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An analysis is made of the X transition, the phase-separation transition, and the relation be-
tween the two, for mixtures of liquid He and He. Stability conditions require that C„(specific
heat at constant x, where x is the mole fraction ratio x4/x3 of He to ~He) be less than a certain
value, or, equivalently, that (Bp4/Bx)z be positive (p4 is the chemical potential of He). The
phase separation occurs when these conditions are violated. The changes in these quantities
appear to occur gradually rather than suddenly, as supposed earlier by one of us. The evidence
indicates that there is no real critical singularity at the tricritical point. It then seems reason-
able to expand thermodynamic functions about each side of the tricritical point separately, and

by thermodynamic arguments the relations between the critical exponents P (for the coexistence
curve) and 6 (for the critical isotherm) can be obtained and compared with observations.

Some years ago one of us' considered the effects
of the interaction between the primary variables
concerned with the order-disorder phenomena
associated with a ~ transition and certain secondary
variables (e. g. , pressure P and molal volume V

in the case of the X transition of liquid helium or
a magnetic transition). It was shown that, if the
value of the specific heat at constant volume C~
(where the volume is a secondary variable) tended
to infinity along a g line, an instability would re-
sult, and the g transition would turn into a first-
order transition. It was realized that a sufficiently
large finite value of C~ could give rise to an in-
stability, but only recently has it been noted that
more satisfactory explanations of observed phe-
nomena can be obtained if this fact is borne in
mind.

If Y is any thermodynamic function (Y constant
thus defining a locus in a P, T or I', 1/'or V, T dia-
gram), it may be shown that

Cy= C~ —T —— + T

Since for thermodynamic stability

(2)

a A. line (which causes no thermodynamic instabil-
ity), then by taking Y—= C~ and recalling that
(BP/BV)r vanishes when C~ is infinite, we get the
equation derived by Buckingham and Fairbank:

If Cl, along a ~ line is smaller than implied by Eq.
(4), we may conclude that Cp, though it may become
large, remains finite.

Solutions of SHe in 'He present a situation in which
a A. line changes suddenly at a definite temperature
into a first-order transition, with two liquid phases
in equilibrium. The phase transition is indeed an
unusual one. ' The A. line meets the coexistence
curve at its top, at what Griffiths calls a tricrit-
ical point„ the coexistence curve consists of two

segments which meet at an angle of less than 180
at this point. In the investigation of the solutions,
the pressure remains essentially constant (close to
zero), and the appropriate secondary variables are
the chemical potential iL4 of He and x=x4/x~, where

x4 and x3 are the respective mole fractions of He

and He. The analogs of the equations and inequali-
ties already displayed can be developed by substitut-
ing —p, 4 for P and x for V. The appropriate Max-
well equation for these new variables is

we see that such stability also demands

C p ~ Cp T y (3) where S is the entropy of 1 mole of He and x moles
of He. Equation (I) is replaced by

a relation derived by Wheeler and Griffiths. 3 The
two criteria given by inequalities (2) and (3) are
equivalent. If, in any region, one of them tends
not to be fulfilled, the other will also not be ful-
filled, and instability, manifested by phase separa-
tion, will result.

If C~ rather than C& tends to become infinite along

where the specific heats also refer to 1 mole of He

and x moles of 'He. The inequality (3) is replaced
by
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This may be applied along the ~ line by taking 7
constant along that line, becoming

Ap. 4 )C„-C){+T~ dT dT

It mas suggested by Rice that, at the tricritical
point, there mas a change from a situation in which
C„~was infinite to one, in the two-phase region,
in which C„~ tended to become infinite. If however
the right-hand side of (8) is evaluated roughly with
the help of the regular-solution assumption, and
compared to mea, sured values of C ~, it appears
that the transition is probably much more gradual,
with C„, less than, but gradually approaching, the
right-hand side above the tricritical point, and
crossing the critical value at that point. This view
appears to be supported by recent work of Goellner
and Meyer, ' which indicates that (8p, 4/Bx)r ap-
proaches zero linearly at the tricritical point and
would become negative mere it not for the phase
separation. However final judgment should be
withheld until high-resolution data are available
close to the X line.

