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The wave-vector and frequency-dependent orbital susceptibility (X" ) of an interacting elec-
tron gas is expressed in terms of suitable vertex functions. This makes the theory parallel to
that of the spin susceptibility (X~) of this system. The equation for the vertex function is solved
in the statically screened exchange approximation by a variational method introduced earlier
by one of the authors. The static long-wavelength limit of X~" is shown to be related to the
difference between the f- and p-wave decomposition of the effective interaction, whereas y

~ is
related to the difference between the corresponding p- and s-wave parts in the same limit. The
classic result that X "is minusone-third of X'~ for the noninteracting system is modified when
the interactions are included. Explicit results are given for a model Yukawa interaction.
From these, it follows that, for very short-range interactions, y' reduces to the Stoner-en-
hanced form while X is unaffected. The momentum dependence of the interaction is thus
more important for the determination of X

" than for y'~. In the unscreened Coulomb limit as
well as for small screening, our results reduce to those obtained earlier by Kanazawa and
Matsudaira. Several errors in the existing expressions for X'~"(q, qp) are corrected in this
work.

I. INTRODUCTION

It is well known that, for a system of noninteract-
ing electrons, the steady orbital susceptibility is
minus one-third of the spin susceptibility. Much
attention has been paid to the calculation of the
wave-vector- and frequency-dependent spin suscep-
tibility y"(q) of an interacting electron system,
whereas the same cannot be said of the correspond-
ing orbital susceptibility y'"(q), as may be inferred
from a recent review by Hebborn and March. The
spin susceptibility is enhanced by the interactions
in the static long-wavelength limit. The corre-
sponding orbital susceptibility has only been calcu-
l.ated in perturbation theory by Kanazawa and
Matsudaira, Stephen, and, very recently, by
Ishihara and Wadati, who found a different form
of the enhancement.

A unified treatment of the susceptibilities may be
given by expressing them in terms of current-cur-
rent correlation functions. These correlation func-
tions have been formulated in terms of suitable ver-
tex functions6' I', and this description is used here
to calculate the steady orbital susceptibility. A
variational method of solution of the equation for
I'", appropriate for computing g" of an interacting
system, was developed recently. ' This technique
will be used here to derive the analogous result for

The equation for the relevant vertex function
I'"" is set up in the statically screened exchange
approximation. The variational method gives di-
rectly the real part of the susceptibility; the imag-
inary part may be inferred by an appropriate
Kramers-Kronig relation.

The self-energy and vertex contribution played
a crucial role in the earlier calculation of the long-
wavelength spin-wave dispersion in an interacting
ferromagnetic electron gas'; these play an even
more interesting role in the computation of the g"".
For instance, the screening of the Coulomb inter-
action is essential to arrive at a nondivergent ex-
pression for the long-wavelerigth static g"", where-
as the X" is finite even for an unscreened Coulomb
gas for certain electron densities. More interesting
is the result that in the perfectly screened limit-
the Stoner model. —the interaction contributes little
to g", whereas g" is the well-known Stoner-en-
hanced Pauli susceptibility. This aspect of the role
of the momentum dependence of the electron inter-
actions in determining g"" is an important conclu-
sion of this work. The present approach puts the
computation of g"" on the same footing as that of
g", a feature absent in the previous perturbative
treatments.

In Sec. II we set up the&relevant equations and

solve them by a variational method. The spin sus-
ceptibility is also given here for the sake of com-
pleteness. We express the static long-wavelength
limit of g" and X" in terms of the spherical wave
decomposition of the screened Coulomb potential.
In Sec. III the expl. icit expressions for the orbital
and spin susceptibilities are given for a model
Yukawa interaction. Section Dr' discusses the re-
sults and implications of this calculation to the
Knight shift' in simple metals. Stated in terms of
the language of Fermi liquids, it appears that the
Knight-shift measurements in fact yield information
about the f wave part of the int-eraction, whereas
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the spin-wave and other experiments yield only the
s-, p- and sometimes d-wave parts. The general
expression for y"'(q, qo) contained in the litera-
ture is found to be in error and the correct ex-
pression, due to Lindhard' (and Kadanoff and Mar-
tin' ) is derived in the Appendix.

