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The lattice version of the Maier-Saupe model for the nematic-liquid-crystal transition
consists of an array of unit vectors located at the sites of some regular lattice., The energy
of interaction of nearby unitvectors is proportional to P, (cosé;,) =3 (3cos?g;;—1), where 6;;
is the angle between the vectors at sites z and j which represent the directions of the long
axes of the molecules of the liquid. A discrete model which we call the dodecahedral model
is defined by restricting the vectors to point in the directions of the faces of a regular do-
decahedron. Monte Carlo results are obtained for this model, which is among the models
discussed by Potts as interesting generalizations of the Ising model. It is also one of the
sequence of models solved in the mean-field approximation and two-cluster approximation
by Priest. The Monte Carlo results on a 10X 10x 10 simple-cubic lattice with periodic

boundary conditions determine the transition to be of first order. The order at the transition
M = P,(cos#) is found to be 0.82. Attempts to obtain results on the model with vectors point-
ing in the six directions of the faces of a cube failed because the 10X 10x 10 lattice was too
small in this case to discriminate between a first- and second-order transition.

1. INTRODUCTION

More than ten years ago Maier and Saupe! dis-
cussed the ordering of nematic liquid crystals in
terms of a simple model. In their model the only
essential degree of freedom is the direction of the
long axes of the molecules of the liquid. Each pair
of nearby molecules has an interaction energy pro-
portional tothe second Legendre polynomial of the
cosine of the angle 6,; between the directions of
their long axes:

E=-3.Jd,,3(3cos®0,; —1)= =2, J;, Py(cosb,,), (1)
i i

where the sum is over all nearby pairs of mole-
cules 7 and j. They solved this model in the mean-
field approximation, and therefore their solution

is independent of the way in which the interaction
constants J;; depend on the distance between mole-
cules 7 and j. Their treatment predicts the average
order M as a function of temperature, where

M=(}(3cos%6; - 1)) = (P5(cos¥,)) (2)

and 0, is the angle between a given molecular axis
and the average ordering direction. The angular
brackets indicate an average over all the molecules
of the liquid. At high temperatures the order M
vanishes, at a transition temperature it jumps dis-
continuously to the value M,=0. 429, and as the
temperature is further reduced it smoothly ap-
proaches unity,

In a review article Saupe® compared this pre-
diction with the measured order of several nematic
materials., They agree to within a few percent.
The conclusions to be drawn from the success of
this simple model are still a matter of contro-
versy.

We take seriously the fact discussed by Maier
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and Saupe in the second paper of Ref. 1 that the
observed entropy change per molecule across the
transition is much smaller than that predicted by
their model. They suggest that one should there-
fore think of each vector of their model as giving
the direction of a few neighboring molecules rather
than a single one. Another way of saying this is
that the model seriously underestimates the short-
range order present in the liquid.

In considering more exact treatments of the
Maier-Saupe model one first of all must make it
more definite. The usual way of doing this is to
consider an array of unit vectors arranged on a
regular lattice. It is a commonly made observa-
tion of lattice models that their qualitative depen-
dence on the type of spatial lattice chosen is slight,
This is fortunate since the lattice is completely
an artifact in these models, if we take the above
suggestion of Maier and Saupe to mean that each
vector represents the order in a certain spatial
neighborhood. Indeed, one might consider the
lattice models to be approximations to some con-
tinuum model. 3®

There has been recent discussion on the further
questions of whether the mean-field treatment of
the lattice models is adequate. The mean-field
treatment of a model with the energy (1) is equiva-
lent to the mean-field treatment of the truncated
energy,

E= - 23 Jd,;;Py(cosb,;) Py(cosb,). (3)
i

This can be demonstrated by taking the spherical -
harmonic addition theorem®® for Eq. (1) and show-
ing that the terms omitted in (3) average to zero.
The difference between the energy expressions (1)
and (3) depends upon the components of the vectors
transverse to the ordering direction. In the mean-
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field treatment the transverse components of any
two vectors are uncorrelated and their contribution
to the average energy vanishes. It is particularly
significant that the energy expression (1) is invar-
iant under an arbitrary simultaneous rotation of
all vectors, but that expression (3) is not.

