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We have recast a linear quantum-mechanical Boltzmann equation, describing the dynamics
of a gas of N-level atoms absorbing light between an arbitrary pair of levels, into the form
of a generalized master equation. The atoms are permitted to undergo both phase-changing
and energy-changing collisions with a heat bath of inert molecules. The possibility of uni-
molecular decay is incorporated into the Boltzmann equation. The solutions of the generalized
master equation give an accurate description of the system for short as well as long times
and for arbitrary light-field intensity. Eigenvalues obtained from the solution of the N-level
master equation are shown to have particular significance with regard to the scattered electro-
magnetic field, with the imaginary parts of the complex eigenvalues providing the location and

the real parts of the eigenvalues giving the widths of scattered radiation bands. The dynamics
and scattered field for a two-level system is discussed in detail. Two collision parameters
giving the frequency of phase-changing and energy-changing collisions are important. For
special values of these parameters, our results reduce to scattered field spectra calculated
previously. When unimolecular decay is included, one identifies the smallest eigenvalue of the
generalized master equation with the macroscopic rate constant. Observation of the scattered
field for different incident field intensities would permit separation of radiative and thermal
effects in an enhanced reaction rate, without requiring an accurate temperature measure-
ment.

I. INTRODUCTION

One of the more exciting speculations following
the development of the laser centered upon its po-
tential use as a device to stimulate chemical reac-
tions selectively. The intense monochromatic na-
ture of the radiation appeared to be ideally suited
for exciting characteristic bond frequencies and
overtones. This excitation could result in a marked
increase in the probability for the bond to rupture
even under thermally unfavorable conditions. '~ The
realization of the laser as a tool in selective chem-
istry has not occurred primarily because of two
factors: (i) the presence of anharmonicities which
limit the coupling between the molecule and the field
and (ii) thermalizing intermolecular interactions.
What limited success has been achieved in utilizing
the laser to stimulate chemical events occurs when
activation-energy requirements are directly satis-
fied solely by radiative means, as is the case for
most previously reported photochemical reactions.

The question of whether molecular-loss mecha-
nisms severely restrict the potential use of the laser
in selective chemistry applications has been con-
sidered classically. ' In this paper we propose a
quantum formalism that includes the effect of the
absorption of laser radiation within the framework
of a model for a chemical reaction. The chemical

reaction is accounted for by assuming a unimolecu-
lar decay of one or more quasistationary levels of
an ensemble of N-level atoms immersed in a heat
bath and undergoing both elastic and inelastic col-
lisions with an excess of solvent molecules. The
phase-changing and energy-changing collisions are
independently accounted for by the introduction of a
superoperator into a Boltzmann-equation ' formal-
ism that reduces the off -diagonal density matrix ele-
ments to zero following each collision, whether or
not a change in the diagonal matrix elements also
occurs.

In Sec. III, we derive a generalized master equa-
tion for the N-level system in the presence of a.
monochromatic field, which includes the effect of
unimolecular decay of some of the levels. Particu-
lar solutions to the generalized master equation in-
volve a set of N+ 2 eigenvalues describing both the
short- and long-time behavior of the system. In
the case where one or more of the levels of the sys-
tem undergoes unimolecular decay, the smallest
eigenvalue is identified as the unimolecular rate
constant. In the absence of a chemical reaction,
and in the long-time limit, the generalized master
equation reduces to an ordinary master equation
valid for low-intensity driving fields. The existence
of complex eigenvalues and an oscillatory approach
to steady state is possible.
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Sections IV and V are devoted to the special case
of a two-level system. The behavior of the eigen-
values as a function of intensity is discussed. For
off-resonance low- and high-intensity driving fields,
there are two real and two complex eigenvalues,
the real roots giving rise to elastic components and
the complex roots to inelastic components in a
measurement of the scattered radiation field. At
intermediate values of intensity, all four roots
are real. Section V contains a detailed calculation
of the scattered field bands, and previous results
are found from our model by taking specific values
for the ratio of energy-changing to phase-changing
collision frequencies. In the case of unimolecular
decay of the second level, an observation of the
scattered radiation at different incident light inten-
sities allows a separation of thermal and radiative
effects. The value of the rate constant in the case
of slow unimolecular decay could be observed di-
rectly by the decrease of scattered band intensities
with time.