II. FORMULATION AND SOLUTION OF PROBLEM

with

X„(ql=(-2 k„q{k;q) q'e(k;q)
( )e

—eee),

(2. 1b)

Z„(q)=2~ V(k;q} r, (k;q) (2. lc)

e " — dk
q",,(q)=-, , S(k;q) r, (k;q)

(

(2. 2}

where F(k; q) = fo(k+q) —fo(k), fo(k) is the usual
Fermi function, I' is an appropriate vertex function

which, in the statically screened exchange approxi-
mation, obeys the equation (sometimes called lad-
der-bubble scheme)

[qo+f rl —fl, (q)] V„(k; q) =y„(k; q)

The general formulation in coordinate space is
given in Ref. 6 and we shall adopt it here without

derivation. We quote here the expressions for a
paramagnetic electron system with a nondegenerate
spherical band. We have here excluded electron-
phonon interaction from consideration even though

its inclusion is straightforward as shown, for ex-
ample, in Ref. 11. We choose the wave vector q
to be (0, q, 0) and the external magnetic field along
the z axis so that we have only to compute (for a.

derivation see the Appendix)

C. (q) e &..(q)
1+ /;"(q) m c q 1 —(e /m }[X„„(q}/(qo—c q))

F~ '"(k; q) =+ ~u~(k; q)/[qo —flak(q)] (2. 4)

and determining the constant X& variationally, one

arrives at the following expressions:

first term stems from the driving external field and the
second term corresponds to the statically screened
exchange contribution to the vertex. The bubble
term is identically zero for the paramagnetic sys-
tem where A =s, p and hence is absent in (2. 3). For
A. = p, I & is the irreducible vertex function. Be-
cause of the statically screened exchange approxi-
mation it follows that the frequency dependence as-
sociated with k in (2. 1), (2. 2), and (2. 3) is absent.
We have q =(q, q, ) in all the above expressions. We
shall not specify the structure of V, (k —k, ) so as to
keep the formalism quite general as in Befs. 7 and
12.

The formula (2. la} should be used to calculate
y",,"(q, q, ) rather than that given in Ref. 2; the latter
is correct only for y",,'(q, 0) to which our expression
reduces in the appropriate limit. Our formula, be-
sides incorporating a correct definition of y",,"(q, qo),
includes the contribution of the longitudinal polar-
ization (ez, ) of the system to the magnetization M.
Also included is the proper screening of the trans-
verse polarization (er} which is often neglected as
being of order (v/c)o. As pointed out by Martin, 'o

(v/c) effects must be taken into account in comput-
ing y" (q, qo) since magnetic effects are always of
this order. The static long-wavelength limit of our
y"'(q, qo) reduces to the Landau result without ap-
proximation.

The generic equation (2. 3) can be solved by a
variational method when 0& is real, which is true
in a. limited region of (q, qo). One then obtains the
real part of y" "(q) (see Ref. f and, for a more
recent discussion, see Ref. 13). The imaginary
part can in principle be deduced from a dispersion
relation (Kramers-Kronig). The variational princi-
ple proceeds by constructing a Lagrangian J(1"„)
whose first variation is Eq. (2. 3). The extremum
of Z(I'„) is then seen to be directly related to
Rey" ~ "(q). Choosing a trial solution

with

+ V,(k-k, ) 3:(k„q)

x [r„(k„q) —I'z(k; q)] (
)'o, (2. 3a)

—3., A=s

I,(q)
())

Io(q)
Rekq, „(q)= q

(
)'

( )
-eee),

ReIC„(q) = 2I,(q)/[I, (q) —J,(q)],

(2. 5a)

(2. 5b)

(2. 5c)

yg(k;q)= +1, A. =p

-u„, A. =o. (2. 3b)

We have g-0' at the end of the calculation, where

O„(q) =&(k+q) —&(k) and e(k) =0 /2m. In (2. 3) we

have isolated the self-energy contribution to Q, (q); it
is the last term in the right-hand side of (2. 3). The

with

F(k; q) d'k
4(q)= ~ ( )

~~(k;q) (2 )o,

( )
r(k, q)

( )i
F(k„q)

„J qo fl k)(q) (, qo —+k,(q)

(2. 6a)
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qo n))y(q) d k d k,xr~(k;q) y„(k„q) r'~-(k;q) n ( ) (2 )6

(2. 6b)
These integrals can aQ be computed, at least in
principle. The method of integration given here is
for the static limit, but seems amenable to extension
at least for some small region of ((I, qo). In fact,
I„(q) has been evaluated for general q in the litera-
ture. ' We will here derive expressions for J„(q) to
leading order in q but with qo = 0. Before this, a
few remarks concerning the methods employed by
other authors may be made here. Kanazawa and
Matsudaira's procedure is to evaluate the orbital
susceptibility by expressing it in terms of a suitable
tmo-particle Green's function; they then compute
this two-particle Green's function to leading order
in V, . This procedure is equivalent to an iterative
solution of (2. 3) for the vertex function. Stephen'
and Ishihara and Wadati compute the free energy
of the system in the presence of the magnetic field
and derive from it the susceptibility. This proced-
ure is perturbation theoretic in its structure. Our
procedure presented here thus differs from all
these. The expression similar to (2. 5a) for the pa-
ramagnetic spin susceptibility was given by Iwamoto
and Sawada' and generalized by one of the present
authors' in the present form for the ferromagnetic
case. It must be stressed that in the q- 0 limit,
the vertex equation can be solved exactly"' and
this coincides with the variational answers.

