transitions
at the critical point of fluids. An infinite response
function at Q, 40 is associated with microscopic
order parameter fluctuations and the new stable
phase will possess an order parameter of that wave
vector. Examples of this a,re the paramagnetic-
antiferromagnetic transition and certain continuous
structural phase transitions. ' To summarize this
section then, we have said that continuous equilib-
rium phase transitions may be investigated by
studying the stability of the system with respect to
an infinitesimal static external field. The system
is unstable if the static response is negative. When
the response is infinite it is said that the system
has reached the stability limit and will evolve to a
new equilibrium stable state.

III. DYNAMICAL RESPONSE AND SOFT MODES

We now turn to the dynamic response of the sys-
tem. Let us perturb the system from its equilibri-
um by a time-dependent external field. When we
switch off the field the system will relax back to
equilibrium. As we shall soon see, this "approach
to equilibrium" is related to excitation of normal
modes of the system. Suppose, prior to the applica-
tion of the field, the system is at the limit of stabil-
ity against a continuous phase transition —as dis-
cussed previously. We would now like to relate
this to the behavior of the dynamic response func-
tion.

We saw earlier that at the stability limit the static

isothermal response function diverges. We should
now like to see how the static response function is
related to the above-mentioned dynamical response
function. Intuitively one would be tempted to say
thai the static response function is simply the (d =0
Fourier component of the dynamical response func™
iion. This, however, is not generally true. This
subtle question has been discussed by Kubo in his
beautiful paper. Since this identification plays a
erueial role in the subsequent discussion it would
serve well to bring out the underlying assumptions
explicitly. We therefore give below a brief outline
of Kubo's arguments.

Let us consider an isolated system in thermal
equilibrium. Let it be described by a density ma-
trix pp and a time-independent Hamiltonian Hp which
commutes with pp. We shall assume that the system
in this equilibrium phase is characterized by an
order parameter 9(r, t).

Let us subject this system to a weak external field
V,„,(r, t), which has been switched on adiabatically
in the infinite past. Mathematically this may be
written as

V,„,=lim V,„~(r, t)e" . (i8)

It ean be shown that, to first order in the external
field, the change in the ensemble-averaged order
parameter due to the departure of the system from
its equilibrium phase, may be written as

b(4'(r, t))=lim I dr"'' dt'X(r , r'; "t —t')
e -p+

x V,„,(r ', t ')e", (17)

where

X(rig r
p t t )

=(i/h) ([4'(r', t'), 4'(r, t)]) 6(t —t') (18)

is defined as the retarded response function. Here
the angular bracket corresponds to an average with
respect to the equilibrium density matrix pp, the
square bracket corresponds to a commutator, and
the unit step function 6(t —t ) expresses the retarded
or causal nature of the response. For the sake of
simplicity let us consider a monochromatic external
disturbance, viz. ,

V,„,= lim —,
'

[V,„,(Q, &u)e
' ~ ' ""+c.c.]e".(19)

@~p+

With this choice Eq. (17) now reads

&(~(r, t)) =-'[X~&(Q, ~)V..&(Q, ~)

xe "~' ""+c.c.]e", (2O)

where X~~(Q, &u) is the complex response function
and is the Fourier transform of X(r r; t —t ),—
Vlz. ~



PHASE TRANSITIONS AND SO F T MODE S

X~~(Q, (u) =lim
6 ~op j eo

f
d(t —t ) d(r —r')X(r —r; t —t )exp[-iQ (r —r ) —iu&(t —t )]exp[—e(t —t )] (21)

= limI — dt e '"' "([4(Q, t), 4(-Q, 0)])0 .
o+ I,@ j

(22)

x(Q, t ')e "'
at '

Rq, q, (Q, t) = lim (26)
6~o+ &

and is called the relaxation function. Explicit inte-
gration of (26) yields

R„(Q, t)= " aX Tr[p, '"eo@(-4,0)e ""o@(Q,t)]
J,

—lim ~ aX Tr( p,
'e" eO(-Q, 0)e ~0@(g, t)) .