The results of Goellner and Meyer bring to mind
certain thermodynamic relationships obtained in a
different connection. These relationships were
specifically for liquid-vapor systems; for the He-
He system we need to use the appropriate vari-

ables defined above.
Following Ref. l0, but using the new variables,

we first note that

PJ$

BxBT (10)

and we conclude that the right-hand side of Eq.
(10), and hence (BS/BT)„and the specific heat at
constant mole fraction (of the 1 mole of 'He and x
moles of He) C„must remain finite. At any
normal critical point of a binary liquid system it
is now believed (overlooking "renormalization, *'

8 p4 9 p4. BT
BTBx ~+ g 8x (Qp 4/Qg)

which is obtained by considering (8p4/BT)„, T, and.
x as the three interdependent variables to which to
apply one of the standard formulas of partial dif-
ferentiation. It was believed that 8'g~/BTBx (ac-
tually its equivalent 8 P/BTB V) was not zero at a
critical point, which would mean that contours of
constant (Bp,/ T)B„would not lie parallel to the x
axis in an x Tdiagram. Thu-s (BT/Bx)&» ~~r&
could not be zero, and (8 p, 4/BT )„could not be in-
finite. By Eq. (5),

which is not relevant here) that C„actually does
become infinite. Therefore we may conclude that
8 p,/BTBx must vanish at a critical point, as ap-
pears to be observed for the analogous quantity
8 P/BTBV in a liquid-vapor system.

However, at the tricritical point in He- He solu-
tions it appears that C„does ~ot become infinite,
and there is no reason to believe that 8 S/BxBT be-
comes infinite. Unfortunately, it seems impossible
to prove the converse of the above theorem, so that
it is not possible to show that if 8 S/BxBT remains
finite 8 p, ,/BTBx does not become zero. The re-
sults of Goellner and Meyer indicate, however,
that 8 p, 4/BTBx does not vanish at the tricritical
point (at least on the He-rich side), this being
equivalent to setting the critical exponent y equal
to 1. [Actually they show that 8 (p. ~- p3)/BTBx3 does
not vanish. But since, at constant T, by the Gibbs-
Duhem relation, dp, 4-djL{.3=x3 dp, 4, and since d'x-1

x3 dx3, it is seen that their result implies
8 p4/BTBxc0. ] This result, while not required by

the thermodynamics, is consistent with it.
The linear behavior of (BiL,/Bx)r certainly sug-

gests that there is not a singularity at the tricritical
point in the same sense as at a critical point. If
there were no A line, the phase separation would

presumably exhibit the usual type of critical phe-
nomenon at some temperature lower than the tri-
critical temperature. Any critical mixing point
exerts some destabilizing influence in the one-
phase region above it, as evidenced by the lowered
slope of the isotherms. The presence of the ~ line
also tends to lower the slope of the isotherms, and
we may suppose that these two influences together
cause the slope to vanish at a higher temperature
and to tend to cross over into the negative region
without introducing any singularity other than the
discontinuities characteristic of the A line. Al-
though certain rather strange coincidences occur
a.t the A. line, which we will discuss later, we shall
on this basis apply the reasoning of Ref. 10, which
involved expanding the entropy in Taylor's series
on either side of the tricritical point. The indica-
tions are that the derivatives 82S/BT', 82S/BxBT,
and 8'S/Bx = —8 p4/BTBx, necessary for the ex-
pansions, are all finite and nonzero at the tricrit-
ical point. Of course, these quantities seem to be
discontinous along the A. line, and this indicates
singularities in the higher derivatives, but there
is no reason to expect the latter singularities to
be foreshadowed as the tricritical point is ap-
proached; indeed, they appear to become less
marked or to vanish at the tricritical point. Using
total derivatives to indicate changes along the co-
existence curve, i. e. , the boundary between the
two-phase and one-phase regions, we start with the
relation
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dT BT p B p'4 z' dT

Bp4 BT „B$4 ~ dT

l(-".')„.
Bx Bl (x. —x, ) (T —T,)

Application of Eq. (5) (including application within
the two-phase region, which gives dp4/dT, = —hS/
~x, where hS and ~x are the differences of S and
x between phases in equilbrium with each other)
gives the analogy of Eq. (5) in the previous arti-
cle"

dT Bp, ~BS &S
(12)

BS BS
S,=S, + — (x, —x, )+ (T T,)—

I' t BT xt

Proceeding with the expansion of S along the co-
existence curve on the He-rich side (subscript a)
about the tricritical point (subscript f), we can
write

B2S
+2 s a (T —T,) + ~ ~ ~ . (13)

Xyf, a

To reduce to a single variable we shall set T —T,
= (dT/dx), ,(x, —x, ). Had we been able to follow the
procedure in Ref. 10 in complete detail, we would
have set (dT/dx), , = 0, but this is, of course, not
possible at the tricritical point. Along the He-
rich side (subscript 5) we will get an entirely sim-
ilar expression if we substitute subscript b for
subscript a. The value of C„„,/T, = (sS/BT)„, does
not depend on which side of the coexistence curve
we approach the tricritical point from, and the
same is true of (BS/sx)r, , [see the discussion of
Eqs. (1V) and (18) belowI but the second deriva-
tives may depend on the side of the coexistence
curve. From Eq. (13) and its analog we get

where K is a constant, since x, —x, and x, —x, will

be, in first order, proportional to x, —x~.
Expanding (BS/Bx)z, we get

BxBT
g

dx

BS +Z', (x, —x,)
Bx (15)

and similarly for (BS/Bx)r, . Since (BS/sx)r, can-
cels, we see that the bracket in Eq. (12) is pro-
portional to x, —x, , x, —x, , or x„—x, . Thus it is
seen from Eq. (12) that if

p4 —p4, g
~ (x —x4)

at constant T, and

along the coexistence curve, then

which is equivalent to the relation obtained before. '
Since P =1, we see that 6 should be equal to 2.
This is the conclusion that follows, within limits
of error, from the data of Goellner and Meyer.