A general discussion of the physical significance
of the eigenvalues is contained in Sec. VI. The
relationships of the eigenvalue spectrum to the
scattered field for the N-level system and the os-
cillatory approach to steady state when several of
the roots are complex are considered.

II, PHYSICAL MODEL

We consider a gas of infinitely dilute solute
molecules immersed in an inert carrier gas which
acts as a thermal bath. Both energy-changing and
phase-changing collisions occur randomly between
solute and surrounding solvent bath molecules.
The time evolution of the density matrix is described
by a quantum-mechanical Boltzmann equation. Con-
sider the evolution of p over a small interval ~t,

We assume that collisions occur randomly with
ht/7 equal to the probability of a collision occurring
in any small time interval at. In Eq. (1) we cal-
culate p(t+b, t) as the sum of two terms. The first
term gives the dynamical evolution assuming that
no collision has occurred; the second term de-
scribes the effect of collisions by operating on p
with a linear superoperator K. The collision term
is linear in p because we assume that collisions
occur only with the heat-bath molecules. ' The
superoperator K must preserve the constant trace,
Hermitian, and positive semidefinite properties of
the density matrix p. In the limit t]t-0, we obtain
a linear quantum-mechanical Boltzmann equation,

dp g 1 1==—[p, H]+ —Kp ——p .

This equation assumes that collisions are instanta-

neous events, an assumption that can only be justi-
fied if the duration of a collision is small compared
to 7-.

The effect of the operation of K on the density ma, -
trix (in the energy representation) is to reduce all
off-diagonal matrix elements to zero. The matrix
elements of K then have the form

+i j,kl Pi k~ij~kl )

with

P;;=1—~+Pq; .
ywi

The matrix elements of p'=Kp are given by

The fact that K p is diagonal in the energy represen-
tation implies that a collision is equivalent to a
perfect measurement of the energy. This assump-
tion can be true only if'

I/aE «g,
where h/aE is the Heisenberg uncertainty time for
an accurate energy measurement of a level sepa-
rated from its closest adjacent energy level by an
increment in energy hE.

When H contains a time-dependent driving term,
representing the effect of a radiation field in semi-
classical radiation theory, the collision superopera-
tor destroys the phase relation between the molecule
and the radiation field on every collision. Follow-
ing a collision the molecule either remains in
its initial state with probability P;„, or is trans-
ferred to state j with probability P&;.

We note that our form of the Boltzmann equation,
including both energy- and phase-changing colli-
sions, is accurate even when (p —p„„„)is large.
As one consequence, there exists a correspondence
between the Boltzmann equation and the usual mas-
ter equation describing the time evolution of the
diagonal elements pii in the t- ~ limit.

We can extend the formalism to allow for uni-
molecular decay from one or more of the levels
of the solute molecules. The Hamiltonian for an
N-level system in which a unimolecular chemical
reaction proceeds via decay from levels J through
Nis

N

H=H, —i Z I'„P„, I'„=0 for I &n& J .

Here H, =H, is Hermitian, ~P is the prospection
operator onto the nth chemically reactive state,
and I'„ is the width of the nth reactive state. 2I'„/8
is the microscopic unimolecular decay constant for
the nth state. "

When the Hamiltonian is non-Hermitian, the
I.iouville equation is
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==—(p H —H p),
dp

dt h
(5)

(I„+r, )
prs @ prs &

and the Boltzmann equation is then

dp i 1 1
=, =-Lp, H, ]+ K-p p--„-Z—r„(pP +P p) .

n=1

'"= —i(d p +
'

sin)tt (p„—p„„)

(r, + r, )

T

(10)

III. GENERALIZED MASTER EQUATION

Equation (6) is quite general. In the presence
of a coherent electromagnetic field, absorption
and stimulated emission of radiation are handled,
in the semiclassical approximation, by including
appropriate time-dependent driving terms in the
Hamiltonian H, . The special case of a perfectly
monochromatic field is of particular interest in
laser phenomena. We assume that the radiation
field induces transitions between levels r and s
of the solute molecules. The energy-representa-
tion matrix elements of H, are then

(Hq);; = e;, (H, ),„=(H, )„,= nAsin)tt . .

