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An asymptotic evaluation of the specific heat of an ideal Bose gas confined to a thin-film geometry
{x~xD) is carried out, under a variety of boundary conditions, without converting summa-
tions into integrations. The theoretical results for the Dirichlet boundary conditions {$s=0)
contain all the significant features of the numerical results obtained earlier by Goble and Train-
or; in particular, we reproduce the characteristic length D* at which the specific heat of the
system is at an absolute maximum. It turns out that D* is directly proportional to the mean
interparticle distance l, with a constant of proportionality c{=20-30). No such characteris-
tic length appears if boundary conditions other than Dirichlet's are employed. The shift, and
the rounding off, of the specific-heat maximum are also studied, and the distinguishing influ-
ence of the boundary conditions examined.

I. INTRODUCTION

Following the work of Osborne' and Ziman, sev-
eral authors have investigated the phenomenon of
Bose-Einstein condensation in thin helium films. '
Most of these investigations are based on the ideal-
gas model and are concerned with the dependence
of the condensation temperature To on the thickness
D of the film; in some cases, the varying influence
of the boundary conditions (imposed on the wave
functions of the system) has also been examined. 4''

The relevance of the results thus obtained to the
actual problem of helium films is indeed limited;
nevertheless, these studies have served to eluci-
date the role played by the geometry of the system
in determining its physical properties, especially
in the neighborhood of a critical point such as To.
It is clearly of interest to extend these investiga-
tions to study the behavior of the various thermo-
dynamic functions of the system —in particular, the
ones that possess singularities at the critical
point —and examine the manner in which the "finite-
ness" of the geometry smooths out the singularities
of these functions.

The corresponding problem for the Ising model
has already been broached by Domb' and, at some
length, analyzed by Fisher and Ferdinand. ' In the
case of Bose-Einstein systems, a numerical analy-
sis has been carried out by Goble and Trainor who
have studied, among other things, the specific heat
of an infinite slab of thickness D, in the neighbor-
hood of the temperature To(D), for different values
of D. The results obtained by them reveal that the
height Co(D) of the specific-heat maximum is itself
a nonmonotonic function of D, being largest when
the thickness of the slab is equal to a characteristic
length D~ (='70 A). This led Goble and Trainor to
suggest that D* possibly represents some sort of a
statistical correlation length which determines the
stage at which the physical characteristics of the
system change over from those of a three-dimen-

sional one (D» D*) to those of a two-dimensional
one (D«D*). However, because of the numerical
character of their investigation, Goble and Trainor
could not bring out the precise meaning of the
length D* and its relationship, if any, with other
parameters of the problem.

To elucidate these aspects, the present author
has carried out an analytic study of the problem,
in which the summations over states appearing in
the various expressions pertaining to the system
have been evaluated without having recourse to the
customary procedure (of converting summations
into integrations) which is liable to serious inac-
curacies when applied to a finite system. This
analysis is based on a technique developed by
Krueger which enables one not only to investigate
the most significant features of the specific-heat
behavior, as reported by Goble and Trainor, but
also to bring out the sensitivity of these features
to the boundary conditions employed. In particular,
the peculiar features associated with the "exis-
tence" of the characteristic length D* appear only
if one employs the Dirichlet boundary conditions
(g~ = 0). With other boundary conditions, no such
characteristic length appears. Moreover, when it
appears, D~ is found to be proportional to the mean
interparticle distance l, i. e. , D*= cl, where the
factor c shows up quite na. turally in the analysis
and, within the approximation studied here, turns
out to be about 30. The author, therefore, con-
cludes that the length D* is of a purely statistical
origin and is determined solely by the particle den-
sity in the system. Accordingly, it may not be re-
garded as a "correlation length" in the customary
sense of the word.

The shift, and the rounding off, of the specific-
heat maximum as a function of the thickness D of
the slab are also examined here. In passing, it is
noted that, in view of the functional analogy between
the ideal Bose gas and the spherical model of fer-
romagnetism, ' '2 the results obtained here should,
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in a sense, hold for the latter system as well.

