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The elementary excitations in superfluid helium have been studied in the wave-vector range
01.5 &Q & 2. 3 A by inelastic neutron scattering. The single-excitation scattering func-

tion g& (Q, her) was measured for pressures between 1 atm and the solidification pressure and
for temperatures from 1.3'K to above the transition temperature T&. The dispersion curves
were fitted to parabolas and the appropriate Landau parameters tabulated vs temperature and
pressure. By accounting for the effect of the instrumental resolution it was possible to ob-
serve a line broadening at low temperatures which sets in when the slope of the dispersion
curve equals the sound velocity. There are strong indications that this is due to the roton-
phonon interaction proposed by Pitaevskii. The. line broadening observed when the tempera-
ture approaches Tz is well accounted for by the roton-roton interaction as calculated by
Landau and Khalatnikov. The results have been related through thermodynamics to other
properties of the liquid and the spectral form of the excitations compared to those ob-
served in magnetic systems close to the critical temperature.

I. INTRODUCTION

The first direct evidence of elementary excita-
tions in liquid helium was provided by neutron-
scattering experiments. ' These experiments also
showed that the single-excitation dispersion curve
closely follows the form envisioned by Landau: an
essentially linear "phonon" region at small mo-
mentum transfers and at larger momentum trans-
fers a "roton" region in which the curve exhibits a
characteristic parabolic form. Today, the major
features of the low-temperature dispersion curve
at the saturated vapor pressure are well estab-
lished and more emphasis is being placed on de-
tailed studies of the neutron scattering at large and
small momentum transfers. ' The recently dis-
covered multiphonon branch of the dispersion curve
observed at higher energies is also attracting con-
siderable attention.

Despite a substantial and long-continued experi-
mental effort, however, there are still gaps in our
knowledge of the properties of the excitations of
this unusual liquid. This is particularly true at
pressures above the saturated vapor pressure where
there is at present only a single neutron-scattering
measurement at 1.1'K and 25. 3 atm. To fill part
of this gap we have recently made an extended se-
ries of neutron-scattering measurements on liquid
helium under pressure. These measurements,
taken together, constitute a systematic study of the

roton region of the dispersion curve in the pressure
range between 1 atm and the solidification pressure.
Almost all of the data were taken in the superfluid
region at temperatures above 1. 3 "K; in a few cases
measurements were also made in the normal-fluid
region above the transition temperature T~. We
believe the results provide a reasonably complete
description of the roton parameters (i. e., the en-
ergy gap, effective mass, and the wave number cor-
responding to the position of the roton minimum)
over the entire superfluid region above 1. 3 K.

A secondary aim of this study has been to investi-
gate the form of the neutron interaction cross sec-
tion —the "line shape. " This involved correcting the
observed line shapes for the effects of instrumental
resolution and the Boltzmann factor (which governs
the relative intensities of absorptive and emissive
scattering processes). Thus, the energies and
widths of the lines become representations of the
actual line shapes or, in other words, the spectral
form of the excitations. As we will show, the line
shapes near T~ are remarkably similar to those ob-
served in other critical systems.

The paper is organized as follows: Apparatus
and measuring procedures are discussed in Sec.
II. Section III is devoted to data analysis and in-
cludes a description of the Monte Carlo technique
used to determine the instrumental resolution func-
tion. Experimental results are presented in Sec.
IV and are discussed and related to the thermody-
namic properties of the liquid in Sec. V.
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FIG. 1. Schematic representation of the slow chopper
and time-of-flight spectrometer.

II. APPARATUS

A. Neutron Spectrometer

All of the measurements were made with the
slow neutron chopper and the time-of-flight
spectrometer shown schematically in Fig. 1. The
chopper follows the design of Otnes and Palevsky'
and is of the two-rotor type. The first rotor is
80 cm in diam and serves both as chopper and
monochromator. Three curved channels are con-
tained within the plane of its wheel. They are 1.27
cm wide at entrance and exit and are set 120' apart.
As can be seen from the figure, the axis of this
rotor is vertical. The second rotor functions sim-
ply as a chopper. Like the first rotor, it is 80 cm
in diam, but the axis is horizontal. It contains
three slots 1.2V cm wide set at 120' intervals in
the periphery of the wheel. The pair of wheels ro-
tate in phase and in a sense that the slots travel in
opposite directions at their point of closest ap-
proach. This is also the point at which they inter-
sect the beam. Both the speed of rotation and the
phase angle between rotors are electronically con-
trolled, the rotor speeds to better than 1 part in
1200 and the phase angle to 1 part in 800.

Since the system is specifically intended for cold
neutron spectrometry, a 30-cm-long polycrystal-
line beryllium filter is installed in the incident beam
to eliminate fast and thermal neutrons which would
otherwise act as sources of unwanted background.
Accordingly, the operating range of the device is
limited by the filter to energies less than 5 meV.
Maximum intensity is obtained at 4. 83 meV cor-
responding to a rotational velocity of 12 200 rpm.
At this speed, used for all our measurements, the
neutron burst at the sample located 35. 5 cm from
the second rotor had a width of 26 p, sec and an en-
ergy spread aE/E of about 0. OV. Horizontal and
vertical divergences of the beam were, respective-
ly, 0. 88' and 1. 64 . Beam width at the sample
was 1.27 cm and beam height 5 cm.

A conventional time-of-flight spectrometer was
used to determine the energies of the neutrons
scattered by the sample. It employs 14 cylindrical
BF3 detectors of 2. 4 cm i. d. and with an active

Figure 2 shows the arrangement of the liquid-
helium sample and the associated cryogenics.

The sample cell was an aluminum cylinder 2. 5

cm in diam and 7. 7 cm high with walls 1.V5 mm
thick in the section traversed by the beam. A pair
of cadmium spacers divided the sample cavity ver-
tically into three sections to reduce the effects of
multiple scattering.