All other off-diagonal matrix elements are zero.
Here A. specifies the amplitude and y the frequency
of the laser field. a is a dipole coupling matrix
element. We assume that the laser frequency is on
or near resonance for the x- s transition, so that

@X:—&s

Recalling the definition of the superoperator
given in Eq. (2) and using the Hamiltonian defined
in Eq. (7), we see that Eq. (6) implies the follow-
ing explicit equation for the time dependence of
the diagonal elements:

dp;; i"=—» sinxt (p„, —p,„)(5,„—o„)

+ —KP; Jp~; —~~~ P~„; — ' p((. (9)
T ggf 1

Particular solutions to Eqs. (9) and (10) are ob-
tained by assuming, with a posteriori justification,

-Xt »Xt
prr ~r 8

& pss se

The particular solution to Eq. (10) is then

»,-u e&Xt

( (~/+(r, +r,)is-~- ((~-x)
-t Xt

(/v + (r„+ r, )/I( —x —((~+ y)) '

(12)
iXt

( )» -M,
2h I/g + (I'„+ 1",)/ti X+ i(-&u + g)

-iXt

(/v ~ (I'„+I;)/h —X+ ((w —y))

Using the result given in Eq. (12), one finds

sin)tt (p„, —p,„)= (c, —c„)W(X) e

o.'A' I/r+ (I„+I,)/h —X

28 [I/7 + (r„+I,)/h —X]'+ ((o —)t)'
'

(14)
In arriving at Eq. (13), we have dropped terms
which make a contribution to the solution 1/w&u, that
are smaller than the retained terms. The condi-
tion I/~co « I is implied by the fundamental restric-
tion on the Boltzmann equation stated in Eq. (3).

Using Eqs. (11) and (13), we can put Eq. (9) in
the form

+~ P(-~ pa -—"~+ P'-*N T yg~ T

For convenience, the decay term —(2I', /h)p, , is
included for all levels, and l"; defined to be zero
for levels which do not decay. The diagonal ele-
ments p;; specify the fraction of molecules in the
ith energy state. In the absence of the laser field
(A = 0), Eq. (9) is simply the familiar master equa-
tion describing the relaxation to thermal equilibrium
of a dilute system coupled to a heat bath.

From a computational point of view, Eq. (9) is
more complicated than the master equation because
of the dependence on the off-diagonal elements p„,
and p,„. Equation (6) gives for the time dependence
of these elements

"' =i&@p„, + sin)tt (p„„—p„)

p ~ e-Xt (16)

and solves the resulting eigenvalue-eigenvector
problem for X and the eigenvector c. Since this
is the standard way to find particular solutions to
a master equation, we feel justified in using the
name "generalized master equation" for Eq. (15).
It should also be noted that the "approximation"
W(X) = W(1=0) reduces Eq. (15) to an ordinary

Equation (15) formally resembles a master equation
with radiative-transition terms between levels z
and s. Note that because of the A. dependence of
W(X) these are not differential equations in the
ordinary sense, but are correct when one assumes
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We also define a projection operator T with ele-
ments

1
8X i'8 (18)

and all other elements zero. Substituting Eq.
(16) into Eq. (15) gives the following determinant
equation for the eigenvalues ):

IH+2w(~)T —~TI =O.

The similarity transformation S 'TS, where

(19)

S„„=S„,= S,„=I/v 2, S„=—I/v 2

and all other elements are zero, diagonalizes T.
Equation (19) can then be written as

master equation that is valid for sufficiently small
A.

It is convenient to define a matrix R, containing
thermal relaxation and unimolecular decay terms,
with elements

1 1 2T';=-—P +5 —+—'
ij —

~ i j ij
1 1—,= —I' „(I+e ') .0-1

(22)

Here B is a constant depending on Poo(t= 0). The
parameter q-' is seen to be a relaxation time asso-
ciated with energy-changing collisions. Since in
the absence of a light field, the off-diagonal density
matrix elements relax to zero with relaxation time
7-, this parameter is associated with phase-changing
collisions. The situation is analogous to NMB
phenomena with 7' corresponding to the longitudinal
relaxation time and v corresponding to the trans-
verse relaxation time. '3

It is also interesting to examine Eq. (21) in the
special case of no chemical reaction and with the
approximation

pie description of the approach to equilibrium of a
two-level system with random phase, undergoing
energy-changing collisions. The integrated solution
is

Qv1
poo= ~ „. +Be, p» = . . —Be1+e 1+e

IS Rs &II +2w(&)Is 'HS-~l I..=O . o.'A' I/~
W(X)= W(X=O)= 2g / o

( )o
(23)

The symbol I I, , denotes the co-factor obtained by
eliminating the s row and column. The eigenvalues
of B are, of course, the same as the eigenvalues of
S 'RS. It is well known that microscopic reversi-
bility

P P e-(&g- c)) /kT

implies that the eigenvalues of R are real. '~ Equa-
tion (20) is a polynomial of order M+2; hence there
are N+ 2 eigenvalues for the generalized master
equation. Complex eigenvalues can occur.