II. FORMULATION OF PROBLEM

while

Let us start with the expression for the internal
energy of a Bose-Einstein system of noninteracting
particles, viz. ,

U=Z; c; (n; ) =Z; &, (e"' "' ' —1) ',
where (g,. ) is the mean occupation number of the
state i, while the chemical potential p, of the sys-
tem is determined by the condition

N=Z,. (n, )=Z,. (e'~ "'"-1) ' (2)

the other symbols in (1) and (2) have their usual
meanings. Eliminating p, , we obtain U as a func-
tion of N, T, and Lz, where L& (j =1, 2, 3) denote
the linear dimensions of the container. It may be
noted here that the dependence on L,. comes through
the eigenvalue spectrum &, and is influenced, quite
naturally, by the boundary conditions imposed on
the wave functions. The specific heat at constant
volume is then given by

where 1[=k/(2pMkT)'ta] is the mean thermal wave-
length of the particles (and is therefore a, measure
of the temperature of the system), while l[= (L,LzLS/
N)' ] is the mean interparticle distance (and is
therefore a measure of the particle density in the
system). In the case of infinite geometry (I, ,

Lz, L~-~), the specific heat is known to possess
a cusplike singularity at the critical temperature
Ta(~) such that'3'

(4a)

here g(n) denotes the Biemann f function.
case of a slab (L„L2-~, I.3= const = D, say),
we expect that the specific heat would possess a
nonsingular maximum at a temperature Ta(D) such
that

while

C, (D) = —",Nk [/(-,')/g(-, )] q, (D/l ), (5b)

where the functions ltl, , lt a- I as D- ~. It is now

clear that if the quantity Ca(D) possesses an ex-
tremum (at a value D*, say), then we must have

D*= cl

—2 GP ——+ G3 —3 —GP

+3 —G' ——G', 8

where e is a numerical factor that appears natural-
ly in the analysis.

In order to determine the correct asymptotic
form of the functions ltl, and lt a and the correspond-
ing value of the number c (if it exists), we must not
make the customary replacement of summations
by integrations. It is better to work with the gen-
eral formulas, which follow directly from Eqs.
(1) and (2), viz. ,

Cv = k(Ga —G&/Gz),

v 6 G 1 G& 2 j. Gt' . 1

6 G3 3 —' G2+ 3 ——'
Gq — —'-

Go + G4 —4 —G3 +6 —- Gq —4 —G) + —Go, 9

where
S

G, =&~ —' [(n;)+ (n;)']
t

l

heat maximum can be located by determining the
temperature To at which the derivative (8) vanishes,
the value Co at the maximum can be obtained from
(7) while the degree of rounding off of the maximum
can be estimated from the magnitude of the deriva-
tive (9).

G,
"= (- $), (11 j

while o. = —(p/kT). The problem, therefore, con-
sists in evaluating the functions G, (u, T, L, ). -

Once these functions are evaluated, the specific-

III. ASYMPTOTIC ANALYSIS

We shall examine this problem under the follow-
ing sets of boundary conditions:

(i) Periodic boundary conditions [g(x;+L&)
=g(xz)], for which



BOSE-EINSTEIN CONDENSATION IN THIN FILMS 1453

h2 flR 2 n2

&tmn=2M ILL ~+L a+L 2 ~ l, m, n=0, +I, +2, . . .
1 2 3

(12)

(ii) Dirichlet boundary conditions [)C) s = 0], for
which

h2 /l2 m2 n2

tm~ 6M lL&+ ~ 2+ ~ z ) l, m, n=1, 2, 3, . . .

(13)

(iii) Neumann boundary conditions [(8)l)//sn)s =0],

for which

y2 )2 2 2

L 2+ 2+ 2

It is the spectral details of the eigenstates q, „
that cause a varying influence of the boundary con-
ditions on the summations over states, such as the
ones appearing in (10). To discern this influence,
we note that if there is a variable f(l, m, n), which
is an even function of the quantum numbers (l, m,
n), then"

(nt 00

Z f(l, m, n) = — Z f(l, m, n) T
lg mtn = f14 8 l, m, n= l, nt, 0=-

f(l, m, 0)+ Z f(l, 0, n)+ 2 f(0, m, n)
m, n=-

+ 2 f(), 0, 0)+ Z f(o, m, 0)+ 8 f(o, o, nl vf(0, 0, 0)I ((6)
0O m=« ~ n=-~

or, alternatively, 1L2L3 i s 2L1L2
2 '/2 ~L 1/2

g 3//2~&)+ 2 g1 2tT A

+ 8[S(')(2L„2L,)+ ~ + . ]

+ [Sp )(2L,)+ ~ ~ ~ + ]+8f(0, Q, 0)j,
(16)

where SD™/'~denotes an m-dimensional summation
under Dirichlet boundary conditions (8 = —1) or
under Neumann boundary conditions (8 =+1), while

Sp ' denotes an m-dimensional summation under
periodic boundary conditions. For an asymptotic
analysis of the infinite slab, Eq. (16) may be ap-
proximated by

() 1 x" 'dx
r(n)

0

(16)

while

X = h/ (2)/MkT)'

Combining (17) with the iwo-dimensional formula

(17)
where g„(6) are the familiar Bose-Einstein func-
tions' ''

Sv///(L) ) L2, L3)

= 8 [Sp ' (2L, , 2L2, 2L~) + 8 Sp '(2L, , 2L2)] .