The cell was attached to a 180-cm capacity heli-
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FIG. 2. Helium refrigerator and sample cell.

length of approximately 15 cm. Referring to Fig.
1, the detectors are located on an arc (radius 177
cm) and mounted with their axes vertical. Thus
oriented they subtend in the horizontal plane an
angle of 1' as viewed from the sample position.
The enriched BF3 gas pressure in the detectors is
roughly 1.7 atm. At this pressure the linear ab-
sorption coefficient of the gas is about 0. 36 cm
for 4. 83-meV neutrons.

All detectors feed to a central time-delay ana-
lyzer which operates with 256 time channels, each
of 8-p.sec duration. Altogether the time interval
spanned is 2048 p, sec which more than covers the
1640 p, sec interval between neutron bursts.

The incident beam energy is determined by mea-
suring the time of flight between a pair of beam
monitors, one located 15 cm in front of the sample,
the other 177 cm beyond it. These monitors are
also used to define "time zero, " the time at which

the incident neutron burst reaches the sample.

B. Sample and Associated Systems
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um refrigerator —a copper vessel suspended below
the main 4. 2 K liquid-helium bath. This refrigera-
tor was connected to the bath by a capillary and an
externally operated low -temperature valve so that
it could be filled with liquid helium directly from
the bath. By controlled pumping of the refrigerator,
any temperature between I. 2 and 4. 2 K could be
maintained for periods in excess of 24 h.

Filling and emptying the sample cell was done

by means of a tube passing through the helium
refrigerator. A 100-cm-long section of 0. 5-mm-
i. d. Cu-Ni capillary was employed between the
refrigerator and the 4. 2 K bath, elsewhere 2. 3-
mm-i. d. tubing was used. The section of fine
capillary was necessary to keep the heat leak to the
refrigerator at a reasonable level when the sample
cell was below the superfluid transition tempera-
ture.

All thermometry was done with Ge cryoresistors
mounted inside the sample cell immediately above
and below the beam. The cryoresistors were cal-
ibrated in situ to an absolute accuracy of + D. 005
K using the 1958 helium vapor-pressure scale.

For measurements near T„where a high degree
of temperature stability was required, an ac
bridge controller mas used in combination with a
small heating coil attached to the helium refrig-
erator. This proportional control system held
temperature drift to less than +0. 002'K; other-
wise when only controlled pumping was employed
about +0. 02 K was maintained.

Pressure measurements were made at the top
of the sample filling tube with a calibrated Bourdon
pressure gauge. The accuracy of measurement
was about + 0. 14 atm. Generally the drift in pres-
sure during individual runs was of this order or
slightly greater. However, both temperature and
pressure were continuously monitored to be certain
of stable conditions while data were being collected.

III. DATA ANALYSIS

A. Instrumental Resolution

If the actual spectra are to be obtained from the
observed line shapes it is necessary to take the in-
strumental resolution into account. To determine
the resolution function for the chopper system de-
scribed in Sec. IIA, we used a computer "simula-
tion" method based on the Monte Carlo technique.
Here we will briefly discuss the principle of the
method and some of the more important features
of the resolution function.

The conventional approach to the determina-
tion of the resolution function of a neutron spec-
trometer involves analytical convolution of the
transmission probabilities for the various parts of
the instrument, such as collimators, Bragg reflect-
ing crystals, chopper rotors, etc. This approach

has a number of shortcomings. First, the indi-
vidual transmission probabilities have to be ap-
proximated by convenient functions (usually Gaus-
sians) to make the convolution integrals tractable.
Second, it is not easy to incorporate into the cal-
culations the geometrical effects of detectors,
samples, and crystals of finite size, a factor of
particular importance in time-of-flight spectrome-
try. Finally, only the shape of the resolution func-
tion is determined. It has recently been pointed out
that not only the shape but also the efficiency factor
is needed to properly unfold the experimental data.
When conventional methods are employed, the cal-
culation of the efficiency factor becomes a separate
problem.

Our simulation method avoids all of these diffi-
culties. Neither approximations of the transmis-
sion functions nor of the geometry are necessary.
Individual neutrons are followed through the sys-
tem with the Monte Carlo technique —the distribu-
tion functions for each part of the spectrometer op-
erating in turn to select a statistically valid sample
of the neutrons traversing the spectrometer. When
the helium sample is simulated by an incoherent
scatterer of the same geometry, but assuming a
fixed energy transfer he for every scattering pro-
cess, the neutrons "detected" by a simulated de-
tector at a specified scattering angle map out ex-
actly the instrumental resolution function R(Q —Q',
h&u —hv'). In this expression Q is the average
wave-vector transfer and is related, as is A~, to
the variables k, , E, and k&, F&, which are the wave
vectors and energies of the incident and scattered
neutrons, respectively. The relationship is ex-
pressed by the conservation equations Q = k, -kz and
hen = E; —E&.

We have calculated the resolution function over
the entire range of wave vector and energy trans-
fers covered by our measurements and character-
ized its shape and efficiency by a set of empirical
parameters. These parameters change signifi-
cantly over the range of a single time-of-flight
spectrum. This is illustrated in Fig. 3, where we
show half-maximum contours in the (Q, Ke) plane
at three representative points on the spectrum.
Note that since we are dealing with a liquid, the
usual four-dimensional space of the resolution
function reduces to two dimensions, the wave-num-
ber transfer Q, and the energy transfer hv.

B. Cross Section

The coherent neutron cross section per unit solid
angle and energy interval for an isotropic sample
of N atoms is given by the expression'

where o, is the single-atom coherent cross section
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Here h~(Q) is the dispersion relation for the exci-
tations, and the two terms represent, respectively,
annihilation- and creation-scattering processes.
As the temperature increases, however, the num-
ber of excitations also increases and interactions
between them cause both line broadening and re-
normalization of the energy. Vltimately (3) will
no longer be valid. The problem is to find a form
which properly describes the broadened line.