IV. TWO-LEVEL SYSTEM

In this section we consider specific results for
a two-level system, levels zero and one, and
laser-induced transitions between these levels.
We assume unimolecular decay from level one.
We postpone a complete discussion of physical sig-
nificance to Secs. V and VI, but do note that the
existence of complex eigenvalues for the general-
ized master equation is of particular importance.
For two levels, Eq. (15) becomes

dpoo 1 1

dt 7
+Q- 1P11 +1-0Poo+ W(~)Pll W(~)Poo ~

dp» 1
dt 7

"
7

= —&i-o Poo — +o- i»i+ W(~)Poo

2I'~—W(&)pyg— (21)

&o
0 +0« le

In the absence of the light field (A = 0) and chemi-
cal reaction (I",= 0), these equations give the sim-

W(X =0) is exactly the radiative-transition rate one
finds using first-order perturbation theory and in-
cluding collisional broa.dening in a straightforward
way. '4 For this reason Eq. (21), or equally well
Eq. (15), has the familar form of an ordinary mas-
ter equation when one approximates W(X)= W(X=O).
With this approximation, and still ignoring chemical
reaction, the eigenvalues for Eq. (21) are

1 o.'A' I/o.
7' 8' I/o'+ ((o —g)'

(24)

This result allows us to state precisely, the con-
ditions under which the ordinary master equation
will accurately describe the approach to equilib-
rium for the two-level system Hecal.ling Eq. (14),
we see that the approximation W(X) = W(X =0) re-
quires a sufficiently small amplitude so that

W(X = 0) «-,'(I/~ —I/&') . (25)

f» I/~, (26)

Mollow' assumes 1/r = 1/o. ', and this condition is
never satisfied.

The generalized master equation (21) has a total
of four eigenvalues. The two eigenvalues not found
in the ordinary master equation are of the order
I/r for small A. These two eigenvalues, therefore,
must describe short-time behavior of the density
matrix. The condition that the ordinary master
equation describes the approach to equilibrium
only in a long-time limit, that is, when
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is contained in the generalized-master-equation
formalism.

Let us now consider the eigenvalues of the gen-
eralized master equation. These can be found by
solving Eq. (20). For the two-level system, we
find

1 X —I;/h
2w(x) (x —5 ) (x —g, )

(27)

1 '
~r &o i-&i-o

It is clear that

& rq/6& 6, . (23)

A schematic plot of the function E(X) is shown in
Fig. 1.

Consider first the solution to Eq. (27) when the
driving frequency is on resonance, that is u= y.
For the resonance case we find

1 5 1 1",
~~2 + @' —& (29)

so that Eq. (27) reduces to a cubic. It is easy to
show, by considering Eq. (27) for small (+ —X)o,

that

x = I/~+ r,/n+ o[(~ —x)'] (30)

is an eigenvalue. This root plus the three solutions
to the cubic give the four required eigenvalues.
Consider the intersection of the straight line given
by Eq. (29) with the function F(A.). For small A,
the slope in Eq. (29) is almost infinite and there
will in general be three intersections with the
curve F(X). There are then a total of four real
and positive eigenvalues. As the amplitude of
the light field increases, the slope in Eq. (29) ap-
proaches negative zero, and we find that for ampli-
tudes greater than some particular A., only one in-
tersection exists. For this large -amplitude case,
we have two real eigenvalues and two complex con-
jugate eigenvalues.

In the one special case where

a'4' 1(1 1)' (33)

(I/~)f o, + W(X) 2r,
(I/~)f, ,+ w(x) —x e

The exceptional case mentioned under Eq. (31) ex-
ists when I/~ = I/~' l.t should be noted that this
exceptional case is just the one treated by Mollow
in his paper on the scattered field with collisional
damping.