(2V)

Kubo has argued that the limit of the second term in
the above equation, if it exists, must be equal to

-» [p,~(Q)~(-Q)], (26)

where C is the diagonal part of 4 with respect to
Ho
Returning to Eq. (25) we see at once that

Xee(Q, &=0)=Re%(Q, t=o) . (29)

Comparing Eqs. (27) and (13) we see that

Xee(& = 0) ~ Xee

unl ess

Tr[po@(Q)+(-0)]=T [po4'(Q)]T Ipo+(-Q)) .
(30)

X~~(&u = 0) is the static response of an isolated sys-
tem on which an external perturbation is switched
on adiabatically. X~~ as given by Eq. (2) is the iso-
thermal response of a system. These, in general,
need not be equal. However, they axe identical if
one assumes that the order parameter is an ergodic

In writing Eq. (21) we have assumed that the system
is translationally invariant. Further, since the time
integral in Eq. (22) goes only from 0 to ~ we may
"redefine" the response function as

x(a, t)=(/~) T fpo[~« t»~(-& 0)]]

= (i/8) Tr([p, 4'(-4, 0)]4'(4, t)]

= —f dXTr(p Oe"04'(-Q, O)e o4(g, t)j,
(24)

where 4 (t) is the time derivative evaluated at time
t. Substituting (24) into (22), and after partial in-
tegration one obtains

X~~(Q, &u)=R~~(Q, t=0) —i&a f R~~(Q, t)e '"'dt .
(Z6)

R~~(Q, t) is defined by

Xee(h) = 0) = Xeg (32)

will hold if the total system is large enough com-
pared to the degrees of freedom associated with
the observable 4'.

To summarize what we have said until now: If
one assumes the ergodicity of the order parameter
then the &u = 0 Fourier comPonent of the dynamical

response function X+~(co) is just the static isother
mal response function X~~. We may therefore
write the limit of stability against an equilibrium
phase transition as

Xee(Q) =Xone(Q, ~=0) =" . (33)

We now turn to a discussion of the excitation
spectrum of the many-body system. It is well
known that stable collective excitations of the many-
body equilibrium state correspond to poles in the
lower half of the complex frequency plane of the
dynamical response function X~~(Q, ~). At this
point it would be worthwhile recalling some of the
analytic properties of the response function. This
function, defined in (21) for real u, can be analyti-
cally extended everywhere in the complex frequency
plane (z plane). Such a function X~~(Q, z) is sepa-
rately analytic everywhere in the upper and lower
half-planes and has a branch cut along the real
axis (see Fig. 1). An immediate consequence of
this branch cut is the fact that along it

Xi Xri= 2i ImXr ~

Even though x» is analytic in the lower half of the
z plane, the analytic continuation of X, into the
lower half-plane (defined as x,c) is no longer ana-
lytic there. In fact, the analytic continuation must
have the same analytic properties as the difference
(X, —X»), i. e. , as the function ImX. ,(z). The poles
of X,c(z), if there are any, are the collective modes
of the system. Here we make the following paren-
thetical comment: One cannot say a priori whether
X«(z) will have poles. In fact one can enunciate
mathematical models which are completely devoid
of dynamics, and consequently x,c(z) will have no

variable. For classical systems the assumption of
ergodicity reads as follows:

(e) = lim — [ 4 (t ') d t ' . (31)tJ,
There are situations where this ergodicity assump-
tion cannot be made. Kubo has argued that one
can expect that
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FIG. 1. %e have displayed the branch cut of the func-
tion Xs@{Q,z). It is separately analytic in the regions I
and II. For the purpose of illustration we have shown two
typical poles of the function S(Q, w). In an experiment
such a complex pole would show up as a broadened peak.

poles. In what follows we exclude from our dis-
cussion such systems and only treat realistic phys-
ical systems where one would expect to have col-
lective modes. Let these correspond to a set of
discrete poles at z;= tc;(Q) —il";(Q). At these
singular points X,c(Q, z,) will diverge. We know,
however, that as the system evolves towards the
stability limit, we must have

Xss(Q, z=o)- (36)

[see Eq. (33)].
We shall now examine whether the behavior of

X(Q, z) at z= 0 is related to the singularity structure
of X(g, z) in the lower half-plane. Specifica. lly, we
shall endeavor to show that the divergence of x(z)
at the origin is due to one of the poles of X(Q, z) in
the lower half-plane moving to the origin; i.e. ,
one of the collective modes becoming "soft."