In practice, the actual line shape S i(Q, h&u) can-
not be directly deconvoluted from the data. There-
fore, what is done is to start witfi an assumed form
for S&(Q, hv) and fold it with the instrumental reso-
lution function to obtain a simulated line shape which
can be fitted to the data. The quality of the fit then
indicates whether the chosen S i(Q, he) satisfactorily
describes the scattering process and therefore
properly represents the spectral form of the exci-
tation.

We assumed a line shape of Lorentzian form as
suggested by Cohen. This form was found to give
statistically good fits to all our data. The actual
expression used was

1 hu& hI'(Q)
2v 1 —e ""~ h 1" (Q)+[6++h&u(Q)]

FIG. 3. Half-maximum contours of the resolution func-
tion for the time-of-flight spectrometer when operating
with incident neutrons of 4. 83-meV energy. The upper
ellipse corresponds to 1-meV neutron energy gain and

the middle and low ellipses to 1- and 3-meV energy loss,
respectively. This is the range covered by a typical time-
of-flight spectrum. Note the change of shape and the
change in the efficiency of the spectrometer as given by
the resolution volume fR(Q', Kw')dQ'd(kco'). JR given
in the figure is normalized to give unit value for elastic
scattering.

and the scattering function S (Q, h&u) is the Fourier
transform of the density-density correlation func-
tion, i. e.,

e (Q, Kte)= f ate ' 'f dee'

When the density-density fluctuations on an atomic
scale can be described by undamped plane waves
(as is known to be the case in helium at low tem-
peratures) the inelastic one-excitation part of the
scattering function S&(Q, h+) becomes a 5 function
in frequency

x 15[hv+ h&u(Q)]+ 5 [h&u -1&@(Q)]). (3)

hl'(Q)
h'I'(Q)+ [h(o -h(u(Q)]'

where hI'(Q) is the half-width at half-maximum
(HWHM). Note that (4) reduces to (3) in the limit
when h I'(Q) - 0.

C. Unfolding Procedure

It is evident from Fig. 1 that the neutron detec-
tors in a chopper spectrometer are fixed in space.
Therefore the time-of-flight spectra are measure-
ments at fixed scattering angles of the scattered
intensities per unit time of flight intern-al -Since.
the cross section is expressed in terms of Q and

k~, the time-of-flight spectra must be transformed
to these variables. Figure 4 shows how the points
sampled in a typical time-of-flight spectrum trans-
form to a curve (essentially a straight line) in the
(Q, h&)-coordinate system of the cross section.
For reference, the corresponding scattering dia-
gram is included as an insert in the figure.

The intensity measured in a time channel at time
t by a detector at scattering angle 0 is related to the
energy spectrum I~(h&u) by the expression

where the Jacobian 8(h&u)/st=constxh&3 accounts
for the transformation from a time to an energy
scale. I~(hv) is given by folding the cross section
with the instrumental resolution function, i. e.,
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tion had no significant influence on the results.
In Fig. 5 we show the best fit obtained for a typ-

ical time-of-flight spectrum using the Lorentzian
cross section of Eq. (4). Note that the Boltzmann
factor has completely damped out the annihilation
peak at negative 5~. Nevertheless, the annihilation
part Of the cross section does have an influence at
positive values of h(d because of its width. It should
be noted that this effect is particularly important
when the width RI'(Q) becomes comparable to the
excitation energy h&u(Q). In this case the Jacobian
in (6) combines with the Boltzmann fa.ctor and the
annihilation contribution from (4) to distort the ob-
served spectrum. When this occurs, the position
of maximum intensity is shifted so that it no longer
corresponds to her(Q). Thus at temperatures near
T„, where the linewidth becomes significant, our
dispersion curves are systematically shifted from
those previously reported.

1V. EXPERIMENTAL RESULTS

A. Dispersion Curve

FIG. 4. Representation of a typical time-of-flight
spectrum in a (Q, S(4 coordinate system. The rulings
indicate equal time-of-flight intervals. The insert repre-
sents the scattering diagram.

l, (lie&) f ( )

Our measurements were restricted to the wave-
vector region near the roton minimum since we
were particularly interested in the behavior of the
roton parameters. Previous studies have shown
how the dispersion curve at the saturated vapor
pressure changes as the temperature approaches
and finally exceeds T~. There is also a single
measurement showing how the dispersion curve at
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Figure 4 shows that both Q and k~ vary in a sin-
gle time-of-flight scan. Thus the analysis of time-
of-flight spectra is somewhat more complicated
than "constant Q*' spectra such as those obtained
with triple-axis spectrometers. We proceeded as
follows: First, a form for the dispersion relation
(apart from an additive constant) was assumed over
the restricted range of Q values in the time-of-
flight spectrum. The width hi" (Q) was assumed
constant. Then a folded least-squares fit was made
to the data, treating the additive constant, the width
hl'(Q), and a normalization constant as varying fit
parameters. This was done for each of the 14
time-of-flight spectra associated with an individual
run and provided a first estimate of the dispersion
relation. This estimate was then used in a second
round of the folding-fitting procedure to obtain final
values for the fitting parameters. Each time-of-
flight spectrum thus yielded one point of the dis-
persion curve and a corresponding width hT'(Q).
We investigated the consequences of assuming that '