We now proceed to calculate the various integrals
in (2. 5a)-(2. 5c) in the static long-wavelength limit
at zero temperature. The calculation of (2. 6a) is
straightforward and the result is

(,(q - o) f(s' =o(q(o) q, )aE k 2m'

with & kq denoting the angle betmeen k and q and

V,"'(k;k, ) =-.'(2f+i) f V,(ik-k, i)

x+((»(I) ap((' (2 &)l
One then immediately obtains J', (q) for q-0:

J,(q) =J.(q) = —p'o(E ) [-' V."'(k 'k }—V'"(k 'k )]

-=+ p, (z,) J,"'.
Thus we have

x"..(q) = x,"/[i- J."'],
with

Xp~=e kz/47( mc ~

(2. io}

(2. ii)

The computation of J,(q) is a little more involved.
We first shift k, k, to k- 2q, k, —2q, respectively,
in (2. 6b} [recall that (I = (0, q, 0)] and then use the
expansion

F(k;q) I q
-n(p) s m

= 5(~(k) —Z,) + - —[5'(~(k) —Z,)

should be pointed out that this is a consequence of
the separation of the self-energy effects from the
noninteracting part in our vertex equation; a pro-
cedure which does not employ this separation is
given, for example, in Appendix C of Ref. 11,
yielding the same final answers. It is found that the
renormalization of the density of states and the ver-
tex corrections appear in exactly the way they have
occured in (2. 5a)-(2. 5c).

To compute J„(q), we proceed as in Ref. 7. We
expand V,(k-k, ) in terms of spherical harmonics:

4m
V,(k-k, ) =Q (2f+ I) Y( ( kq}

gm

x Y(* (& kq) V,"' (k; k,), (2. 6)

= p, (z,) =I,(q- o}, (2. 7a) +',—.(k) cos'8&,.6"(.(k) -E.)] +o(q'), (2. »)
I()(q-0) =2 mn —po(E~) q /i2, (2. vb}

where po(zz) = mkz/2v is the density of states of the
noninteracting system at the Fermi surface. It

where the primes denote differentiation mith respect
to energy (.(k). Writing x = e(k), y = e(k,) and 8&„
= 8» 0&,„=e„, etc. , we obtain

J,(q) =(m'/v') f,"xdx f, yay V,(k-k, ) [an, an, ,/(4v)']

)& [sin8~cosg~ sin8~, cos(t)~, —sin~8~ cos (t)~ (cos8~,/cos8, )]

& ([6(x—E„)+(q'/Sm)(5'(x —E }+-',xcos'8, 6"(x —E„))](6(y—E )+(q'/2m) 6'(y —Z })

+(q'/i2m) y 6(x-z, ) 6"(y -Z, ) cos'8„+O(q')]. (2. ia)

We now perform the Q~, integration after using the
various mell-known relationships between the
sin&icos/„, cos8», etc. , with the spherical har-
monics and then perform the summation over lm.
This makes the entire contribution from the terms

grouped as [ ~ ~ ] (~ ~ ~ ) in ( ] zero, and the second
one becomes simply

pp(EF)q m
(2 )y/2 d

3607( dx dx



A. K. BA JAGOPAI AND K. P. ZAIN

X j~ [~ P~ (k~', k~~) —
o P~ (k~,' k~x)]]

i~ po«z)~' &o" (2. 14)

Using (2. Vb), (2. 14), and (2. 5b) in (2. 1a) we obtain

X"..'(e —0) = —-' Xl'[1+~o"] (2. 15)

To make the above results quantitative we now

evaluate J,"', J,' ' for the Yukawa potential

V, (k) = 4~e'/(k'+ ('k'„) (3. 1)

$ here is dimensionless and considered as a param-
eter, as in Refs. 7 and 12. Then

2V"'(k k)= '
q, -

' "~ ', (3.2)
(2/ 1) ' ' ' kk ' 2kk

where Q, (z) is the associated I egendre function.
After some algebra one then obtains

Z,"'=(~~, /~) [1-!~' In(1+4/~')], (3. 3a)

8,"= {n~,/~) [-; —-', ~'+-,'; ~'(8+12~'+3~')/(4+ g')

—(o +4 $ ) ln(1+4/f )]. (3. 3b)

Here x, is the usual parameter me /kz ——m, /v;
o = (4/9o) = 0. 521. In the unscreened Coulomb

1/3

case E-0 and we note that

N) (2)
o - ax~~ ~0 (3.4)

On the other hand, when the screening is nonzero
but small, we have

J,"'- (n~, /m) (1+—,
' &' In-,

' $'),

Jo"'- (o.~,/o) (-', + —,
' ln-,' $').

