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We continue our previous investigation of the properties of a system of either fermions or
bosons interacting in one dimension by a two-body potential V(z) =g/z with periodic boundary
conditions. A me.hod is introduced which provides a physically intuitive description of the ex-
cited states, The energies are given explicitly for finite and infinite systems, including all
corrections due to quasiparticle interaction. The method is shown to apply to other one-di-
mensional systems as well. In particular, the results are applied to a classical one-dimen-
sional N-body model of Dyson —the Coulomb gas in a Brownian medium.

I. INTRODUCTION

This paper is a continuation of previous work,
to be called I, ' II, and III, respectively, on an
interacting quantum many-body problem. This
problem, the g/rk potential, has proven to be
realistic, apart from the limitation of one dimen-
sion and the peculiarity of being exactly soluble.
It is explicitly soluble in astonishing detail. To
appreciate the extent to which it opens up, recall
that the other nontrivial quantum many-body prob-
lem to be solved is the &-function potential in one
dimension. But in this case, the solution yields,
so far, only the energy levels; missing are such
interesting properties as correlation functions
and momentum distributions. All of these are now

available for the g/x potential.
Such an explicit model allows one to use the re-

sults much as an experiment, to test our theoreti-
cal understanding of quantum fluids. One may
test the various theoretical approximation pro-
cedures in common use, all of which are so in-
volved as to make impossible exact determination
of their convergence properties. We reserve
such an investigation for later, however, first
exploring the model to the fullest.

II. SOLUTION

Oi = 2 X));/L

it satisfies the equation

H' C = (H) +Hk) C = aC)

with

Hq -——Z, 88/88, 8

e = (L/2m)'(E E,)—
Note that H' will not be Hermitian in general.

I
A. H in a Basis of Free-Boson Eigenstates

We seek solutions to the eigenvalue equation (4)
in a basis of free-boson eigenstates

The quantum numbers are (nI=(n(, nz, . . . , n„),
which we order n, n2 & ~ ~ ~ & n„. Then

(s)

4'= 4'p 4'

where Cp is the ground-state energy Ep, as de-
termined in Paper III. Considering C as a function
of the variables

We seek eigenfunctions 0 with energy E of the
Hamil tonian with

E, =~n, 2

We will write 4 in the form
Allow H2 to act on C s(n), and concentrate on

the following term, assuming k = n —nz ~ 0:

e +e [ i(n8+me ) i(m8+n8 )]i8 ei8 sg

ei8+egy(L"8in» im(8+8 ) (e ik8 ik8
)ge iy
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where the prime in the summation means the 8 and

g terms are to be omitted. Using the fundamental
identity derived in the Sec. II B, we write this term
of Eq. (11) as

~( )
i r' ein~ i{ i(ne+me) 2 i((n-1)e+(m+1)e )

+ gl (me+nljl )} (12)

In terms of the occupancy v(n), this becomes

k=2 nkv(n)+ — Z v(n)v(m)~n —m~2.,

Let us verify that the present result is the same
as the expression in Ref. 2:

Therefore, we have the result that Hk4 ~{n}gives
a diagonal element

e, = )( Z (n, -n, ) = —x Z n, (N+ I —2l)
l

where

k,. = m,. + —Z sgn(k, . —k, )
l

(20)

B. Fundamental Identity

Consider the quantity

e i J(,'8 if'
e' -e'~ (14)

m; being the free-fermion quantum numbers (m,.

being the ground state), i.e. , unequal integers,
ordered so m1& mz& ~ ~ ~ & m~. Thus the last term
in Eq. (20) is simply 2j —N —1, which is twice the

corresponding quantum number m& for the ground
state. We have

Using the expression for the sum of a finite geo-
metric series, this becomes

u, =m,. +ym,0 ) k =Am)0 (21)

(
ie ie){ i(k-1)e i(k-2)e+81 +ei(k-1)e}

k=1
ke ke 2 g «(k-»e+) e)

l=1

If we identify the fermion state {m}with a boson
state {n}by

(22)

This is the fundamental identity used in Sec. IIA
to derive Eq. (12).

C. Matrix Elements of II2

then

k& = n& + Xnz .0 (23)

The operator Hk acting on 4 i){n}gives a contri-
bution (n' IHk I n) 4 s{n'}only if the set {n'}can be
produced from {n}by squeezing together a pair
n, &n~ into a pair n,'. nl„where n, -n,'=n, +l,
n„-n„.—l, l an integer 0& l ——,'(n, —ni). The other
n's are unchanged. (Note that the {n'}obtained by
this prescription may not be in proper order. )
There is then a corresponding contribution 2X

x(n„—ni)& 0 to (n' IHkIn).
A free-boson state may also be specified by the

occupancy v(n) of the n wave numbers. We have
v(n) & 0, ) v(n) = I)I. Then the total matrix element
(n' IHk ln) for states connected as above will be

2)(v(n, )v(n, )(n„—n, ) & 0

D. Ordering the Basis and Determining e

It is clear that if (n'
I Hk I n ) w 0, then (n I Hk In' )