hT (Q) was constant over the Q range included within
a single spectrum and concluded that this assump-
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FIG. 5. Typical time-of-flight spectrum obtained at
2.11 'K at a scattering angle of 97'. The shoulder at
zero energy transfer is produced by incoherent scattering
from the Al sample cell. The dashed line corresponds
to the background intensity and is slightly sloped because
a tail of very slow scattered neutrons from the previous
pulse is included in it. Drawn through the experimental
points is the best fit of the Lorentzian cross section,
[Eqs. (1) and (4)], with h&(Q) =0.83 meV and H'(Q) =0.37
meV, folded with the resolution function and transformed
to a time-of-flight coordinate system. The weighted X2

for this fit is 1.14—for a damped harmonic-oscillator
cross section the best fit yielded a X = 2.16.
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FIG. 6. Above: three dispersion curves in the region
of the roton minimum at 1.3 'K and pressures of 1, 10,
and 24 atm. Note that the slopes at higher Q correspond
to the sound velocities, except at the highest pressure
where the measurements do not extend far enough in Q

to be definitive. Below: difference between the disper-
sion curve and best-fitting Landau parabola [Zq. (7)j.
The parabola satisfactorily represents the excitation
energies in the region about 0. 25 A ~ to either side of Qp.

In both parts of the figure the smooth lines drawn through

the points serve merely as an aid to the eye.

curves correspond to the sound velocities, except
at the highest pressures where the measurements
do not extend far enough out in Q to be definitive.
However, Henshaw and Woods" s single high-pres-
sure measurement at 25. 3 atm covers a wide-
enough Q range to indicate that the slope at this
pressure does not quite reach the sound velocity.
On the low-Q side, there is a downward bending
reflecting the transition to the intermediate region
between phonons and rotons where the curves pass
through a maximum. As an indication of how well
the parabolic form of Eq. (f) fits the region near
Qo, we have plotted on the lower part of Fig. 6 the
differences between the dispersion curves and the
best fitting parabolas. It is evident that Eg. (7) is
a statistically satisfactory representation of a
region extending about 0. 25 A to either side of
Qp at all pressures. We see no indications of the
asymmetry reported by Cowley and Woods' within
the approximate range +0. 25 A '.

Figure 7 shows the dispersion curves at 1 atm
at various temperatures between 1.26 and 2. 4 K.
Note that there is a change in the energy scales on
the figure which obscures the fact that the minimum
energy & is reduced by more than a factor of 2 as
the temperature increases. Since the lines also
broaden with increasing temperature, the uncer-
tainty in determining the excitation energy also in-
creases. This is reflected in the larger statistical

low temperatures is altered by pressure. What

we have undertaken here is a systematic investiga-
tion of the roton region of the dispersion curve over
the entire pressure-temperature phase space of
superfluid helium above 1.3'K. In addition, we
have made a few measurements in the normal-fluid
region and in the hcp solid phase.

To present the essential results obtained from
so large an amount of data in a reasonably con-
densed form we have used the conventional Landau
parameters to describe the roton region of the dis-
persion curve. Each of the dispersion curves mea-
sured at a specific temperature and pressure was
therefore analyzed as described in Sec. III and then
fitted to a parabola of the form

In this expression ~ represents the minimum en-
ergy, Qo is the wave number at the minimum, and
p. is the effective mass.

In Fig. 6 we have shown three representative
dispersion curves measured at 1. 3 K at pressures
between 1 and 24 atm. As the pressure increases,
the minimum energy ~ decreases, the effective
mass p, is reduced, and the minimum wave number

Qo is pushed toward larger values. Away from Qo,
on the high-Q side, the slopes of the dispersion
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FIG. 7. Dispersion curves at 1 atm for various tem-
peratures. The energy scales alternate from left to right.
Note, in particular, the renormalization of the minimum
energy as the temperature increases. The dashed lines
have slopes corresponding to the sound velocity. The
curves are the best fitting Landau parabolas.
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Pressure Temp.
(atm) ( K) (meV)

Qo
(A ') (m„,)

Sl"(Qo)

(mev)

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
l.00
1.00
l.00
1.00
4. 97
5.02
5.01
4.99
4. 89
5.04

10.07
9.91

10.01
10.14
10.05
10.03
15.06
14.97
14.95
15.07
15.25
15,05
20.00
20. 20
20. 06
20. 10
19.90
20. 18
24. 26
24. 35
24. 35
24. 15
24. 29
24. 50

l. 26
1.45
1.68
2. 11
2. 13
2. 15
2. 17
2.18
2. 19
2. 20
2. 23
2. 25
2. 30
2. 40
2.50
4.37
1.31
1.46
1.68
1.82
2. 05
2. 17
l. 29
1.47
l. 68
1.81
2. 00
2.10
1.28
1.46
1.68
1.82
1.95
2.05
1.26
1.47
1.68
1.81
1,90
1.99
1.25
1.46
1.67
1.82
1.91
4. 37

0.736
Q. 737
0.711
0.521
0.488
0.417
0.397
Q. 367
0.403
0.348
0.361
0.304
Q. 265
0.302
0.254
0.320
0.706
0.707
0.686
0.650
Q. 483
0.302
0.680
0.669
0.650
Q. 602
0.427
0.273
0.660
0.646
0.618
0.545
0.352
0.241
0.631
0.617
0.547
0.438
0.273
0.196
Q. 610
0.584
Q. 493
0.301
Q. 166
Q. 192

1.902
1.899
l.911
1.907
1.917
1.909
1.915
1.898
1.910
1.921
1.898
1.925
1.927
l.915
l.912
1.761
l.940
1.944
l. 947
1.947
1.950
1.954
1.962
1.968
1.973
1.975
1.982
l.982
1.998
1.989
1.999
2.002
2.006
2.013
2.015
2.009
2.017
2.023
2.028
2.030
2.028
2.022
2.022
2.033
2.003
1.951