(3. 5)

These features were noticed by Kanazawa and
Matsudaira. ' When the screening is large,
one has a short-range scheme as in the Stoner
model ', and it is then useful to introduce the di-
mensionless Stoner parameter"

Ife'/Z = ', (~r,/~~'), —

and we then obtain

(3.5)

From (2. 11) and (2. 15) it is at once clear that the
interactions play different roles in their contribu-
tion to the spin and orbital susceptibility for q-0
even though for finite q they seem to have similar
structure.

It may also be stated that the present variational
method reduces to known results in all the problems
where it has been applied.

III. EXPLICIT RESULTS FOR YUKAWA INTERACTION

the paramagnetic susceptibility is enhanced by
short-range interactions, the orbital susceptibility
is not at all affected by it.

IV. MSCUSSION OF RESULTS

The main results of the paper are contained in
expressions (2. 1a), (2. 5), and (2. 15). Our calcula-
tion succintly brings to light several aspects of the
role of interactions in these problems. The "en-
hancement factors" appearing in the spin-paramag-
netic and orbital susceptibilities are not of the
same form. The precise forms for the Yukawa in-
teraction model are given in expressions (3. 3a) and
(3.3b). This may be expec'ted on physical grounds
since the spin-density fluctuation depends only on
the difference in spin densities, while the current-
density fluctuations depend on the rate of change of
the densities. That these two are widely different
in an interacting system is brought to light by our
calculations.

Our calculation may be of importance in the esti-
mation of the interaction effects on the Knight shift.
The inclusion of electron-phonon interactions in our
calculation is straightforward as for the paramag-
netic ease. " It is found that V, has an extra contri-
bution from it. In the Jellium model it is known
(see, for instance, Ref. 11) that the paramagnetic
susceptibility is unaffected by the electron-phonon
interaction in the static long-wavelength limit and
is essentially a result following from the use of
Migdal's theorem. A similar conclusion may be
reached for the orbital susceptibility in agreement
with the earlier perturbation calculation of Tani.
All these approaches treat the electron-phonon in-
teraction in the weak coupling limit where the dy-
namical aspects of this interaction do not appear.
When these are included, the simplification that
1"„(k;q) is independent of k, does not hold and we
have a more complicated situation. In fact, the in-
cipient Cooper instability in the normal state lies
buried in I'„(k; q) and, as one would expect, the spin
and orbital susceptibilities also exhibit this via I"&.
It may be of interest to note that a Kni. ght-shift ex-
periment could give a measurement of the l = 3 part
of t/,"', a new feature of the present formulation.

We have only calculated the steady part of the
orbital susceptibility. The inclusion of the de
Haas-van Alphen oscillations can in principle be
incorporated in our formalism by employing a suit-
able starting Green's function given in Hef. 6. The
corresponding perturbation-theoretic results may
be found in Hefs. 4 and 16.

(3.7)
Z,"'- (1/(') (Jfa'/E, ) —0.

These results coincide with the exact answers which
can be obtained by directly solving (2. 3) in this lim-
it. This calculation shows that in this model, while
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APPENMX

arrive at

gtt yp
qp

—c q
(A10)

We give here a derivation of Eq. (2. la). The es-
sential steps are contained in the works of Lind-
hard, and Kadanoff and Martin, ' and they are pres-
ented here for the sake of completeness. Following
Kadanoff and Martin, if (A,„„p,„t}are the external
gauge potentials, one computes the linear response
functions with respect to these as perturbations and

then, using the Maxwell equations, relates them to
the physical response functions. We use the nota-
tion of Ref. 2 and take zT=(0, q, 0), A,„,=(A",„„0,0)
so that the x and z directions correspond to the
transverse (T) and the y direction to the longitudinal

(L}polarizations of any vector. The only nonzero
linear response functions (in a homogeneous uni-
form gas) then are

&&'(q)&t.d =- &~.(q)&t.d = A;, (q) &.".t(q),

&&'(q)&i.,-=&&,(q)&t.d = —A,o(q} y'*'(q)

-=&p(q)&t d= +pp(q) P '(q).

or equivalently

(&'r —1)
' —(qo/(qo —c'q') l (~'r —I)

In terms of the linear response function (Al), we

then have

(All)

Using the other Maxwell equation,

E'r" = (iqp/q') (V x B} (A14)

we ha,ve

~"' = —iq, (o —1}E'"+(q'/q') (c —e ) (v B)

-=—iqp (e, —I) Et" +c(V&& M), .