= 0. Thus there is a partial ordering of the states
{n};a state {n}will be said to lie below a state
{n'}in our basis if (n' IH2 In) 0 0. Writing out H' in
this ordered basis, we see that all elements below
the diagonal vanish. We then immediately find the
eigenvalues of II' to be the diagonal elements & = &1

+&2, given by

k =~)n,'+)(Z (n, n,)—
[n, —))n, (I)I+ 1 —2j)]

~ =Q, [(n,. +am,')'- () m,')']

=Q,.[nj'-)(n, .(N+ I —2j)] (24)

E. Algorithm for the Eigenvectors

Let us write II' as a matrix as follows. Choose
a free-boson eigenvector C)){n}, and add all those,
and only those, C~ which are produced by succes-
sive application of H' on C s{n}. Label them I j),
ordered as before so j&l if (lIH'I j)e0. Thus,
the highest index I I) is 4~{n}itself. In this basis,
B' is a matrix,

(25)

This agrees exactly with Eq. (17).
The question of which description, fermion or

boson, is best or most useful remains. Certainly,
for & = 0, the boson is best, while for ~ = 1, the
fermion is best. (Remember that for ~=1, the

eigenstates are just free-fermion wave functions
divided by the ground-state free-fermion wave
function. ) Otherwise each description seems to
have its usefulness. To summarize, the states are
labeled by either free-boson quantum numbers {n},
or free-fermion quantum numbers {m}; the two are
related by Eq. (22).
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M~J 1 M )— jl otherwise. (27)

=0, j&E
lj~

~

~otherwise.

Then the eigenvector C(n} is that eigenvector of the
above LXL matrix, none of whose components
vanish.

Let us define the matrix M»..

The partial ordering is

3 2

1

The matrix M is

e./(2+ 3~) 3X/(2+ 3~)
0 0 4X/(1+ X)

0 0 1

We shall prove in Sec. 11F that && & &, if (l I
H'

I j) v 0,
and hence M» ~ 0, and finite.

If Q& are the components of C(n}, then

0 0 [&(19~+3)/(1+ X)(2+ 3X)]
'

M = 0 0 4X/(1 + X)

0 0 1

~~ M;~ 4's = 4'g . (2s)
The last column of M3 gives the components of
4(- 2, 0, 0, 1}according to Eci. (30).

Choose /~=1, then

P~ q-ZqM~ ) Q —M~ q ~

y, ,=Z,.M. ..y,. =(M'). ..
etc. , or, to summarize,

y, =(M'-' '),,=(M' ')» &0 .
Clearly, in this way, we have given a procedure
for determining C(n} .

F. Theorem

H. Interpretation

The matrix form of H' —the fact that it is tri-
angular with positive elements —invites one to view
the action of H' as a relaxation process. However,
since H' will not conserve probability, the two pro-
cesses are not identical. Any state with momentum
2'/L = 2+n& /L eventually relaxes, under a finite
number of successive perturbations of H', each a
two-body collision conserving momentum but not

energy, to the state v(0) =N —IKI, v(K/IKI) = IKI,
v(n)=0, all other n (We .assume IKI ~N. ) This
state is an eigenstate of H', as well as of H~, with

We wish to prove that && & e„ if (k IH'
I j)o 0. Let

k be constructed from j by moving n -n —l, m -m
+l, n&m, —,'(n —m) &l&0.

Then

[1+~(N- IKI)]

The wave function is

t[~yg+~p3+" J )g) 3- =~~, e (34)

&&
—&~=n +m —(n —l)~ —(m+l)

+'&.[ In- kl+ lm- kl —ln-1- k
I

—lm+&- k I]

x v(k) + &(n —m) —&(n —m —2l)

= 2l [n —m —1]+2&l + &Z, v(k)f(k)

This will be positive if the final sum is positive.
lout 2l &f(k) & 0. Thus we have

The corresponding free-fermion state is a one
hole state. By the theorem on the ordering of the

energy levels, this state is the lowest-energy
state for given momentum.

The energy levels outside the above momentum
range are given by the following theorem: The
spectrum of a one-dimensional system at density
d is periodic in the momentum with period 27td.

IH. OTHER PROBLEMS

G. Example

As an example, let us consider N=4, (n}
=(-2, 0, 0, 1}. Then (n' IH' in)=0, except

We wish to briefly discuss how the methods in-
troduced in Sec. II may be adapted to solve other
related problems.

fn'}=(n}= I3&, &3 IH'
I

3& = 3+ 9& A. Scattering States

4n'}={-1,0, 0, 0}

Then H' in this basis is the matrix

1+3& 8~ 6~

0 3+ 7& 8&

0 0 5+9&

If one considers the particles interacting by a
gjr2 potential without periodic boundary conditions,
but instead unconfined, i.e. , the scattering states,
then we may likewise analyze the problem. We
seek eigenstates of the form