I

It is the same as would be calculated from the re-
lation y= 5 —1 obtained by Griffiths from an as-
sumed scaling function (written e= p —1 by him),
if we set y= 1, as was indeed pointed out by Qoell-
ner and Meyer.

The agreement obtained by the above with the
experimental data for the phase separation of 'He-
He mixtures suggests that this system may be one

in which it is legitimate to apply the discussion of
Ref. 10, expanding thermodynamic functions about
the critical point (using separate expansions on

each side of it), and obtaining exact relations be-
tween the critical (tricritieal) exponents by thermo-
dynamic deductions. There are, however, several
peculiar features which ought to be considered.

We have noted that the second derivatives of S
may be different on the two sides of. the A line. An

examination of Goellner and Meyer' s figure seems
in fact to indicate that on the 'He-rich side of the
A. line the p. 4 vs x curves are very closely parallel
and are uniformly spaced in the T direction. To
the extent that this is true, 8 p. 4/BxST and (8 p. 4/
ST )„, and hence (8 S/Bx )r and 8 S/Bx&T, vanish
on the He-rich side in the neighborhood of the
tricritical point. In itself, this would not affect
our conclusions, since it would not affect the gen-
eral behavior of the bracket of Eq. (12), but it is
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a peculiarity which any complete theory should ac-
count for.

If the p, 4 vs x curves are parallel parabolic
curves, then it is seen that the tricritical point oc-
curs where the ~ line crosses the apex of one of the
parabolas. It seems somewhat strange that this
should occur just where (s p. 4/sx)r vanishes on the
other side of the & line, especially as it can be
seen that there is a break in (s p, 4/Bx)r at the A line
at temperatures slightly above the tricritical tem-
perature. It would be necessary for (s p,/sx)r to
become zero on one side only of the ~ line in order
for an instability, necessitating a phase separation,
to occur. The thermodynamics of such a situation
can be readily worked out.

The & line is one across which there is no discon-
tinuity in p4 or S; therefore we can write, along
the & line,

(17)

d p, 4-— dx+ dT

dx+ dT (18)

The derivatives of S and p, 4 are connected by Eq.
(5). From Eqs. (5), (17), and (18) we see that, if

any one of the derivatives (&S/&x)r, (SS/ST)„,
(~p4/~x)r, (sil.4/&T)„ is continuous across the X

line, they must all be, and if one has a discontin-
uity, they all do, the discontinuities being, of
course, connected by Ehrenfest-type relations. If
there is a discontinuity in (&S/&x)r at the tricritical
point, so that (&S/&x) r, , «(&S/&x) r, . .. these terms
will not cancel in the bracket in Eg. (12), and in-

stead of Eq. (16) we would find
-1 (19)

On the side of the coexistence curve where (&p, 4/Sx)r
did not vanish we would have 5 = 1 and so P= 1. On

the other side of the coexistence curve or the & line,
where (&p4/&x)r vanishes 5= 2 and therefore P=
Such a situation would be inconsistent with a tri-
critical point as it appears to be observed.

The fact that there appears to be no break in C„
across the ~ line in the immediate neighborhood of
the tricritical point also indicates that (Sp4/Sx) r
has the same (zero) value on the two sides of the
tricritical point. However, the isotherms on the
He-rich side are so flat over a considerable range

of x that if the zero values on the two sides missed
each other a little it might not be noticed. It is,
however, remarkable that not only is there no break
in C„, but that the cusp in C„seems to disappear at
the tricritical point. Thus at this composition there
is one continuous specific-heat curve, with possibly
a slight break in the slope. There is a tendency to
think that the & transition has become very weak at
this point, but this appearance is deceptive. There
is still a very substantial drop in the specific heat
as the temperature is raised into the nonsuperfluid
region, which means that there must be an order-
disorder phenomenon occurring at the low-tempera-
ture end of the ~ line, which is not substantially less
important than that which occurs when the & line is
crossed at higher T~ and lower He concentrations.
It is merely true that part of the order-disorder
transition occurs in the two-phase region, and the
two parts have become merged, so possibly there
is nothing essentially different about the low-tem-
perature end of the & transition. The separation
into two phases occurs because the stability limits
of the thermodynamic quantities C„and (&p4/~x)r
have been reached.
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