Raich, Etters, and Flax* showed that a cluster
approximation which goes beyond mean-field theory
gives no transition when applied to a lattice model
with the truncated energy (3). Instead of the order
M vanishing for some range of temperatures above
a transition temperature, the order is finite for all
temperatures and merely approaches zero as the
temperature approaches infinity.

Schultz® found the same result in a quite different
treatment of a lattice model with a discrete version
of the truncated energy expression (3). In Schultz’s
model the continuous range for 6, was replaced by
two discrete values with different a priori weights.
This model was mapped into the Ising model with
a certain temperature-dependent magnetic field.
Depending upon the J;;, Schultz found that the de-
pendence of the Maier-Saupe model on temperature
corresponds to some line in the temperature-field
plane of the Ising model. Only if a given lattice
site is assumed to interact with more than roughly
70 neighbors does this line intersect the phase-tran-
sition line of the Ising model and thus predict a phase
transition for the truncated Maier-Saupe model.
Although the replacement of the unit vectors by two
discrete states is a crude approximation, Schultz’s
treatment is the only one which treats the correla-
tions between vectors on nearby lattice sites with-
out further approximation.

Apparently the truncation of the rotationally in-
variant energy (1) to get the expression (3) is not
valid if one wishes to go beyond the mean-field
approximation. This is the thesis of a letter by
Priest® in which he argues that an exact treatment
of (3) would not give a phase transition. Priest
also introduces a series of models that he terms
“quantized versions” which represent the unit vec-
tors by various numbers of discrete states. His
mean-field and two-cluster approximations of this
sequence of models show an increasing value of the
order M at the transition as the number of states at
a lattice point is increased.

It seems evident to us that the full, rotationally
invariant Maier-Saupe model has a phase transition
but certainly rigorous proof of this fact would be
desirable. In the Appendix we argue that the order
of their model must strictly vanish for the tem-
perature range in which the high-temperature ex-
pansion of the partition function converges. At the
opposite limit of low temperature the Maier-Saupe
model should behave quite like the classical Heisen-
berg model because the expansion of the energy ex-
pression (1) through second order in the angles

’
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would be identical in form for both of these models.
It would of course follow from the vanishing of the
order for a nonzero range of high temperatures

and the presence of finite order at low temperatures
that the partition function must have a nonanalytic
point and that the model must have a phase transi-
tion. We therefore believe that a rigorous demon-
stration could be given that the Maier-Saupe model
has a phase transition, although we have not pro-
duced such a demonstration,

From our point of view, then, the lattice models
with the rotationally invariant energy, Eq. (1), have
an ordering phase transition. A principal motiva-
tion for the work reported here was to determine
whether that phase transition is of first or second
order. Briefly stated, our resilts are that when
the spherical array of unit vectors of the Maier-
Saupe model is replaced by 12 symmetrically placed
directions, the resulting model has a first-order
transition. This we take as an indication that the
Maier-Saupe model also has a first-order transi-
tion.

II. DODECAHEDRAL MODEL AND MONTE CARLO RESULTS

The dodecahedral model is obtained from the
Maier-Saupe model by assuming that the unit vec-
tors point only in the directions of the faces of a
dodecahedron, as shown in Fig. 1. The rotational
symmetry of the collection of unit vectors then
survives in the discrete symmetry of the invariance
group of the dedocahedron, A similar model is
obtained for each of the regular polyhedra. We
also did some calculations on the cubic model with
its six directions. The 12 faces of thedodecahedron
actually give us only six states at each lattice site,
because the interaction (1) is the same for oppositely
directed vectors.

The six directions indicated in Fig. 1 correspond

FIG. 1. Dodecahedron with arrows indicating six of
the twelve directions from the center of the dodecahedron
to the center of the faces. The six directions not shown
are oppositely directed to those visible and are therefore
equivalent in the dodecahedral model.
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to the six allowed states at a single lattice site of
the dodecahedral model. Consider the energy as-
signed by one term of Eq. 1 to some pair of lattice
sites. The state at one site can, without loss of
generality, be denoted by the arrow in Fig. 1 through
the face most nearly facing the reader. The state
of the other site of the pair could then be given by
the same arrow or one of the five which surround
that arrow and which evidently all make the same
angle with it, We conclude that in the dodecahedral
model there are only two possible values of the en-
ergy of a pair of lattice sites. Since it is a trivial
change to add or subtract a constant energy to the
energy of our model, we can assign zero energy
to a pair of lattice sites whose vectors do not point
in the same direction. We further simplify by
assuming that only vectors at nearest-neighbor
lattice sites interact and that their energy is minus
one when the vectors are in the same direction.
This corresponds to a particular choice for the
interaction constants J;; of Eq. (1).