Let us first recall that

X(a, z=0) =~ &

~ 00

where P refers to a principal value integral and

X '(&u) = Imx(tc). Therefore, as we approach the
stability limit the area under X"(&u)/~ diverges.
Next, let us consider the first frequency moment
of X"((u), viz. ,

X (tc) tc« ~

From the definition of the response function it fol-
lows that

(36)

(37)

tc Xee('Q& &) t yl @( Qy 0)

=([[4'(Q), II&], e(-Q) ])a (38)

The existence of this moment is related to "local
conservation laws" of the form'

s+(Q),g ~o g

where J ~(Q) is the "current" associated with the
operator C(Q). When 4(Q) is the particle density
p(Q), for example, the relevant conservation law
is that of particle number, and the first moment
[Eq. (38)] is just the famous f sum rule. The im-
portant observation for us is that one believes that
in any equilibrium phase the first moment of
X' (Q, ~) exists, and is finite. Let us now follow
the system as it evolves towards the stability limit.
The only way by which the area, under X"(Q, ~)/&u
can diverge, but the area under tc [X"(Q,&u)/~] re-
mains finite, is if the main contribution to the in-
tegral [Eqs. (36) and (37)] comes from small &u,

i.e. , X (Q, tc)/&u is peaked for small tc. This can
be given a direct interpretation in terms of the be-
havior of the collective modes. In order to do this
we introduce the dynamic form factor S(Q, tc) which
is related to X"(Q, &u) through the fluctuation-dissipa-
tion theorem

See(Q, a) =(@/s) [l -s '""] 'Xe'e(Q, ~) (4o)

The dynamic form factor S(g, &u) is just the density
of states with energy tc &0 and momentum Q, which
are excited by the probe which couples to C. If
Pro «1, ur, P &0, this density of states may be ap-
proximated by

Ss~(Q, ~) =(l/ sP~)X'~&(Q, ~) .

Alternatively, X~~(Q, ~)/P&u may be interpreted as
the density of low-lying states excited by the
probe. Keeping this in mind we can define a mean-
square excitation energy as

dc' z X (&u) da X (w)
271 M 27T (d

0 0

As we approach the transitio~ the denominator gets
very large, the numerator, of course, is a finite
constant for fixed Q, so thattcz, „becomes smaller
and smaller and tends to zero at the stability limit.

The above arguments clearly show that the di-
vergence of X~+ (Q, z) at z = 0, at the stability limit,
is related to the excitation spectrum of 4. It rules
out, for example, the possibility that X(Q, z = 0)
diverges as a function of some thermodynamic
parameter but leaves the excitation spectrum un-
affected. So far we have discussed the behavior of
the system in terms of the real function S(Q, &u)

that one measures, say, in a scattering experi-
ment. Let us for a moment revert to the complex
response function X~~ (g, z). As already remarked
upon, when the system is stable all the singularities
of X~s(g, z) are in the lower half-plane. On the
basis of what has been stated above one can now
assert that approaching a phase transition at least
one of the poles of X(Q, z) in the lower half-plane
moves to the origin and, consequently, X(Q, z=0)
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diverges. In other words, one of the collective
modes becomes soft —the complex frequency of the
mode goes to zero. The following point should be
emphasized in this context. It is well known, in
linearized hydrodynamics for example, that the
complex frequency of certain modes goes to zero
with the suave vector at all temperatures. The
existence of such "gapless" excitations follows
from Goldstone's theorem. ' We do not refer to
such a vanishing of the frequency as the softening
of the mode. We say that a mode becomes soft
if its complex frequency vanishes, at a finite wave
vector, due to changes in the thermodynamic pa-
rameters of the system. If one were observing
these modes in a scattering experiment, say, the
following would be observed: In a scattering exper-
iment one measures the dynamical form factor
S(Q, a) which is related to the Imp, (g, ~) through
the celebrated fluctuation-dissipation theorem.
Away from the stability limit the "real function"
S(g, ~) will have broad peaks centered around
f~;(Q)} (see Fig. I). What we have argued above
implies that as the system approaches the stability
limit at least one of these peaks must move towards
~ = 0, and the half -width of the peak must tend to
zero. In the special case when Q, =O the critical
modes represent the modes of linearized hydro-
dynamics. Their frequencies will be related to
purely thermodynamic quantities, whereas their
decay rates will be related to thermodynamic quan-
tities and transport coefficients. ' As mentioned
above, in this special case care must be taken to
go to the limit ~-0.

