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The effect of a driving or pump field on the emission and absorption line-shape functions for
an atom is discussed. The pump field is assumed to oscillate at a frequency near the reso-
nance frequency for transitions between a single pair of atomic states, and transitions between
one of these states and any other state of the atom are analyzed. The pulnp field is treated
classically, and atomic relaxation is treated in general terms. The emission and absorption
line-shape function (the latter is defined as the rate of absorption of energy from a weak
signal field, applied in addition to the pump field, as a function of the signal-field frequency)
are found by evaluating the relevant two-time atomic correlation functions in the Markoff
approximation. In the limit of high pump-field intensity, both the absorption and the emis-
sion spectra are doubly peaked at frequencies which differ from the usual resonance frequency
by +2 0, where 0 is the frequency of the pump-field-induced oscillations in the populations of
the two strongly coupled states. The absorption and the emission spectra are represented by
essentially the same function in the limit of high pump-field intensity, as they are also in the
limit of vanishing pump-field intensity. For intermediate pump-field intensities, however,
the two functions are quite different in form, and no simple proportionality exists between
them.

I. INTRODUCTION

When a strong external field is applied to an

atom at a frequency near resonance for atomic
transitions between a particular pair of states,
its initial, effect is to induce harmonic variations
both in the populations for the states in question
and in the absolute value of the associated off-diag-
onal matrix elements. The frequency 0 of
these variations is equal, in the limit of very in-
tense driving fields, to the product of the field am-
plitude and the dipole matrix element connecting
the states in question. After a period of time long
compared to the atomic relaxation time, the os-
cillations in question damp out, and the atomic den-
sity matrix approaches a fixed equilibrium value.
In a very real physical sense, ho~ever, the oscilla-
tions continue to influence the dynamics of the sys-
tem even after equilibrium is reached. One way of

understanding this is to picture the atom in equilibri-
um as described by an ensemble of states, in each
one of which the oscillations in the atomicpopulations
continue, at the same frequency but with different
phases. Mathematically, the effect of the field-
induced modulation of the system appears in the
solutions for the two-time correlation functions
which describe its interaction with other systems.
The correlation function which describes the emis-
sion of photons during transitions between the pair
of states in question, for example, has been
found, ' and leads, in the limit of very strong
driving fields, to a spectrum with peaks not only
at the driving frequency but at frequencies dis-
placed from the driving frequency by + 2 Q. '

ln this paper we investigate the effect of the
driving or "pump" field on transitions between pairs
of states only one of which is a member of the orig-
inal resonantly coupled pair. ' The pump field is
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PK»= K

K;„=Knl (1 —5l„),-(0)
(2. 2a)

(2. 2b)

where K is the collision frequency and n&
' is the

mean thermal occupation number for the state Ij ).
In the case of radiative relaxation, " on the other
hand, the parameters K» are simply the sponta-

treated classically, and its intensity is allowed to
assume arbitrary values. Atomic relaxation is
treated in general terms by introducing phenome-
nological relaxation coefficients. The atomic corre-
lation functions which determine the emission and
the absorption line-shape functions (the latter is
defined as the rate at which energy is absorbed
from a weak signal field, applied in addition to the
pump field, as a function of the signal-field fre-
quency) are found by a method based on the Markoff
approximation.

In the limit of very intense pump fields, both the
emission and the absorption line-shape functions
are doubly peaked, ' at frequencies displaced by
+ 2 0 from the unperturbed resonance frequency.
The two functions are essentially identical in this
limit, as they are also in the limit of vanishing
pump intensity. The two functions are nevertheless,
in general, quite different from one another, ex-
hibiting no simple proportionality for pump fields of
intermediate strength. The difference between the
emission and absorption spectra, which emerges
directly from the basic method of evaluating the as-
sociated correlation functions in the Markoff approx-
imation, is due to the presence of the off-diagonal
density matrix elements which refer to the pair of
states which are strongly coupled by the pump field.

The effect of the pump field on the equilibrium
density matrix for an atom with general relaxation
coefficients is discussed in Sec. II. The emission
and absorption line-shape functions are then eval-
uated in Secs. III and IV, respectively, and the lim-
iting cases of interest are discussed.