When the light-field frequency is off resonance,
the discussion of the existence of four real eigen-
values is more complicated. It is possible, how-
ever, to give a quantitative description when F, = 0.
In this case one eigenvalue is zero and the other
three eigenvalues are solutions of a cubic equation,
whose discriminant is

Q = —,', [n' - —.'(I/~ —I/~')']'

+-'(I/~ —I/~')o [-,', (I/~ —I/~')' ——,'n'+ ~']',
(34)

fl' = (~ —x)'+ ~'X'/3', &' = (~ —x)'

If Q& 0, there are three real and different roots.
If Q= 0, there are three real roots, at least two of
which are equal. If Q&0, there is one realroot
and two complex conjugate roots. In Fig. 2 we ex-
hibit a, plot of the function Q=-0. The shaded region
indicates the presence of three real roots. In
qualitative terms, we find that three real roots ex-
ist at intermediate amplitudes and not too far off
resonance. This same qualitative statement holds
when chemical reaction is included.

We easily compute the "eigenvectors" of the gen-
eralized master equation. The eigenvector ele-
ments are the coefficients c, of Eq. (16). For the
two-level system, Eq. (21) implies

I/7+ r,/@=a, , (31)

the above argument does not hold, since clearly
there are now two real roo'.s and two complex con-
jugate roots for all amplitudes.

The above argument about the existence of com-
plex roots is easily verified when chemical reaction
is absent. For F, =0, we easily compute explicit
solutions to Eq. (27). These solutions are

(32)

Here the existence of complex roots requires that

FIG. 1. ,Schematic plot of the function E(A,). The
dashed line gives the function 1/28' on resonance, and
for large A. The three intersections give three real
positive eigenvalues for the generalized master equat;ion.
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FIG. 2. Light-field parameters
and (& —g) that give rise to com-

plex eigenvalues for the two-level
system without chemical reaction.
In the shaded region all four eigen-
values are real. In the unshaded
region there are two real eigenvalues
and a pair of complex conjugate eigen-
values. In the unshaded region above
the dashed line, the system shows an
oscillatory approach to equilibrium
if 1/7 &1/Y.

The second equality in Eq. (35) makes use of Eq. (27) for the eigenvalues. Recalling Eqs. (11) and (12), we
are now in a position to write down particular solutions for all four density matrix elements of the two-
level system. These solutions are

(og/@) e(- x- fx ) t

hX 1/7 + I;/8 —X+ i(v —y)

(
(&g/@) e(- x+ kx &t

1
SX I/v+ I',/I —X —j((g —g)

In writing down Eq. (36), we have retained only the
dominant term, with resonance denominator, in
Eq. (12). Since we have four eigenvalues for the
generalized master equation, Eq. (36) gives four
independent solutions to the Boltzmann equation.
In the special case when two eigenvalues, e.g. , X

and X', are equal, one can find a fourth indepen-
dent solution,

dp= p~ ~

The diagonal. elements of p' have a time dependence
-Xt

The four particular solutions allow us to write
a general solution to the linear Boltzmann equa-
tion:

p=~+o'&»;
i -"1

(36)

The four coefficients n; allow one to match the
general solution to an arbitrary Hermitian density
matrix specified at time t=0.

In the absence of chemical reaction, I', =0 and
one eigenvalue vanishes. Equation (36) is inconve-
nient in this case, but one easily calculates

1
»=' I/7'+2w(y=o)

-s, , + w(~=0)
1

-ixt
—P, ,(I —e ')

I/~+ i(~ —X)

eiXt—I, , (1 —e-')
I/v —i((u —g)

—~, ,e-'+ w(x = o)

p=p& 0 as t-~, r1—- 0 . (4o)

The steady-state populations poo(X =0) and p»(X=0)

In this case the density matrix approaches a steady-
state value,

are identical to those predicted by the ordinary
master equation, (21) with W(X) = W(X=0).