The energy of the dodecahedral model can thus
be written as

E=- 2

(nearest neighbori,j)

5(O.i ’ Uj) ’ (4)

where the o0, specify the state of the ith lattice site
by taking on the values 1,2, 3 for the cubic model
and 1 to 6 for the dodecahedral model. The 0 is the
Kroneker delta. Models of this type were originally
proposed by Potts” as interesting generalizations

of the Ising model. This model is essentially the
same as that of Priest® when one takes the param-
eter 7 in his equation (6) to be equal to five.

Figure 2 shows the Monte Carlo results for
the dodecahedral model. A simple-cubic lattice
ten sites onan edge with periodic boundary condi-
tionswas used. The discontinuity of the energy and
the order at 8= (1/7)=0.75 (temperature 7T in en-
ergy units) indicates the approximate position of the
first-order transition. Calculations of the same
size lattice of the cubic model were inconclusive
because the fluctuations in the vicinity of the transi-
tion were too large to allow us to discriminate be-
tween a first- and second-order transition. The
weaker the first-order transition the larger the
lattice size must be to show that the transition
is of first order.

The value of the average order at the transition,
My=0.82, is surprisingly large. For the mean-
field approximation to the dodecahdral model we
find M,=0. 80, in agreement with a crude extrapo-
lation of the values given by Priest® for the mean-
field and second-cluster approximations. One
might have expected the dodecahedral model to give
results closer to the Maier-Saupe model than the
cubic model. Apparently this expectation fails be-
cause neither of them represent the unit sphere by
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enough points to be in the region of asymptotic con-
vergence,

The method of the Monte Carlo calculation used
here (which is a fairly standard one) obviously could
be directly applied to the Maier-Saupe model or to
a sequence of discrete models which converge to it.
It would be interesting to obtain such results to
remove all doubt as to the nature of the transition
and to find the order vs temperature.

III. MONTE CARLO CALCULATION

The general form of our calculation is the same
as that originated by Metropolis et al.® for an in-
vestigation of a two-dimensional gas of hard disks.
Some Monte Carlo calculations have been done on
Ising models by Fosdick and others.®

The procedure of these calculations is as follows.
One starts with some arbitrary state of the lattice,
in our case with a 10 X 10 X 10 array of integers
with the values 1 to 6. A random process is then
applied which changes the state of the lattice in a
way that gives detailed balancing for the thermal-
equilibrium ensemble at a given temperature. The
process must be such that all states of the system
can ultimately be reached. It is generated by first
considering a small random change of the state of
the system and comparing its energy with that of
the previous state. If the energy of the new state
is lower, then the new state is adopted as a step
in the process. If the new state has a higher energy

100 1,00
M\g; ’é
/P/
/ ol
o
75 ° —4.75
A
Y
E(B)/Eqg @
o L
w o~
’;1 50+ ‘?{-
o =
{¢]
L e
25 /O/O/O
| _o—0—°
0 L 1 |
o 025 05 075
B=1/T
FIG. 2. Monte Carlo results for the dodecahedral
model. The normalized energy and the order M =P,(cos6)

are plotted vs 3=1/7 (T is the temperature in energy
units). The discontinuity in these quantities marks the
approximate position of the first-order transition. The
energy plotted here and in Fig. 3 is normalized by divid-
ing by the ground-state energy which is equal to the
negative of three times the number of lattice sites.
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it is adopted only with the probability equal to the
negative exponential of the change of energy over
the temperature in energy units. A little algebra!®
will convince one that this process gives detailed bal-
ancing for the thermal-equilibrium ensemble at the
given temperature. Italso maximizes the probability
of adopting the trial state and thus makes thebest use
of the computer time used in generating the trial
state.

In our case we make use of the fact that a simple-
cubic lattice separates into two sublattices; the
nearest neighbors of each site of one sublattice be-
long to the other sublattice. For each site of a
sublattice a pseudorandom integer from 1 to 6
was chosen as a trial state. The interaction energy
of each site with the new trial value was then sub-
tracted from the interaction energy of the previous
state of that site. If the new energy was less than
the previous energy the new trial value was adopted
as the state of the lattice site. If the new energy
was greater it was adopted with probability equal
to the negative exponential of the change of energy
divided by the temperature; otherwise the previous
state was maintained. These steps were then re-
peated for the sites of the other sublattice.