(c/q(')) SC„„
T I

1 Jf /( o o 2) (A12)

Now by definition, E = E&+E& and

i q(ooT - 1) E~r —iqp(Ez, —1) Ez,
'

= —iqo(ez —1) E"'—iqo(ez —ez, ) Ez,
". (A13)

The equation of continuity requires

q«, &ind qp&p&ind 2 (A2)

We now employ the definitions

B = p.H, M = y" H (A15)

so that

«,&i d (qo/q) I~op(q) 0 (As)

to arrive at

X"'/(I+ X"")= (I —p ') = (qo'/ q') ( — ) (A16)

We define quite generally the following:

(J&t„d=- —iqp(e'- 1) R'"'

-=-iq, (e-l) E"',
Etot (Eint& Eext (A6)

Using (A5) we arrive at

(J,&„,=iq, z,"'- iqpz', "t

(As)

after employing (A4) as a relation between E"' and
E'"'. Thu. s, we obtain

Then the Maxwell equation combined with (A2) gives

dkx q(q, qq)=te fe(q; q) v, (2;q) q q {q)
2)z 3

-=e'fC„(q)/ez (q), (AIV)

with

This result was originally derived by Lindhard
who, however, did not use the correct relation
(A12), having neglected the transverse screening
effect. Martin' stresses the importance of this in
his work and we find it to be crucial in deriving the
proper extension of y" (q, 0) to finite q, . Previous
work in the literature contains three errors: the
definition of y"', calculation of e&, and omission
of tz in (A16}. In the static limit, however, these
errors do not affect the results.

In terms of an irreducible vertex function, Kpp
can be expressed as

cz —I = (e~ —1)/[I —(~z —I)] .
In terms of Koo defined by (Al) we have

(AV) q~(q)=( tv(q)fe(2;2) Z, (q;2)

Similarly, we have
cz, —1=(1/q )Kpp. (AS)

(qo-cY}E'r" =- iqo ~'r",

(qo cq }E'r* = —iqo &r-
(A9)

and using (A4) for the transverse components we

In a similar way, employing the Maxwell equations qx„(q, q, )= —, —2 e„e(2;q) I',{2;q),—q )
(A 18)

Using these expressions in (AV) and (A].1), jn
(A16} we arrive at the result (2. la) (Iuoted in the



1480 A. K. RA JAGOPAI AND K. P. JAIN

text. We may stress that the choice of the gauge
used above was only a calculational device and that
the final results are indeed gauge independent.
Another point to be mentioned is that when the spins

are included for a paramagnetic system, the orbital
and spin parts of the susceptibility decouple and thus
can be calculated separately. Moreover, the de-
finition (A15) is always employed in deriving y".
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Perturbation Theory Based on Currents for Interacting Bosons at Absolute Zero
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As a continuation of a recent paper, using density and current density as coordinates for in-
teracting bosons at absolute zero, this work deals with the perturbation theory. The zeroth-
order Hamiltonian is the one shown to yield the Bogoliubov energy spectrum. First- or second-
order perturbation calculations have been made of the three-phonon and the four-phonon ver-
tices for the energy corrections of the low-lying excited states. The results in the long-wave-
length limit differ, although only slightly, from the quantum hydrodynamic calculations, and
indicate that the perturbed excitation energy eI-, is an odd-power series in k if the Fourier co-
efficients of the two-body potential concerned can be approximated by a constant or an even-
power series in k. However, whether this remains so in all higher orders of various perturba-
tions is an open question. Two methods were used in the calculation. The first involves func-
tional representations of the coordinates in the pz representation recently reported. The second
method is new, and employs "occupation-number" representations of the current algebra by
introducing creation and annihilation operators for "phonons" from density fluctuations. These
latter representations enable us to benefit from the advantages of the canonical field theory.

I. INTRODUCTION

In a previous paper, ' a new method of dealing
with a pairwise interacting boson system at ab-

solute zero was developed in which we employed
the density and the current density as coordinates
and the functional representations of their equal-
time commutation algebra in the pg representa-