V. SCATTERED FIELD

In this section we generalize some of Newstein's"
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g(v, t)= f, die'"'g(t, I),

g(t, l) = (a (t)a(t+l)),

(41)

(42)

and Mol. low's' results for the spectrum of the
scattered field from a two-level system. The in-
tensity of the scattered field is proportional to

1
a = —,—X],

(nA/2n)P3, (I —e ')e'"' I/y
1/r +2W3 q(X=0) I/7 its

(I/~)z, ,e '+ w, ,(a=o)
(I/~)P, ,(l+e-')+2w, ,(x=o) ' (48)

where a and a are atomic-raising and -lowering
operators, respectively. Mollow has shown that
the function g(t, l) can be expressed as

g(t, l) = U, (l, t)p„(t)+ U„(l, t)p, (t) . (48)

U and U are matrix elements of an operator
which relates the density matrix at time t+ l to the
density matrix at time t. The expression

p o(t+l) = U. (l, t)P„(t)+ U..(l, t)p, (t)

ppg(t) = Spy and p»(t) = S» as t- (49)

Also the calculation of U and Uo assumes that
l& O. For negative 3 one uses the relationship'

In using the above results to calculate the scattered
field spectrum via Eqs. (41) and (48), there are two
points to note. In Eq. (43) steady-state values can
be used for p3, (t) and p»(t) to get the steady-state
spectrum. These are

(l, t)po (t)+ U (l t)poo(t) (44) g(- I) =g" (I) . (5o)

defines the elements U and U

We compute U and U by expressing the den-
sity matrix as a sum of the four particular solutions
found in Sec. IV:

It is clear that at steady state and in the absence
of chemical reaction, the correlation function has
the form

4

g(t, l)=g(l)=Z c, e "&' '"',
4

p(t+ l) = 5' n, p, .(t+ l) .
i=1

(45)
with X4= O. The scattered field spectrum is

n A.
+ 2a;a,' —2ihaI,

+ R3(Xq —X3) e

(48)

8-IX(l +t)

U (l, t) =
~ (c33e + c3ge + cg3e

" ')+Sq3e

(
uA S„(a', +a')(a,. +ts')(a3 . .—its)

(; + ')'+ '(; — )'

Qe Se (Sefe '*' —See'"") —Sme'*(ee-'-e —is))

where

D Xy (X3 X3) + X3(Ã3 Xg) + X3(Xf X3) s

Setting l =0 in Eq. (45) allows one to invert Eq.
(45) and obtain n, as a linea. r combination of den-
sity matrix elements at time t. Substitution of
these o, 's into Eq. (45) yields expressions of the
form given in Eq. (44), and permits one to identify
the required coefficients U and U

The actual computation of U and U is quite
lengthy and we have carried it through in complete
generality only for the case without chemical reac-
tion. The results of this calculation are

8&X&

U, (l)= [R,(X —X )e '~+R (X —X,)e

2ReX, Rec, —2(v —y —Imk, ) Imc,
g(v) =~ 2 2(Rez, ) + (v —

y
—Imz()

+ (Rec4) 2«(v —X) (52)

Each term in the sum is, for all practical purposes,
a Lorentzian with a center displaced from the driv-
ing frequency X by Imk; and a width given by Bet, .
The center and width of the lines in the scattered
field spectrum are just the eigenvalues of the gen-
eralized master equation. When a pair of complex
conjugate eigenvalues exists, there will be in gen-
eral a pair of unequal intensity lines displaced
symmetrically from the central peaks. The side-
bands are not present when all four eigenvalues
are real. In Sec. lV, we have shown that at low

intensities and slightly off resonance there are
always two complex eigenvalues. The sidebands
disappear, however, at some intermediate value
of field intensity when all four eigenvalues are
real. For still higher incident intensity, theroots
again divide into two real and two complex roots,
and the sidebands return. The appearance of side-
bands at high-field intensities occurs both off reso-
nance and on resonance. On resonance, the appear-
ance of sidebands requires the Rabi frequency Q to
exceed a collisional-loss frequency

a, = I/~ —X, ,

It is of interest to examine the spectrum in the
limit of low-field intensity. The eigenvalues that
are correct through order A2 are found to be
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U ~-(&2+ &X&&

nA 1

(I/~ —I/~'+ in)'
(55)

( -i))p + ix) I e-(x)+ ix) l)i. Q(Ai)

U g (e- ixi e-())P+ ix) i) ~ O(A3)

Using Eq. (55) and neglecting terms of order A,
e OA, and (e ), one obtains the following result
for the scattered field spectrum:

n2A2/48
g(v)= /, , 2))5(y —) )

(n'A'/48')/(2/T —1/7 )T 8
1/P+ a' 1+e '

I /v'+ () —(u)' (56)

Thus in the case of low-field intensity, the scat-
tered field contains a line at the driving frequency

y and a. band of width I/w at the atomic resonant
frequency &. The band associated with the X3 root
is of order A . In his paper on the scattered field
with collision damping, Mollow' uses a Boltzmann
equation which is identical to our Eq. (21) when one
takes

0 1
Pg„o=. , Po„(=—,and I ) =0 .1++ 1+8

Recalling the definition of 1/r' given in Eq. (22),
we see that Mollow assumes

I/~= I/~' . (5V)

As it must, Eq. (56) agrees exactly with Mollow's
low-intensity result when one assumes Eq. (5'7).