II. DRIVEN ATOM WITH GENERAL RELAXATION
COEFFICIENTS

Let us consider an atom with energy eigenstates
I j ) and corresponding eigenvalues E&, where j

= 0, 1, 2, . . . . We assume that the atom is driven
by an external electric field, with positive- and
negative-frequency parts 8(t) and $*(t), respective-
ly, and polarization specified by the unit vector ep,

E (t) = (1/W2) eo [8(t)+ S*(t)] . (2. 1)

We shall describe the atomic relaxation process in
general terms by introducing separate off-diagonal
decay rates &~, = w„'~ and diagonal decay rates ~» for
transitions from the state ik) to the state Ij). We
may note that the strong-collision model of atomic
relaxation can be described in these terms by set-
ting

neous-emission rates, and Kl„=o(Kl+ Ko), where

Kl =Q l, Kl,l (2. 3)

The equations of motion for the diagonal matrix
elements nl(t) and the off-diagonal matrix elements
o.'»(t) of the atomic density operator are, in the di-
pole approximation,

(
d—+K, ln, (t)-y K„n„(t)dt ')

=ll~(t)+ &*(t) ]~ l.~» &.l(t) —&l~(t) ~.l] (2 4a)

and

—+K~~+i(d,„&)qt =i 8 f + 8 t &~~ nI, t —n, t~
d~

~I~
I

~
»

~ » ~~ I

t~ . .(t) — .(t) ~..]],
m, (~&St 0)

(2. 4b)

where K& is defined by Eq. (2. 3); the parameter X»
is defined in terms of the dipole matrix element
p, z„as

Xl, == (&l„eo)/A&2,

and the parameter (d» is defined as

olla =- (El- Ea)/@

(2 5)

(2 6)

S(t)= S,e-'"', (2. 7)

at a frequency which very nearly coincides with the
resonant frequency for transitions between the
states 10) and Il),

(d —(d &p, (2 3)

but not with the resonant frequency for transitions
between any other pair of states. The equilibrium
solution for the atomic density matrix is then char-
acterized, in the resonant approximation, by con-
stant diagonal elements n& and by off-diagonal ele-
ments [all of which vanish except o.'lo(t) and o.'ol(t)]
which have the form

$4)t
10( ) 01(t) 10e (2 9)

where &,p is a constant. The quantities n& and &,p
are the solutions to the equations

Klnl —Q Kllnl,

= (5l, —6l )I- 'X,* 8*, 'X, 8,*0], (2. 10a)

10 10 go( 0 1)

&o'lo= —&~lo &o(no-nl),

where

Z—:Kgp+ i+,
b.(d = CO —CO&p .

(2. 10b)

(2. 10c)

(2. 11a)

(2. 11b)

The rate 'N at which quanta are absorbed from

Let us now assume that the incident fieM oscillates
harmonically,
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10 ~0 10+ ~ 10~0 10

1110 (n0 nl)/
I

z
I
',

where

n=-2IJ„S0I .
We note the identity

(2. 12a)

(2. 12b)

(2. 13)

(2. 14)

which follows directly from Eqs. (2. 10b), (2. 12b),
and (2. 13).

In the case of the strong-collision model [Eqs.
(2. 2)], the equations (2. 10) lead directly to the re-
lations

the driving field may be found by calculating the rate
at which the field does work and then dividing by the
energy h(d of a field quantum. We find directly from
Eqs. (2. 10)

a» and a», for j 4k, by D:cans of the definitions

(S. 2)

The elements of the density matrix may be expressed
in terms of these operators as

&J. = (a Ja &,

nJ= (a",,a,, &,

(3. Sa)

(3. Sb)

g, (v)= f dte'"'g, (t), (3 4)

where the atomic correlation function g, (t) is de-
fined in terms of the Heisenberg operators aJ, (t)
and a»(t) as

the latter relation holding for all k 4j. The spectral
density of the radiation emitted at the (angular) fre-
quency v during atomic transitions between the states
Ij) and Il ) can be shown' to be proportional to the

function

and

—(0) —(ip)
np+ n1= np + n, (2. 15a)

n&=n,' ' for j -2, (2. 15d)

n0 nl (n0 nl" ) I
z

I
'/(fl'+

I
z

I
'),

o'10= (n o
—n 1 )1&mho&/(0 + Iz I ), (2. 15c)

g.(t) -=(aJl(t')aJ1(t'+ t)&

=( Jla;1(t)&, (3. 5)

the latter relation following from the stationarity of
the process under consideration and the relation
aJ, (0)=aJ, . We may note that the total intensity of
the emitted radiation is proportional to

The quantity 'VP in this case is given by the relation

w= (no«& -n,"')—.'~n'/(g'+ Is I') .