0.160
0.165
0.154
0.137
0.126
0.117
0.118
0.092
0.124
0.11
0.17
0.11
0.12
0.11
0.13
0.23
0.151
0.148
0.146
0.142
0.122
0.11
0, 149
0.140
0.144
0.131
0.116
0.12
0.140
0.141
0.134
0.129
0.105
0.12
0.130
0.138
0.126
0.106
0.112
0.11
0.127
Q. 123
0.124
0.104
0.13
0.15

&0.05
&0.05
&0.05

Q. 23
0.27
0.30
Q. 32
0.32
0.30
0.36
0.32
0.37
Q. 35
Q. 38
0.39
0.6

&Q. 05
&0.05
0.06
0.10
0.22
0.33

&0.05
&0.05
0.07
Q. 13
0.24
Q. 31

&0.05
&0.05
0.08
0.14
0. 24
Q. 30

&0.05
Q. 06
Q. 11
0.19
0.24
p. 25

&0.05
0.06
Q. 14
Q. 22
0. 25
0. 5

~Values of T~ at different pressures can be found on
Fig. 14.

scatter in the higher -temperature points. The
dashed lines in Fig. 7 are drawn with slopes cor-
responding to the sound velocities. As we pointed
out in connection with Fig. 6, the dispersion curves
at larger-Q values appear at low temperatures to
have slopes characteristic of the sound velocities.
At higher temperatures, however, there is a slight
indication that the slopes may exceed the sound

TABLE I. I,andau parameters 6, Qp and p, and linewidth
SI'(Qo). With the units in the table the excitation energy
is calculated from the expression E = 4+0.515 (Q —Qo) /p.

2.10
o+

O

~o 2.00

O
1.90

1,80
Z'.
O
l—
O~ 1.70—

3.64 p

I l

0.12 0.13
I l I

0.14 0.15 0.16
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FIG. 8. The position of the roton minimum Qo plotted
against the density of the liquid. At all pressures and

temperatures, Qo is related to the density by the simple
expression Qp = 3 ~ 64p 3, indicating that the number of
nearest neighbors remains constant. The two triangles
represent the 1.1 'K results of Henshaw and Woods (Ref.
3) at the saturated vapor pressure and at 25. 3 atm.
Error bars are shown where the statistical uncertainties
exceed the size of the points.

velocity.
All of our results for the Landau parameters are

collected in Table I and most of them are plotted
in Figs. 8-10. Statistical uncertainties are not
given in the table, but representative error bars
can be found on the figures.
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FIG. 9. The roton minimum energy 6 plotted against
the temperature for a series of pressures. Tz tempera-
tures are indicated by the arrows. At the lowest tempera-
tures the uncertainties are within the size of the points.
They increase to about twice the size of the points at the
highest temperatures. At the lowest temperature, when
the linewidth is negligible, our 1-atm results agree with
those of Henshaw and Woods (Ref. 3) (dashed line). On

approaching 7&, the linewidth becomes significant and
their values of A lie above ours. This is believed to be
an effect of the Boltzmann factor in Eq. (4). The lines
are drawn through the data as a convenience and have no
theoretical significance.
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FIG. 14. Linewidths HWHM at the position of the roton
minimum plotted against T —Tz(P}. Values of T& at the
different pressures taken from Ref. 21 are listed in the
lower right corner. Reasons for the differences between
our results and those of Henshaw and Woods (Ref. 3} are
discussed in Sec. IVB. The increase in linewidth as T
approaches Tz is in quantitative agreement wi. th the calcu-
lation of Landau and Khalatnikov (Ref. 20}. Greytak and
Yan's (Ref. 23} results are represented by the dash-dotted
curves.

persion curves become equal to the sound veloci-
ties. As Pitaevskii suggested, from this point on
the energy and momentum conservation laws allow
a roton to decay into another roton by either emit-
ting or absorbing a phonon. There is little reason
to doubt that the sudden increase in linewidth is
connected with the appearance of this scattering
process. '

On a theoretical basis, the line broadening as-
sociated with this roton-phonon interaction is ex-
pected to increase as (Q —Q,)', where Q, is the
wave number at which the slope of the dispersion
curve equals the sound velocity. Because the line-
widths are small and Q, is difficult to determine
with any accuracy, we do not feel that our present
data can be used for a quantitative comparison with
theory. Nonetheless, the steep increase we observe
is not inconsistent with the proposed (Q —Q,)' de-
pendence.

Typically at temperatures about 0. 5 'K below T„
the linewidth hl'(Q) becomes large enough to be re-
solved over the entire Q range. We have tabulated
in Table I the values of AI'(Q) obtained at the roton
minimum position. The same data are also plotted
in Fig. 14 as a single universal curve using as the
abscissa T —T,(P), where P is the pressure It is.
clear from Fig. 14 that below T~ the width is a func-

tion of T —T,(P) independent of pressure. Above

T„ the width is almost independent of temperature
but there is some indication of a decrease with in-
creasing pressure.

The smoothed results of Henshaw and goods' ap-
pear as the dashed curve on Fig. 14. They a.re
consistently above ours. Again the difference can
be traced to the way in which the data were ana-
lyzed. We are reporting unfolded widths. There-
fore at low temperatures, where the lines are nar-
row, instrumental resolution effects alone account
for the difference. At higher temperatures, how-
ever, another factor comes into play. We as-
sumed the double-peaked cross section of Eq. (4)
which contains terms representing both annihilation
and creation of excitations. The annihilation peak
is suppressed by the Boltzmann factor when it is
narrow and the excitation energy is reasonably
large. But near T~ the excitation energy renor-
malizes and the lines are wide enough to overlap.
As a result both the annihilation and creation peaks
contribute to the width of the observed line, the
quantity reported by Henshaw and Woods. What is
plotted in Fig. 14, however, is not the width of the
observed lines but the spectral width of the excita-
tions —hence the difference.