We shall now attempt to relate the preceding
discussion to an interesting idea due to Kohn and
his collaborators. " For our purpose it is neces-
sary to recapitulate some of the salient features
of their arguments. Kohn et a/. have argued that
there are two kinds of bosons: Bosons of type I
are complexes of even numbers of fermions (or
fermion holes) —e. g. , He atoms. Bosons of type
II are bound complexes of equal numbers of fermions
and their holes. Examples of these are "collective
excitations" like excitons, phonons, magnons, etc.
They have argued that certain classes of phase
transitions may be viewed as due to the formation
of type-II condensate. They suggest that many dis-
tortive transitions may be viewed as the conden-
sation of soft phonons.

We have argued that the divergence of the static
susceptibility at the stability limit, and the finite-
ness of the second moment of y~'~ (g, &u)/&u arbitrarily
close to the instability, imply that the density of
excited states is peaked near the origin at the in-
stability. This implies that the zero-frequency ex-
citation, namely, the soft mode, is predominantly
excited. Alternatively, one can say that the sys-
tem condenses into this soft mode. It should be

noted that it is in this sense that Kohn et gl. use
the word "condensate of type II."

III. EXAMPLES OF SOFT MODES

A. Continuous Phase Transitions

Let us briefly recall what we have so far stated.
Following Landau we have said that a thermody-
namic phase in equilibrium can be characterized
by an order parameter and that the free energy is
a minimum considered as a function of this order
parameter. At the limit of stability the second
variation of the free energy is zero and this corre-
sponds to an infinite order parameter-order param-
eter response function. We have proved in Sec. III
that at this limit of stability there must occur at
least one soft mode. Now, it is believed that equi-
librium phase transitions occur on the coexistence
curve. The critical point (or line) is the coincidence
of the stability limit and the coexistence curve.
Phase transitions which occur at the critical point
should, according to our arguments, exhibit soft
modes. We now give several examples.

l. Fexxoel ectric Transition

As a first example let us discuss the ferroelec-
tric order-disorder transition in KH2PO4. In this
crystal, each proton has two equilibrium positions
along its bond, close to one or the other of its PO4
neighbors. At T & T, both of these positions are
occupied, but at low temperature the proton system
goes over into an ordered configuration. According
to Cochran's theory this transition is associated
with an infrared-active mode which becomes soft
and which is responsible for the blowing up of the
dielectric constant. The order parameter is here
obviously the polarization. The soft-mode picture
has been substantiated for example in the experi-
ments of Kaminov and Damen. 17

2. St uctuxal Transitions

SrTi03 is a good example of astructuraltransition
which is believed to be of second order. The nature
of the transition is as follows: below T, the BOG
octahedra are rotated with respect to the cube axes,
with the sense of rotation alternating from cell to
cell in all three directions. Consequently the mean
value of the rotation angle is the order parameter.
This picture has emerged, for example, in electron
paramagnetic resonance (EPR) measurements.
Neutron measurements have revealed that an optic
mode at the R corner of the Brillouin zone becomes
soft. "

3. X Transition of He and Transition to
Superconducting State

Here the order parameter is the complex conden-
sate wave function, Lno(r)]'~ e", where no(r) is the
local number of He atoms in the condensate or the
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local number of Cooper pairs of electrons in a su-
perconductor. The phase y defines the superfluid
velocity according to v, = —(h/m*)Vy, where m~ is
the atomic mass in He and twice the electronic mass
in superconductors. The motion of the suyerfluid
component may then be different from that of the
normal component, and this gives rise to a new
mode of excitation, the second sound, both in super-
fluid He and in the superfluid electron fluid in the
superconductor. In both cases the second-sound
velocity goes to zero when T, is approached from
below and becomes a thermal diffusion mode above
T„ i.e. , there is no second sound in the normal
phase of He or of metals. In the latter case the
second-sound mode below T, is overdamped because
of electron-lattice interaction (an overdamped sec-
ond sound in the combined electron-phonon system
may occur above T,).' Hence second sound is the
soft mode of superfluid He~0 and of superconductors
for T- T, and an overdamped mode for T- T,'.
Clearly these transitions are macroscopic ones and
therefore Q, =O.