Mollow's radiation-damped equations5 are also
a special case of Eq. (21), with

Po-i=2, e =0, and I', =0 .

This means

I/~'=2/r .
The sideband in the low-intensity spectrum disap-
pears in this case. Mollow has shown that the
spectrum is symmetric in the radiation-damped
case with both sidebands having intensity of order

The eigenvalues can be computed exactly when

the incident field oscillates at the atomic resonance
frequency y = ~. These eigenvalues are given in

1 o.'A' 1/z —1jr'
6 + (1/y —I/v')

a'A' I/r —I/~' —tz
2e' ~'+(I/~- I/r')'

The values of U„and U,„, from Eqs. (46)-(48) are

p;,.=p;,-(I' =0)e o', i, j=l, 2 . (59)

The spectrum of scattered radiation is the same as
before, except that the band intensities decay in
time by the factor e "o', which enters as the time
dependence of p»(t) and po, (t) in Eq. (43).

Most of the results obtained for the two-level
system permit generalization to the ¹-level sys-
tem with optical transitions between just two levels.
In general there are Ã+ 2 eigenvalues for the gen-
eralized master equation and ¹+2 particular solu-
tions to the Boltzmann equation. The general solu-
tion is a linear combination of these particular
solutions that matches the t= 0 values of the diag-
onal and two appropriate off-diagonal density ma-
trix elements. In principle, then, a complete de-
scription of the time evolution of the density matrix
and a complete calculation of the scattered field
is possible. Such a calculation, however, is quite
lengthy, and it is fortunate that a good deal of
physical information is contained in just the eigen-
value spectrum of the generalized master equation,

Eqs. (30) and (32). The calculation of the scattered
field in this case is si.mplest and most interesting
in the limit of high-field intensity. The result is'

I/2y —,'(I/~+ I/~')
1/~'+ () —(u)' —,'(I/~+ I/~')'+ () —~ —6)'

(56)
l(I/. + 1/. ')

—,'(I/~+ I/~')'+ (v —~+5)2

6 = [u'A'/e'- .'(I/~ —Ijr—')']"'.
In the special case I/r'=-1/y, this spectrum agrees
with results given earlier by both Mollow and
Newstein. I/r' = 2/v gives agreement with Mollow's
radiation-damped results.

The scattered field calculation for a stable two-
level atom can be applied directly to the case of
a two-level atom undergoing unimolecular decay
from the upper level provided that the unimolecular-
decay rate is slow compared with the thermal plus
radiative upward transition rates [(I/r)P, „O+ Wo, ].
Because of the steady depletion of scatterers due
to unimolecular decay, there is no equilibrium
solution for the diagonal density matrix elements.
The magnitude of the smallest eigenvalue is the ob-
served unimolecular rate constant for the reaction.
If

I')/A « (I/v)P)„0+ Wa )

then the density matrix elements given in Eq. (36)
approach their nonreaction counterparts. The
matrix for the smallest eigenvalue approaches the
steady-state counterpart, Eq. (39), with each ele-
ment multiplied by the decay factor e "0',
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In considering the time evolution of the system,
the eigenvalues with small real parts are the most
significant. In a system with chemical reaction,
the smallest eigenvalue X, is the chemical-rate con-
stant for the system. To make this identification,
one notes that

p= p(X=X,),
when

[Re(X, —X,)]t» 1, i = 2, 3, . . . , N+ 2 .