(16')

S.'" (L„L.) =,'. ' g, (n),

we obtain for (16')

(3) L1L2 L3
SD///(I g, L2 ~ Ls) — s gs/2(n)

(2o)

In the special case, when f(l, m, n) = (n, ), the
summations S( )(L, , L2, Ls) are identically equal to
the total number of particles in the system. For
such a sum, Krueger obtained under the periodic
boundary conditions

SI. (L~, L2, L3)

+
~2 A 4&

~
n +8 '22 g, (n) .1/2 ~L 1/2

(21)

Equations (17) and (21) might be represented by a
single equation, viz. ,

N(n T, L/)=~ gg/2(n)+ 2
—g( 2(1+8')~"'~ n'" +$8 L gg(n), (22)

-l 0,

(n) Q g (3 ) 2 1/ 2n1/2
3/2 E3/2 (23)

where 8 =0 for periodic boundary conditions.
In the region of interest (n « I), we may write

l

and

g, (n) = —ln(1 —e ) = —1nn .

Equation (22) then reduces to
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N(~, T, I.,) = , —C(-.') —
1

y, 2 (X

x ln 2sinh~(1+8')v'" —n'" —28 —»~, (25)

where 1.3 has been replaced by the more agreeable
symbol D. To the same degree of approximation,

G, -=—— =, v(1+8 ) — + —8(1+8 ) —,VD, cothy 1, 1

~n, , 2

(26)

- 8 —'
~

In (I+8') v'" ——= C( '. )-(32)
D) ~o Xo

while the value of the specific heat at To(D) is given

by (7):

'„; =( —,
' )'I~i(-:).9(',) 5(2)-(~),—'[5(-:)j'

~-1
x (1+82) o+ —8(1+8 ) —2 . (33)

Xo 2 Xo

IV- RESULTS AND DISCUSSION

C,'-=— ' =,v'(I+ 8')'BG VD

Ba+L, 2X

cothy cschay, z 1
x ~ + 2 +8(1+8 (27)

(i) In the case of periodic boundary conditions
(8=0), Eqs. (30) and (31) give y0=0. 854. We then
obtain from Eqs. (32) and (33)

—
[

=1 t —', [5(l)j '"ln(ssinsy, )(—)

y= (1+8')v"'(D/). )o.'" . (28)
= 1+0.460—

D (34)

x + —,
'

8 (1+82) —
2

cothy ~ 1
(30)

For infinite D, the function f(y) is identically zero
for T & To(~) and is equal to 1 for T- To(~); the
derivative (8Cv/BT), therefore, possesses a dis-
continuity at T= To(~). For finite D, all physical
quantities vary smoothly with T. In particular,
the specific heat C~ passes through a nonsingular
maximum at a temperature To(D) which satisfies
the characteristic equation

Other summations can be evaluated in a similar
manner.

Substituting the relevant expressions into (8) and
retaining the most dominant terms, we obtain
[again in the region of interest, where o. = O(X~/D~)]

~ ~(-. ) — Q(-. )] f(y),T ~c~ l 5 ~ 2V

Xk BT ~J X
' 16'

(29)

C (D) 15 K(-. ) 5 5

Nh 4 g(2)
, — —[C(-.)] "(y tamy ) —~5 g(-, )

tc[5(-,')j ln(2sinllycl}( —
)

=1.925 —0. 196 —.E

D (35)

These results are plotted in Figs. 1 and 2 (solid
curves). We note that, under periodic boundary
conditions, both To(D) and Co(D) vary monotonically
with D and, as D- , approach the bulk values
To(~) and Co(~) = 1.925 Nh, respectively.

(ii) In the case of Dirichlet boundary conditions
(8 = —1), Eqs. (30) and (31) yield an imaginary val-
ue of yo, namely, 2. 68Vi. This is not surprising
because under these boundary conditions the zero-
temperature limit of the chemical potential p, is
&», , which is equal to h /(8MD ); accordingly, the
limiting value of n is —h /(BMD h T) = ——,

' v(X/D)~
and, by (28), the corresponding value of y is )Ti

Thus, an imaginary value of y, in particular, yo,
simply means that the corresponding value of n,
in particular, o(TO), is negative. '6 Equations (32)
and (33) now give, with yo= yoi,

f(y ) =~v K(-.')(g(l)j ' =0. 788 . (31) ~ I

1 ~x [g(2)]-&/&In 4 2l2 yo

The expression for To(D), in terms of Ao(D), then
follows from (25):