Landau and Khalatnikov have developed a theory
for roton linewidths which applies to the present
measurements. They assumed roton-roton scat-
tering to be the dominant process. Estimating the
linewidth in terms of q„, the viscosity of the nor-
mal fluid, they obtained the following expression:

4 uV'
h I (q) QO v Qo -4/OT

(8)30 pg„15q„(2v) p,

R„, the number of rotons per unit volume, has been
approximated in the second equation by the value
obtained assuming the roton dispersion curve to be
parabolic. ' To calculate hl'(Q) from Eq. (8) we
have used the viscosity measurements of Woods and
Hollis Halleit together with our own values of the
Landau parameters at 1 atm. As is evident in Fig.
14, the agreement with our measured linewidths
j.s very good.

Greytak and Yan have measured roton line-
widths in the temperature range 1.35-1.83 K us-
ing Raman scattering from two-roton processes.
Their results appear in Fig. 14 as the dash-dotted
curve. It is gratifying that their data are in rea-
sonable agreement with the Landau-Khalatnikov
curve calculated from our measurements.

The linewidth hl'(Q) has its minimum value at the
roton minimum Qo. To either side of the minimum
hI" (Q) increases almost parabolically. It is illu-
minating to plot the reduced linewidth Fjl (Q)/h+(Q)
(i.e., the linewidth divided by the excitation energy)
aga. inst the wave number Q as we have done in Fig.
15. Here we show the 10-atm results (which are
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FIG. 15. Reduced linewidths [i.e. , the linewidth SI'(Q)
divided by the excitation energy S~(Q)] plotted against the
wave number Q for different temperatures at 10 atm. The
dash-dotted line indicates the position of the roton minimum

Qo. Note that SI'(Q)/S~(Q) varies smoothly with Q below

Tz, but above T„an anomaly appears to develop at Qo.
The straight lines are drawn through the data as an aid
to the eye.

typical of all our measurements) at various tem-
peratures between 1.7 and 2. 1 'K. The dash-dotted
line denotes the position of Qo. Below T, there is
a smooth and regular behavior, but above T~ there
are indications at all pressures of a maximum de-
veloping at Qo. Unfortunately the scatter in the data
is large, particularly above T„. This is unavoid-
able. It occurs because the uncertainties of the re-
duced widths involve the combined uncertainties of
hI"(Q) and h(u(Q).

At all pressures the same trend toward a small
but steady increase in reduced linewidth with Q is
observed. We found that by using the temperature
difference T —T,(P) as a variable all of the reduced
linewidth data below T„can be represented by the
set of universal curves shown in Fig. 16. By using
this figure and the Landau parameters listed in
Table I the reader can obtain the unfolded linewidths
at all temperatures, pressures, and wave numbers
to an accuracy of about 15%.

We know of no theoretical model which can explain
the simple behavior of the reduced linewidths dis-
played in Figs. 15 and 16. Nevertheless, it appears
to hold over a considerable range of Q. In fact there
are indications that the smooth behavior may even
extend to smaller-Q values than those covered by
our measurements. If we make a linear extrapola-
tion of the reduced linewidths of Fig. 16 to the phonon
region we obtain values in rough agreement with
those observed by Cowley and Woods' at the saturated
vapor pressure. For example, at 2. 1 K and Q = 0. 6
A ', Cowley and Woods found the full width at half-
maximum (FWHM) of the phonon line to be about

4. 5 'K at a phonon energy of 10.6 'K. Using their
observed line at 1.1 K to roughly unfold the instru-
mental width, we obtain for h F(Q)/h&u(Q) the value
0. 20. A linear extrapolation from Fig. 16 yields
0. 17. Possibly the agreement is fortuitous, but it
is clear that the point bears further investigation.

V. DISCUSSION

A. Thermodynamic Relationships
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FIG. 16. The lines represent values of the reduced
linewidth SI'(Q)/Scu(Q) averaged over all pressures for
the same temperature difference T —T&(P) plotted against
wave number Q. Using the Landau parameters of Table I
and the lower part of Fig. 6 to calculate Scu(Q) together
with the Tz values listed on Fig. 14 the reader can deter-
mine the unfolded linewidth SI'(Q) at any pressure, tem-
perature, and wave number to an accuracy of about +15 /&.

One of the unique properties of superfluid helium
is that all of the internal energy is associated with
collective excitations. Therefore the free energy
of the liquid and the thermodynamic properties cal-
culated from it are fully determined by the excita-
tion spectrum. Below roughly 0. 6 'K, only the pho-
non states are populated and accordingly in this
temperature region they dominate the thermody-
namics. In the region of our measurements, above
1.3 'K, the roton states are also occupied. Because
large wave vectors are associated with rotons, the
number of roton states is much larger than the num-
ber of phonon states. Consequently, at higher tem-
peratures the rotons tend to dominate most of the
thermodynamic properties.

Bendt, Cowan, and Yarnell have shown how neu-
tron-scattering data can be utilized to calculate the
thermodynamic properties of liquid helium. Using
the measured saturated-vapor-pressure dispersion
curves they calculated values for the entropy, spe-
cific heat, normal-fluid density and sound velocity
in good agreement with those obtained by direct mea-
surements. Later, Cohen' subjected the assump-
tions underlying these calculations to careful scru-
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tiny and concluded that the simple connections be-
tween the thermodynamic properties and neutron-
scattering data derived by Bendt et al. hold only if
the interactions between excitations are weak. Cohen
suggested that the ratio of the linewidth h1 ((z() to the
line shift [i.e., the xenoxmalization of the excitation
energy 8~~(Q)] be used as a criterion to judge the
strength of the interaction. A weak interaction is,
in Cohen's terms, one in which the linewidth is
small, compared to the excitation energy shift. Since
the roton linewidth is comparable to the line shift,
Cohen argued that the interactions between rotons
are not weak and therefore the agreement found by
Bendt et a/. was of questionable significance.