III. EMISSION SPECTRUM

(2. 16)

Qur assumption that the driving field induces
resonant transitions only between the states IO) and
I 1 ) has led directly to the conclusion that only the
elements of the associated 2&&2 submatrix of the full
atomic density matrix are directly affected in equi-
Eibxiurn by the driving field. It is important to
realize, however, that in the equations (2. 4) govern-
ing the time evolution of the full density matrix,
resonant couplings exist between other matrix ele-
ments as well. In particular, the off-diagonal ma-
trix elements nJ, (t) and cJ,0(t) are coupled for all
j ~2. These functions obey the equations

o'Jl(t) = &Jl;Jl(t) o'Jl(0)+ &Jl;Jo(t) o'Jo(0) . (3 7)

The function g, (t) for !&0 may then be expressed in
the Markoff approximation as

gg( ) Jl;Jl( ) Jl J + J i[Jo J

(20')
' fdvg, (v)=g, (0)= (aJ, aJ,)=nJ,

and hence is not directly affected by the driving
fieM. "

The atomic correlation function g, (t) may be di-
rectly evaluated in the Markoff approximation. ' The
method, due to Lax, ' consists essentially of sub-
stituting for the operator a»(t) in Eq. (3. 5) an ex-
pression formally analogous to the solution to Eqs.
(3. 1) for the matrix element o.'Jl(t) = (a»(t)) (where
t &0) in terms of the initial functions o'J, (0) and

aJ0(0). The solution in question takes the form

nJ@J1 l Jl (t ) s (3. 8)

+ K~0+'E~0 &jp t = —S~1pS t &~-1 E . 3. 1b

It is not difficult to show with the aid of these re-
lations that the driving field affects the emission
spectrum for transitions between any state I j ) (for
j &2) and either of the states IO) or 11). We shall
consider directly only the case of transitions be-
tween the states I j) and I 1), and we shall assume
E; »1&E0; other energy orderings may be treated
in a straightforward manner.

We begin by introducing (Schrodinger) operators

%I,(s) = f dt e "%l(t)

are given by the relations

Jl.J1 (S)= [S+1( Jl —AR)+ KJO]/f (S) y

(3. 9)

(3. 10a)

where the latter relation follows from Eq. (3. Sb) and
the identity a&, a&0= 0.

The functions &(t) in Eq. (3. 7) can be found di-
rectly by solving the linear coupled Eqs. (3. 1) [with

$(t) given by Eq. (2. 7)] for o.;,(t) and making the ap-
propriate identification of coefficients in the solu-
tion. We find that the Laplace transform functions
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+ I1 i Ip (S ) = —i ~io &o /f (S ) (3. 10b) sity is the familiar spontaneous emission field

where the function f(s) is the second-degree poly-
nomial

g, (v)= 2 ', 2 for Q=O.
kv + K/g

(3. 19)

f(s) =- (s+icd»+ Ic/, )(s+2cd/, —ised+ K/p)+ 4Q . (3. 11)

We note that the two roots s, and s of f(s) are given
in the case of collisional relaxation by the relation

s = —K —i (cd» —2acd + 2Q') for KI~= K, (3. 12)

where 0' is the Rabi' frequency of population inver-
sion (for the levels !0)and !1)).in the absence of
damping,

Q
i [Q2 (~~)2]1/2 (3. 13)

In the case of general relaxation coefficients, in the
limit in which 0' is much greater than v,'~, the roots
of f(s) are well approximated by the relation

S~= —K~ —i (Cd/& —26&d T 2Q ),
where

Kq= 2 (K/g+ K/o) + (KIg K/p) ECd/Q

(3. 14a)

(3. 14b)

It follows directly from Eqs. (3. 8) and (3. 10a)
that the Laplace transform of g, (t),

g, (s) =—1 dt e "g,(t),
is given by

(3. 15)

g, (v) = 2Re[g, (-iv)] . (3. 17)

By making use of Eq. (3. 16) in (3. 17), we find that

(BV+ /2Cd) K/y+ (4Q + K/g K/p)K/p
gz(v = 2n/

where
(3. 18a)

g, (s) =n [s+i(cd —~cd)+K'o]/f(s) (3 18)

The spectral density g,'(v) defined by Eq. (3. 4) may
be expressed, with the aid of the Hermiticity relation
g, (- t)=g,*(t), in terms of the Laplace transform
function g, (s) defined by Eq. (3. 15), as

For Q'»K/2, the functiong, (v) is sharply peaked
at the two displaced frequencies

1 1 I 1v= &» —~he —g 0 and v= »- &6&+ zQ

The function is well approximated in the domain in
which it is appreciable in this limit by the relation

2~n/ (ECd —Q ) K/I+ Q IC/p

(A&d+ Q ) KI~y+ Q IC/o g

(Av+ 2hcd —2Q') + Ic'

(3. 20)

where K,
' and K' are defined by Eq. (3. 14b).