+ —,— —' ln 2sinhyo

=1+0.352 — ln = —0. 1V3
D

D
(36)

Cc(D) 15 5(-,.')
(

9, (,)„1 cctyc ', ,„(, , tit 15 5(—',),it B sinyc} 1)

I D= 1, 925+ 1.015 — ln = —2. 4380 l
(37)
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FIG. 1. Temperature
To(D) at which the specific
heat of an infinite slab of
thickness D is maximum:
~ = 0, solid line; |)) =- —1,
dashed line; 8 =+1, dot-dashed
line.
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These results are also plotted in Figs. 1 and 2

(dashed curves). We note that while the variation
of T (D) is essentially monotonic, the va '

the variation of0

Co(D) is not. For large values of D, o(C (D) increas-
es as D decreases but finally it passes through a
maximum at D= D* which in the present analysis,
is given by

Dg/I 88.488 (38)

& D* C (D) continually decreases with D.
These results are in good, qualitative agreemen

with the ones obtained numerically yb Goble and
Trainor. gpxan ~ a ivgpx t't t' ely our value of c is rather
large in comparison with their,' s which is about 20.

This need not be discouraging because the asymp-
totic analysis developed here is only a erst-order
approxima son ot' t the actual problem under investi-

t' In view of the fact that asymptotic expan-ga son. n vi
f dif-sions can be quite sensitive to the process o

ferentiation, it is fairly likely that a higher-order
approximation would bring the value of c closer to
the one obtained numerically. At any rate, it is
rewarding that a first-order treatment should sim-
ulate the results of numerical analysis so well
and at the same time, bring out the relations ip
between the quantities D* and l .

(iii) In the case of Neumann boundary conditions
(8=+1), Eqs. (30) and (31) give yo—-4. 403. It then

2.00—
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FIG. 2. Height Co(D) of
the specific-heat maximum:
&=0, solid line; 0= —1,
dashed line. 0=+1, dot-
dashed line. Horizontal line
corresponds to the bulk val-
ue Co(~).
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follows that

=1+—,[t(-, )] ln „, (y, sinhy, ) ~—To(D), 3 2g~ f [g(—,,')]'
OO Dm' &D

=1 —0. 352 — Ln = —4. 940
g

l
(39)

P(. ) 5 L(2)
~(2)

9
[~(3)]R ~X g[ (3)] 2(a 15 «(-,')

1
f [g(-, )]

(
.

h )
i

= 1.925 —1.015 —- ln = —1.242
D

D l
(4o)

In this case we find that for very large values of
D, viz. , D&140 /, T~(D) & To(~). However, for
those values of D which are of practical interest,
To(D) & To(~); see again Figs. 1 and 2. We also
find that, quite generally, the quantity Co(D) is less
than Co(~) and decreases steadily with D. [At D
= 9l, Co(D) passes through a minimum and for D
& Ql it steadily increases as D decreases. How-

ever, the validity of the asymptotic analysis at such
low values of D is rather questionable. ]

In passing, we note that the results embodied in
formulas (34), (36), and (39) are in complete agree-
ment with the formal ones reported earlier. '7

Finally we consider the question: How sharp is
the specific-heat maximum? For this we observe
that, in the vicinity of To(D), the most dominant
terms in the expression for (S Cv/ST ), which de-
termines the curvature of the specific-heat curve,
are

(41)

which vary as the first power of D. Accordingly,
the curvature of the specific-heat curve at T= To(D)
is directly proportional to D. It then follows that

(a) the larger the value of D the sharper the specif-
ic-heat maximum and (b) a mathematical singular-
ity occurs only if D is infinite.

Combining the foregoing results we conclude
that, apart from subtle differences in regard to the
quantity Co(D), there is unanimity among the differ-
ent sets of boundary conditions on the following
points: For values of D, which are of practical in-
terest, the specific-heat maximum shifts towards
higher temperatures, becomes broader and essen-
tially decreases in height as D decreases. The only
experimental data with which these results may be
compared are those obtained by Frederikse' who
measured the specific heat of unsaturated helium
films of thickness (1-8)l. He found that both To(D)
and Co(D) decrease monotonically as D decreases.
Although asymptotic formulas do not make much
sense at such low values of D it is plausible that
the variation of Co(D) might be understandable in
terms of a Bose-gas model restricted to a finite
geometry. However, there still remains serious
disagreement as regards the variation of To(D).
Possibly, interatomic interactions play an impor-
tant role in determining the true influence of the
finiteness of the geometry on the physical proper-
ties of the system.
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