Our measurements offer additional opportunities
to test the validity of the relationships formulated
by Bendt et al. between the thermodynamic proper-
ties of the liquid and the neutron-scattering data.
We have calculated both the entropy 8 and the super-
fluid density p, following basically the same proce-
dure but with a slight modification to take into ac-
count the linewidth of the dispersion carve. When
the linewidth is neglected, the entropy is related to
the measured dispersion curve h~(Q) by the expres-
sion

(Q) ( ( (( . (Q)8))q2yq

(9)
For the superfluid density there is a corresponding
relationship
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FIG. 17. The entropy as calculated from Eq. (9) using
the measured values of the roton parameters and a linear
phonon dispersion curve with slope equal to the sound
velocity. Note that the agreement at low temperatures
(where the linewidths are small) is very good but that
the agreement becomes progressively poorer at higher
temperatures as the lines broaden. The smooth lines
represent the measurements of Ref. 26.

k pPs=P — z
Gn

hu (Q)g

[ (lu(Q) (1(]z Q d Q ' (10)

To include the linewidth in the above expressions,
he(Q) is replaced by (h/p) I'(Q)/J(h I' (Q)+ [h&
-h&u(Q)] ) and an additional integration over hv is
performed at each Q. The sound velocity was used
to define the slope of the phonon part of the disper-
sion curve and the roton and phonon regions were
connected by a suitable parabola. ' Calculations of
the entropy using Eq. (9) are shown in Fig. 17 to-
gether with the measurements of van den Meijden-
berg, Taconis, and de Bruyn Ouboter. The agree-
ment at low temperature is excellent. At higher
temperatures, however, when the linewidth becomes
important, the calculations give larger values for
8 than those measured directly. In Fig. 17 this is
only evident at the higher pressures, but it also
occurs at lower pressures at temperatures above
1.7 K—the highest temperature included in the
figure.

The relative superfluid density p,/p, calculated
from Eq. (10), is plotted in Fig. 18 for comparison
with the measurements of Clow and Beppy. As
before, we find that by using a T~(P) —T scale we
can plot the data obtained at all pressures on a
single universal curve. Ne therefore conclude that

p, /p depends only on T~(P) —T regardless of pres-
sure. Once again the calculations are in excellent
agreement with direct measurements provided the
linewidth is small compared to the excitation en-
ergy,

This considerable body of evidence influences us
to believe that there is a simple relationship be-
tween the neutron data and the thermodynamic prop-
erties when the linewidth is small compared to the
excitation energy. Cohen's criterion relating the
linewidth to the shift in the excitation energy ap-
pears to us to be more restrictive than the experi-
mental facts warrant.

For calculations of the thermodynamic properties
of superfluid helium it is often convenient to express
the free energy as a sum of two terms, one coming
from the linear phonon region of the dispersion
curve and the other from the parabolic roton region.
For computations, it is necessary to have values
for the density derivatives of the Landau parame-
ters. Listed below are the values of these deriva-
tives as determined from the data in Table I at 1. 3
'K and extrapolated to the saturated vapor pres-
sure:



NEUTRON SCATTERING BY ROTONS IN LIQUID HELIUM 1389

——= —0. 94~0. 05,p BA

Bp

= 0. 37 + 0. 02,p sQO

Qo ep

——= —1. 1+0. 1 .p Bp,

Bp

The first of these derivatives and the combina-
tion

p sQo+ 2 +
Bp Qo Bp 6 Bp

M
LLI

C3
(A
0-
K
Ct
I—
CQ

K

V)
LLI
CL

CO

hj

Q=Qo
TEMPERATURES

Q=Q +0.5A'

1.26'K

1.68'K

2. 11 'K

2. 15'K

2.20'K

1.0

Q.
F08

L-
U)
Z',
IJJ
I:I 0.6
Ci

U

Q 0.4
V)
LLI

~ O.2
UJ
K

- 1.0 -0.2-0.8 -0.6 -0.4
TEMPERATURE ('K)

FIG. 18. The relative superfluid density as calculated
from Eq. 0.0) using the measured values of the roton
parameters and a linear phonon dispersion curve with
slope equal to the sound velocity. The results are in good
agreement with direct measurements at low temperatures
where the linewidths are small. At higher temperatures
the lines broaden and the agreement is poor.

can also be evaluated by combining the measured
values of the thermal expansion coefficient and the
entropy. Harris-Lowe and Smee ' have made the
most recent attempt to do this and have also under-
taken to reanalyze the earlier experiments which
differed among themselves far beyond the limits
of the statistical errors. Our results, which were
obtained from direct measurements, are not in
good agreement with those quoted by Harris-Lowe
and Smee. In view of this we are tempted to ques-
tion the reliability of the thermodynamic assump-
tions underlying their indirect approach.

B. Roton Line Shape

It is interesting to see how the line spectra rep-
resenting roton creation and annihilation renor-
malize, broaden, and finally coalesce into a single
peak as the temperature of the liquid rises above
T~. Examples of the line shapes are shown in Fig.

Z',0
0

-1 0 I

2.40'K

4.37'K~
I

-I 0

I

CL
O

I

ENERGY TRANSFER (meV)

FIG. 19. The unfolded line shapes with the distorting
effects of the Boltzmann factor removed. At Q=Qp the
annihilation and creation peaks merge slightly above Tz
while at Q = Qo+0. 3 A they retain their separate identities
at a noticeably higher temperature.