In the limit of very intense driving fields, the
peaks in the spectral density occur at v= » + ~Q,
and the function takes the limiting form

where

1 1
(Av+ 2Q) + K' (nv —2Q) + K

for Q»K'„, I~cdl, (3. 21)

K =—2 (K/~y+ K/~o )

IV. ABSORPTION SPECTRUM

(3. 22)

E'(t) = (I/v2)el [&'(t)+ &'"(t)),

gi(t) gi -Ivt

(4. la)

(4. 1b)

The analysis of Sec. III of the effect of the driving
field on atomic transitions between the state I j ) and

the driven state I 1 ) was concerned with the emission
spectrum for those transitions. %e may extend our
analysis so as to treat the absorption spectrum for
transitions between the same pair of states by sup-
posing that in addition to the pump field (2. 7), a
weak signal field is applied

4v =—v —co»

The denominator in Eq. (3. 18a) is

(3. 18b)
oscillating at a frequency satisfying the resonant
condition

(4. 2)

l
f(-iv)

l

= [&v(b,v+ lcd) ——,'Q K,'. , K,'.p]

+ [+V(K»+ K/p)+ +KIC/y )' . (3. 18c)

The function g, (v), which is proportional to the pow-
er spectrum of the field radiated during atomic
transitions between the states I j) and I1), is thus
given by Eqs. (3. 18) in terms of the relaxation con-
stants wz& and &Jp and the parameters 4 and 0 de-
fined by Eqs. (2. I lb) and (2. 13), respectively.

The limiting cases of interest may be treated in
a straightforward manner. In the case in which the
driving field vanishes identically, the spectral den-

for a particular value of j &2.
To determine the rate of absorption of energy

from the perturbing or signal fieM, we must first
find the change it produces in the equilibrium den-
sity operator. It is not difficult to show that to low-
est order in the signal field strength this change
may be expressed in terms of the interaction Ham-
iltonian H'(t) associated with the perturbation and

the unperturbed equilibrium density operator p as
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The operators in this relation are evaluated in the
interaction picture, where the (time-dependent) un-

perturbed Hamiltonian must be understood to in-
clude the effect of the pump field. The operator p
is hence a time-independent quantity, and corre-
sponds to the Heisenberg density operator for the
system in the absence of the perturbation.

It follows directly from Eq. (4. 3) that the rate at
which the perturbation does work on the system,
since it does no work in the unperturbed state of the
system, is"

W'(t) = tr — bp (t)
sH'(t)

where

=g&(t)-g. (t), (4. 9)

g, (t)= (a»(t)ajt, ), (4. 10)

and g, (t) is the function defined by Eq. (3. 5). The
functions g„(t)and g, (t) in Eq. (4. 9) may be thought
of as representing direct absorption and stimulated
emission, respectively, the difference between
them representing the net rate of absorption.

The function g„(t)for t &0 may be evaluated in the
Markoff approximation by methods analogous to
those used in Sec. III to evaluate g, (t). We find that

gd (t ) jl; '1 (t )(ajl a jl ) + '1; 'o,t ) (a jo a '1 )

dt'tr, H'(t') . (4. 4)9t
= nl'ajl; jl(t)+ olo'"jl;jo(t) i (4. 11)

In the resonant approximation the Hamiltonian
H'(t) corresponding to the signal field (4. 1) and its
partial time derivative are given, according to Eq.
(4. 2), by the relations

where the latter relation follows from Eqs. (3. 2)
and (3. 3) and the identity ajoa jl =alo.

By substituting Eqs. (4. 11) and (3. 8) into Eq.
(4. 9), we find that

H'(t) = —hkj1*$'*(t)aj, (t) —hX'j, S'(t)a j,(t),
(4. 5a)

I

= —t@v []ljl*&'*(t)ajl(t) — jl &'(t) a jl(t)]

(t) ( 1 j) 'lI 'l(t)+ lojl) jo(t)

The Laplace transform of g, is thus

g (s)= (nl —nj)~jl; 1(s)+ +lo ttjl; jo(s)

(4. 12)

(4. 5b)

When these relations are used in Eq. (4. 4) and the
stationarity of the unperturbed system is taken into
account, it is found that in the resonant approxima-
tion, the rate at which the perturbing or signal field
does work is.