0 =Co4

where



EXACT RESULTS FOR A QUANTUM MANY-BODY. . . II

= II ~X; —X;~, X;&X& for z& j
Then C satisfies the equation

82
H'C =EC =

8X;

of the form

4'= 4'p@

with

+,=II ~x, -x, ~' II

8X; 8X,-

We again seek 4 as a sum of free-boson eigen-
states,

4 satisfies the equation

H'4 = &C = (H~+H~)4

where

(42)

c,fu] =Z,II,e"'x» (38) E = E —Eo = E —{dN[1 + & (N —1)]
and use instead of E{I. (15) the following fundamen-
tal identity:

sinks dk' cosk'x
p

8' 8
Hg —-Q 2 + 2{d~xg8&j 8X)

Then ordering our basis properly, H' will again
have the triangular form of Sec. II. We find

(4o)

We now seek 4 as a sum of
states,

e,fn) = E II.H„,(x, W(u)

the free-boson eigen-

(44)

B. Harmonic WeH

Sutherland originally considered the g/r prob-
lem in a harmonic well ~2X2. The eigenstates are

With H„(z) a Hermite polynomial, they are eigen-
states of II~.

Then the fundamental identity becomes

[H„(xv {d)H (YW&)+H„(Y&u))H (XW(u)]
8 8

n-j. m-]
=Z Z n, „[H,(XV {d)H,(Yv {d)+H,(YWu))H, (XV (u)] . (45)

&=0 n=p

This is true, although explicit formulas for n»
are complicated. Since II2 has no diagonal ele-
ments, & is identical to the value for free bosons,

~=2~En, .
C. Hard Core

with

(~{x,. —x, —a{{-j)]
) I

'
(48)

(4O)

One might like to make the correlation functions
look more like those of real substances by intro-
ducing, in addition to the g/r potential, a hard
core of diameter a. This can be done, but at the
cost of making the two-body potentials depend on
the ordering of the particles.

The potential one uses is

gm' . &[X,.-X, -a(i- j)]
(I —Na);), I —Na

(47)
where

X;&X~ for i& j
One can again investigate the problem in detail.
For instance, the ground state will be

We save a complete discussion for a subsequent
public ation.

IV. DYSON'S BROWNIAN MOTION MODEL

A. Problem

7r
W= —q2 2 ln sin —(X, —X~)j

The temperature is given by P =1/kT. Thus D is
the partition function Z for this system.

(5o)

In Dyson's original investigation of the proper-
ties of random matrices, the square of our normal-
ized ground-state wave function 4' ~~/D was identi-
fied as the equilibrium distribution for N classical
point charges moving on a circular wire of cir-
cumference L. The charges repel each other ac-
cording to the two-dimensional Coulomb law, so
the potential energy is
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The dynamics of the system are introduced by
interpreting the N particles as in Brownian motion, '
in addition to the mutual interaction. Thus, if
P(x„.. . , X„;t) is the (unnormalized) probability
density of the particles at time t, the time evolu-
tion is governed by the Fokker-Planck or Smo-
luchowski equation

sp ~ sp 8

gers (n)= (n&, n2, . . . , nNf label the eigenvectors and
eigenvalue s.

The first term in the expression for n is linear
in kT, and would remain if there were no Coulomb
interaction W'. The second term is proportional to
the charge squared, but independent of temperature.
Thus as T —0 the second term, or interaction
term, dominates the relaxation process.

C. Harmonic Brownian Problem

where f is the friction coefficient. The unique
time-independent solution of this equation is the
equilibrium density

Dyson also considered the corresponding Cou-
lomb gas on a line in a harmonic well. ' The po-
tential is then given by

-BW

B. Eigenfunctions and Eigenvalues

(52) &=2 &u'X, ' q' Z -inlX;-X (58)

We shall determine the eigenfunctions P(n) and

eigenvalues o. of Eq. (51), writing them in the form

P(n)=e-"P, C(a) .
e are inverse relaxation times for the normal
modes of Eq. (51). 4 then satisfies the equation

As noted in Ref. 1 the equilibrium density Po= e ~

is equal to 4'20 for a corresponding g/x2 potential
problem. Seeking eigenfunctions of the Fokker-
Planck equation again of the form of Eq. (53), we
find that 4 is the same as given by Eq. (42) of
Sec. III. Thus the relaxation times are

'~~ =(
-

s»' ' s'» s» ) (54)
(d

9

Using the expression, Eq. (50), for W, we find
that this is identical to Eq. (4) if we make the iden-

tificationn
nz being integers 0. It is most surprising to
find the spectrum of relaxation times to be un-
changed by the mutual Coulomb interaction.

ol

X = Pq'/2 = q '/2kT,

~Pf = (2~/L) &(~),

(55)

(55)

D. Eigenfunction Expansion

Note that in using these eigenfunctions P(n) to
expand an arbitrary function of the particle co-
ordinates, the proper scalar product to use is

Then Cln) are eigenvectors of Eq. (54). The inte-

(P(o, '), P(o.))-=f " f dx, ~ ~ dx„P*(o.')P(o, ) P,',
(«)

for then they are orthogonal.
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