(60)

In Eq. (60) each diagonal density matrix element
has the time dependence

p e- ))tyt

Therefore,

dp)~ = —X,p"

Xq = ~(X~+X3) (61)

n'a'/e' = 2~'+ a (I/~ —I/~')' . (62)

Equation (62) is indicated by the dashed line in Fig. 2.
When complex eigenvalues exist, Eq. (61) can hold

only if X~+X3 are the complex roots. The require-
ment for an oscillatory approach to steady state is
that

X) & 2 (X2 + X~),

which in turn implies that

a2A
& 2m~+ +~ (1/r —I/q-'), 1/y & I/y'

(63)

(64)

or
~'A'

& 2s'+ —', (1/v —1/i')', 1/7 & I/7. ' . (66)

for all z, and X, is the unimolecular-rate constant.
In a system without chemical reaction, there is

always a zero eigenvalue. The system approaches
a steady state, and the steady-state populations are
given correctly by the ordinary master equation ob-
tained by setting W(X) = W(X = 0) in Eq. (15). This
holds for the N-level system and for arbitrarily
high light-field intensity. The approach to steady
state is determined by the nonzero eigenvalue(s)
with smallest real part. One has

p = p(X = 0) + k p(X = X~),

for large t, where k is a constant. If the eigenval-
ues with smallest real part are a pair of complex
conjugate eigenvalues, then one has the interesting
case of an oscillatory approach to steady state.

The existence of this oscillatory approach to
steady state is easily demonstrated in the two-level
system. In the cubic equation that determines the
three nonzero eigenvalues, one finds

In gases we expect that I/w & 1/r', and so Eq. (64)
requires that the Rabi frequency be large. Refer-
ring to Fig. 2, one has an oscillatory approach to
steady state in and only in the unshaded region above
the dashed line.

The eigenvalue spectrum also gives the positions
and widths of the lines in the scattered field. Con-
sidering again the N-level problem, one notes that
the spectrum g(v) will be a sum of Fourier terms
of the form

J 8 ~ e df+c ~ C.
0

It follows that each real eigenvalue provides a line
centered at v =y and of width X, . Each pair of com-
plex conjugate eigenvalues will give two lines at
v = y+ Imk; of width Bek,

We expected to be able to show that in the N-level
model there are at most one pair of complex con-
jugate roots. We have not been able to prove this
result, which seems to require an N-level general-
ization of the interlacing property given in Eq.
(28). The question of how many pairs of sidebands
are possible in the scattered field of an N-level
system remains on open question.

The calculation of intensity factors for the N-
level system is too complicated to carry out in
general. It is, however, physically obvious that,
for small A, only the sideband at v = & will have
a significant intensity, being of the order A'.

VII. DISCUSSION

We have considered the effect of a monochromat-
ic driving field upon an N-level atomic system suf-
fering thermalizing collisions with a heat bath and
undergoing unimolecular decay. Detailed computa-
tions were presented for the case N= 2 and consis-
tency was demonstrated with previous calculations
of the scattered field when special values were as-
signed to the elastic and inelastic collision rates.

An intuitive picture for the time evolution of the
level populations follows from the derivation of a
generalized master equation. The set of eigenval-
ues for the generalized master equation have par-
ticular significance in predicting the scattered field
components and the approach of the N-level system
to equilibrium. These eigenvalues for certain
ranges in the incident field intensity are complex
and in some cases give rise to an oscillatory ap-
proach of the diagonal density matrix elements to-
wards steady state. Moreover, the imaginary part
of the complex roots gives the location of the scat-
tered field bands, and the real part of the roots
determines the widths of these bands.

The N-level model with unimolecular decay can
be used to predict the effect of radiative transitions
upon the reaction rate. The scattered field solu-
tion is particularly useful here, since it distin-
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guishes the thermal from radiative contributions
to the reaction rate. The separation of the thermal-
from nonthermal-rate components is accomplished
by observing the position of the sidebands relative
to the central band as a function of light intensity.
I et us assume for simplicity that

(33')

Then as the light intensity is increased, the side-
bands will move away from the central band and
will show no appreciable increase in linewidth if
the effect of the radiation is to populate the decay-
ing atomic level directly. If, however, the in-
creased radiation is partially absorbed by the sol-
vent bath, and collisions with the hotter solvent
molecules provide the major contribution to an in-
creased population of the decaying atomic state,

then the sideband widths will broaden, while their
positions will remain fixed. If the number of phase-
changing collisions increased to the point where

the sidebands would move towards the central band
and their widths would broaden. We note that this
method of separating the thermal from nonthermal
components of the reaction rate does not require
knowledge of the reaction temperature. This could
be useful since an accurate measurement of temper-
ature of a gas in the presence of an intense laser
field is extremely difficult.
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