W'=hv(jlj, $0
) g, (v),

where

(nl n j)[s + 1 (+j1 ++)+ ~io] t~10 ~0 olo
f(s)

(4. 13)
the latter relation following from Eqs. (3. 10).

We find directly from Eqs. (4. 13), (3. 11), and

(2. 14) that the function g, (v) = 2Reg, (—iv) is given

by the relation

g, (v) = [I/~ f(- zv)
~ ]f [2(n, nj)K,'1 ——W](hv+ Doj)

g. (v)= 1 «e*"'([ajl(t), ajl]) . (4. 6) + [2(n, nj)II'jo+~&](-4g +II jlII jo)
The time-dependent expectation value in this rela-
tion is evaluated in the presence of the pump field
alone.

It follows immediately from Eqs. (4. 6), (3. 2),
and (3. 3b) that the integral of the absorption line-
shape function g, (v) over all frequencies is

(2II) ' J dvg, (v)=nl —nj, (4. 7)

g. (t)= ([ajl(t), ajl]& (4. 8)
l

and hence, as in the case of the emission spectrum,
is not directly affected by the pump field. '

The absorption line-shape function as given by
Eq. (4. 6) is the Fourier transform of the atomic
correlation function

+ W jjoj [(Av+ ER)(K10 —IC j~l) —EVIC j~o ])Klo },
(4. 14)

where Dv= v —». The absorption line-shape func-
tion for the signal field is thus given, quite general-
ly, in terms of the equilibrium occupation numbers,
the rate W of absorption of quanta from the pump
field (both evaluated in the absence of the signal
field), and the parameters defined by Eqs. (2. 13)
and (2. lib), [The function If(-iv)l in Eq. (4. 14)
is given by Eq. (3. 18c). ]

In the case of collisional relaxation, we find with
the aid of Eqs. (2. 15), (2. 16), and (3. 12) thatg, (v)
is given by the expression

1
[)av+-,'pro lA')'+~']])&r + laro ——,'0')'+a'] )

x{2(n,' ' n,' ')II [(h-v+ Doj) ~ —,'II +II ]+&[(hv+ —,'boj) + —', 0' +3m ]], (4. 15)
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which is manifestly positive for noo' &n&" & i&o'.
In the absence of the pump field (f1='V= 0), the

function g, (v) for the case of general relax'tion co-
efficients takes the simple form

g, (v)= 2 ', g—for Q=0.2(r7, -i, )v';
(sv) + a",,

(4. 16)

In the limit of very intense pump fields, ' the
function is well approximated by the expression

gg(&) = +s +z)~ (~ &Il)z ~~a

I „)tor n»ic'„, ~~Av —pO) + K

(4. 17)
where w' is defined by Eq. (3. 22).

Comparison of Eqs. (4. 16) and (4. 17) with Eqs.
(3. 19) and (3. 21), respectively, shows that both in
the limit of very weak and of very intense pump
fields, the absorption and emission spectra are
essentially identical, differing only by a normal-
ization factor. In the general case, on the other
hand, the absorption and emission spectra as giv-
en by Eqs. (4. 14) and (3. 18a), respectively, are
represented by quite different functions, and no

simple proportionality exists between them.
It is clear from Eqs. (3. 8) and (4. 12) for the

correlation functions for emission and absorption
that the important difference between the two func-
tions is due to the presence of the off-diagonal ma-
trix element o.'M in Eq. (4. 12). Although the term
in question cannot affect the integral of the absorp-
tion line-shape function over frequencies [this is
clear from the identity /ln;yo(f = 0)= 0, which fol-
lows from evaluating Eq. (3. '7) at t=0], it does
importantly modify the shape of the absorption
spectrum whenever &,0 is appreciable, i. e. , for
pump intensities of intermediate magnitude. It
should also be noted that, inasmuch as the deriva-
tion of Eqs. (3. 16) and (4. 13) does not depend in a,

detailed way on the form of the equations of mo-
tion for the elements of the 2&&2 density submatrix
elements referring to the pair of strongly coupled
states I 0) and 11), the relations in question may
be presumed to remain valid even when, e. g. , the
coupling between the states IO) and I 1 ) (but not be-
tween either one of these states and the other weak-
ly coupled states of the atom) is described by
means of more general forms" of atomic relaxa-
tion theory.
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