4. Liquid-Gas Transition.

As already mentioned, the liquid-gas density dif-
ference (p~ —pG) is the order parameter, because
it is nonzero only in the ordered phase. Brillouin
scattering experiments have shown that the thermal
diffusion mode with purely imaginary frequency is
here the soft mode with wave number Q, =0.

B. Discontinuous Phase Transitions

It is a fact of experience that discontinuous (first-
order) transitions occur even before the system
reaches its stability limit. More precisely it is
believed that the transition occurs on the coexistence
curve of the two phases where the chemical poten-
tials of the two phases are equal. In certain theo-
retical models, such as van der Waals's theory,
the stability limit occurs at the end point of its
"metastable" state. ~~ The actual occurrence of
such metastable states in any exact theory is pres-
ently a matter of controversy. In real systems,
however, one expects that even as the system ap-
proaches the coexistence curve it must exhibit pre-
cursors of the new state. In this sense, we antici-
pate that physical properties which exhibit anoma-
lous behavior at the stability limit proper would al-
ready begin to exhibit this tendency even as the sys-
tem evolves to the coexistence curve. For example,
the softening of a mode, which would have become
unstable had we been able to take the system to the
stability limit, should already be detectable. We
now give a few examples of this.

1. Fexxoel ectxic Transitions

BaTiO3, PbTiO SbSI, and Pb& Ba„TiP
are good examples of ferroelectric transitions which

are of first order. The order parameter in these
transitions is the polarization. The soft mode is an
infrared-active mode (with Q, =O) and its frequency
tends to zero. However, as one would expect on the
basis of the remarks made above, the transition
occurs before the frequency of the mode actually
vanishes.

2. Stxuctuxa/ Phase Transition

The u-P transition in quartz is a first-order tran-
sition. This is supported by Brillouin scattering
experiments and by the observation of the coexis-
tence of the two phases around 573 'C. The rotation
angle of the SiO4 tetrahedra about their respective
twofold axis may here be treated as an approximate
order parameter. The soft made associated with
this transition has been identified as a Raman-active
mode at the center of the Brillouin zone, but the
frequency of the mode remains finite at the transi-
tion temperature. "

3. Liquid-Sol id Transi tion

It has been recently shown' ' that the "critical"
density fluctuations of wave vector Qo(= Q,) in the
liquid may be considered as the precursors of the
new phase —the solid phase. Qo is the position of
the first peak of the structure factor S (Q) and cor-
responds to the first reciprocal-lattice vector of the
structure into which the liquid crystallizes. The
associated soft mode is related to density-density
correlations, and is of the type known as "relaxation
mode" (purely imaginary frequency with wave num-
ber Qo). Associated with this soft mode is a pres-
sure -dependent or a temperature-dependent narrow-
ing of the quasielastic peak in the dynamic form
factor S(QO, &u).

4. Superfluid Solid Trans-ition of He

In analogy to classical liquids one expects "crit-
ical" density fluctuations of wave number Q, = Qo in
the pressure-induced superfluid-solid transition of
He of T=O K. Qo is again the position of the first

maximum in the structure factor S(Q) and corre
syonds to the first reciprocal-lattice vector into
which the liquid crystallizes. The associated soft
mode has recently been suggested to be the roton
minimum with frequency ur(QO). This prediction
is consistent with the observed pressure dependence
both of the roton minimum and of the first maxi-
mum of the structure factor at Q0.

3'

5. Antiferromagnet-Spin-Flop State Transition

The phase transition of a uniaxial antiferromagnet
into the spin-flop state is of first order. Blazey
et al. have shown that in a cylindrical sample of
GdAlO3 with easy axis and the applied field parallel
to the cylindrical axis, the frequency of the anti-
ferromagnetic resonance mode extrapolates to zero
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at the stability limit of the antiferromagnetic phase.
This softening has further been substantiated by
changing the temperature and therefore the stability
limit of the antiferromagnetic phase; at each tem-
perature the soft-mode frequency extrapolates to
zero at the appropriate stability limit. In particu-
lar, by approaching the triple point the metastable
region shrinks and the mentioned soft-mode fre-
quency vanishes at the actual transition, which is
now of second order.