19 for Q = Qo and Q = Qo+ 0. 3 A '. Note particularly
that at Q= Qo the annihilation and creation peaks
have almost completely merged at T = T~, while
at Q= Qo+ 0. 3 A they retain their separate identi-
ties above T~,

This behavior (which can also be deduced from
Fig. 15) is remarkably similar to that observed for
spin-wave spectra near the ordering temperature
in magnetic systems. ' The analogy is not sur-
prising. Spin-wave renormalization is governed
by the decrease in the magnetic-order parameter
and spin-wave lifetimes are determined by magnon-
magnon interactions. In superfluid helium the re-
normalization of roton energies is related by the
superfluid density to the order parameter of the
superfluid, and roton lifetimes are determined by
roton-roton interactions. Further, it is well es-
tablished that long wavelength spin waves complete-
ly renormalize at the transition temperature T,
while the shorter wavelength modes persist above
T„propagating within the short-range-ordered
spin clusters. Thus rotons at Qo behave very much
like long-wavelength spin waves while rotons with
wave numbers different from Qo behave like shorter-
wavelength spin waves and continue to propagate
as discrete excitations above T~. It is appealing to
interpret this a,s an indication that the liquid re-
tains vestiges of the translational symmetry of the
solid and that Qp plays, in some sense, the role of
a reciprocal lattice vector.

To us it is striking that the elementary excita-
tions in such widely disparate critical systems as
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magnets and superfluid helium are influenced by the
change in the order parameter in such a similar
way.

VI. SUMMARY

We have performed a series of neutron-scatter-
ing studies designed to give a complete description
of the properties of the roton excitations in the
superfluid region above 1.3'K. The most impor-
tant results are as follows: (i) The energy depen-
dence of the roton line shapes is well approximated
by the Lorentzian form suggested by Cohen. ' (ii)
The roton region of the dispersion curve is parabol-
ic within a range of approximately 0. 25 A to either
side of Q,. (iii) On the high-Q side of Qo, except
possibly at the highest pressures, the slope of the

dispersion curve corresponds to the sound velocity.
(iv) The Landau parameters b and p. decrease with

increasing temperature and pressure. Qo varies
as the cube root of the liquid density, indicating
that the average number of nearest neighbors re-
mains at a constant value close to 8 over the enttir e
temperature and pressure range. (v) At l. O'K,
the lowest temperature at which measurements were
made, line broadening occurs on the high-Q side
of Qo from the point' at which the slope of the dis-
persion curve corresponds to the sound velocity.
There are indications that this is due to roton-

phonon interactions. (vi) Line broadening is ob-
served for all values of Q for T& T~ —0. 4'K. This
broadening is well explained as a result of roton-
roton interactions. (vii) The reduced linewidth (the
linewidth divided by the excitation energy) is al-
most independent of Q for T & T,. (viii) The entropy
and superfluid density calculated from the measured
dispersion curve (taking the linewidth into account)
agree with direct measurements at low tempera-
tures where the linewidths are small. At higher
temperatures, where the lines are wide, the ther-
modynamic relationships appear to break down.
(ix) The density derivatives of the Landau parame-
ters at l. 3'K and the saturated vapor pressure ob-
tained from our direct measurements are not in

good agreement with those obtained indirectly from
analysis of the thermal expansion coefficient. (x)
The roton line shapes both above and below T~ are
very similar to spin-wave line shapes in the neigh-
borhood of the magnetic-ordering temperature.
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We have obtained some evidence of the induced scattering of an electromagnetic wave by
Compton collisions, and of its nonlinear propagation in a plasma. The interpretation of the
modified spectral profile of the interacting radiation is compatible with plasma parameters.

I. INTRODUCTION

In 1933, Kapitza and Dirac suggested that elec-
trons might be scattered by stationary light waves
such as by using a diffraction grating. ' Ne present
this experiment in another form, without standing
waves and where energy exchanges are possible.
I et us focus a laser beam, i.e. , a high radiative-
energy flux, on a plasma by means of a lens. Be-
sides ordinary Compton collisions, in which a pho-
ton is absorbed and reemitted spontaneously with a
frequency shift in some given direction, the stimu-
lated Compton effect must be taken into account.
In fact, some scattered photons may belong to the
incoming light in direction and in energy, because
of the solid angle Q and the spectral linewidth hv
of the incident beam (Fig. 1). According to the
quantum theory of radiation, they will be stimulated
by the incoming photons and thus the scattering ob-
served in the direction of the laser beam will be
enhanced.

In our experiment, where the plasma is highly
inhomogeneous and reflecting, for the incoming

lens

laser

FIG. 1„Schematic diagram of stimulated Compton

scattering.

laser light, the photon distribution can be consid-
ered nearly isotropic. Then it is possible to ca1.-
culate the transfer of energy from photons to elec-
trons, and the mean shift of the spectral profile
towards the lower frequencies.

In the present paper, Sec. II is devoted to a theo-
retical investigation of stimulated Compton scatter-
ing effects in a plasma, Sec. III to the experimental
setup, and Sec. IV to the interpretation of the ex-
perimental results.

II. THEORETICAL CONSIDERATIONS

It has been shown that the Compton electron-pho-
ton interaction can be described in a kinetic theory
by a Boltzman-like interaction operator (Refs. 2

and 3). The only difference from the classical
Boltzmann operator is due to the boson nature of
photons which introduces induced terms.

Let us note v = Qv, the vector frequency of a photon
and N(v), the photon distribution in frequency space.
[If we deal with polarized photons we have to intro-
duce the two functions N'(v), i = 1, 2 according to
the polarization. ] The propagation equation, taking
into account Compton effects, is

(
—+c() —N (c)= cjc(5"( ')+cc)C'(c)C)'(c')]f(('')
Bt ex

—[N'(v) + c'N'(v')N'(v) jf(P') jdn' dP, (1)

where f(p) is the electron distiibution function.
For unpolarized photons N'(v) = N (v) = —,'N(v). The

equation for the total density N(v) is the same as
Eq. (1) except for the replacement of c by —,'c in
front of N(v) N(v').

It can be shown~ that 0 dQ' takes the value