V. SUMMARY AND DISCUSSION

There are numerous characterizations of equilib-
rium phases and transitions between them. From
the point of view of equilibrium thermodynamics a
state in thermal equilibrium corresponds to one of
maximum entropy. One further requires that the
free energy of the equilibrium phase, considered
as a function of a suitable "order parameter, " be
a minimum. These two statements are equivalent
to the assertion that the specific heat and the order
parameter-order parameter response function be
positive. The choice of the order parameter for a
given phase change of the system may or may not
be unique. One may test for the stability of an
equilibrium state by observing its response to a
suitable static external field. An infinite response
signals an unstable state.

From a microscopic point of view one may ex-
amine the stability problem in terms of the stability
of the "collective excitations" of the many-body
system. This is done, in the linear response re-
gime, by observing the approach to equilibrium of
the system when we perturb it with an infinitesimal
time-dependent external field. We have argued in
Sec. III that when the equilibrium state is at the
limit of stability then it must be unstable with re-
spect to the excitation of at least one of the collec-
tive modes. Another way of saying this is that at
least one of the collective modes must go soft, i.e. ,
its complex frequency goes to zero as the system
evolves towards the stability limit. In proving this
result we have made the following assumptions:

(a) In testing the stability of the system against
an external perturbation we have assumed that the
response is linear.

(b) We have assumed that the order parameter is
an ergodic variable of the system. This was done
to relate the static isothermal response to
Xee(Q~ & =0)

(c) We have restricted ourselves to systems with
dynamics. More specifically, we have assumed
that y, c(z) has poles in the lower half-plane.

(d) We have assumed that the second frequency
moment of ~~~(Q, ~)/&u exists as long as the system
is stable.

Assumption (a) is a reasonable one if a sponta-
neous phase change occurs at the stability limit of

the system. This, for example, is the case for
phase transitions at the critical point. However,
at a first-order transition that occurs on the co-
existence curve the system is, in fact, stable with
respect to an infinitesimal perturbation. The as-
sumption that the order parameter is an ergodic
variable is nontrivial, In an ideal magnet, for
example, the isothermal and adiabatic susceptibil-
ities are not equal. In realistic systems with vari-
ous interactions one would expect the difference
between the two susceptibilities to be small, ' In
certain systems the second moment of y~~(Q, ~g)/~
has been rigorously evaluated, for example, for
density fluctuations in solids and liquids and spin-
density fluctuations in ferromagnets and antiferro-
magnets, ' and is found to be finite. Since in these
instances the existence of this moment is a require-.
ment that the theory be invariant with respect to
gauge transformations of the first kind one may
anticipate that this would also be the case for sys-
tems with other order parameters.

Vfe have also suggested, following Kohn and co-
workers, that certain classes of phase transitions
may be viewed as a Bose condensation of the soft
mode. In this connection the following point should
be made: In any given transition, say between
phases I and II, the same physical quantity might
be responsible for the instability when we go from
phase I to phase II as when we go from phase II to
phase I. However, the macroscopic manifestation
of the mode that goes soft Inight be different. For
example, the soft mode might be a propagating
mode in one phase and a diffusive type in the other.
This is the case in the A transition in He. ' All
that the above analysis can say is that at least one
of the poles of the lower half of the complex fre-
quency plane of the order parameter correlation
function must move to the origin. To make a de-
tailed assignment as to which collective mode goes
soft one would have to examine the detailed behavior
of X~~(Q, ~) in each instance.

All of the preceding discussion has singled out
the order parameter —order parameter response
function. There may however be various other
operators of the system whose correlation lengths
also diverge, perhaps less strongly, at the stability
limit. The divergence of the specific heat which
expresses the divergence of the energy-energy cor-
relation length, for example, is always weaker than
the divergence of the susceptibility. It must be
borne in mind that associated with every singular
correlation function there must be a soft mode (our
analysis of Sec. III is equally applicable to other
correlation functions). Finally, it has been demon-
strated that if the critical mode is a hydrodynamic
mode (Q, =0) then its excitation energy and its half-
width may be described in terms of "critical expo-
nents" of thermodynamic derivatives and of trans-
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port coefficients. '
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