The results shown in Fig. 2 were generated with
roughly five h of computation time on an IBM 360/91
with the APL time-sharing system. Points not at
the transition point represent averages over se-
quences of 500 or 100 steps of the method described
above. By astepwe meanthe selection and possible
adoption of a new state for each site of one sublattice.
The points at the transition were determined by 2000
and 4000 steps for the ordered and disordered
phases, respectively. The presence of large fluc-
tuations made longer runs necessary at the transi-
tion. All of these runs were made only after enough
steps had been taken at each new temperature so
that any apparent transient had died away.

At B8=1/T= 0.75 two metastable states were ob-
served, The error bars shown in Fig. 2 are the
probable errors derived from the scatter of the re-
sults from a few independent runs. No transition
between the ordered and disordered states at this
temperature was observed during the 6000 total
number of steps computed with 8=0.75. We inter-
pret this behavior to mean that the 10 X10X 10 lat-
tice was large enough to make very unlikely any
homogeneous fluctuation which could change the
phase of the system. On the other hand, this size
lattice is presumably too small to contain a transi-
tion layer that would allow the two phases to exist
in contact and in equilibrium. With a smaller 5X5
X 5 lattice transitions were observed between the
two phases.

As a further check on our procedure we show
that the free energy of the two phases at f=0.75 is
equal within the accuracy of the calculation. This
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FIG. 3. Free energy of the dodecahedral model vs

B=1/T. The points were obtained from the results

shown in Fig. 2 by numerical integration as indicated

in the text. The intersection of the line on the left, which
corresponds to the disordered phase, with that on the right,
which corresponds to the ordered phase, gives the tem-
perature of the transition. The point of intersection is

the result of two independent integrations whose value
turned out to be identical to our accuracy.

can be done by numerically integrating certain
thermodynamic relations from the high-temperature
limit for the disordered phase and from the low-
temperature limit for the ordered phase. From

the first law of thermodynamics, dE= TdS, and

the definition of the free energy, F=E-TS, where

S is the entropy we find for the free energy of the
ordered phase, we get

BFP)=FE,~ [ [B@E)-E,]ag,

where E, is the ground-state energy and is equal
to minus three times the number of lattice sites.
For the disordered phase

BF(B)= [PE@E)AB -S,,

where S;= N1n6 is the entropy of the completely dis-
ordered phase at 8=0. Figure 3 shows a plot of
these free energies vs g and the consequent deter-
mination of the position of the transition point to be
B=0.75, with an estimated error of 1%.
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APPENDIX

It is argued here that the convergence of the high-
temperature expansion of the classical Heisenberg
model or the Maier-Saupe model over a finite re-
gion about 8= (1/7)= 0 and zero-field point implies
that the order strictly vanishes in the same re-
gion. The “proof” is elementary, but seems worth
stating explicitly. It depends only on the rotational
symmetry of the energy:

EQ)==2J;,;P0;)-H Z P(8),
i,§
where the Q; are the angular coordinates for the unit
vector at the ith site, the 6,; are the angles between
the unit vectors on the sth and jth lattice sites, and
the 6, are the angles formed by the unit vectors
with the direction of the impressed field whose
magnitude is H. The J;; are interaction constants
which vanish if the distance between the ith and jth
sites exceeds some constant, The function P(9)
is cos@ for the calssical Heisenberg model and
Py(cosb)= 3 (3cosh? ~1) for the Maier-Saupe model.
The partition function for a system with N lattice
sites is then given by an integral over the product
of N unit spheres,
N
B0)" esscon,

ZN<B,H>=[---f (‘i
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The spontaneous moment is given by

M(P)=1lim lim
H=0+ N-*=

ﬁ ﬁlN Inz, (8, H) .

The next step, which we will not attempt to justify
here, is the reversal of the order of taking the lim-
its in the above expression, which is allowed if the
power series in H of the logarithm of the partition
function of the finite system is well behaved in the
thermodynamic limit of N—e, From the point of
view of those who pursue mathematical rigor in
these matters we are merely stating the problem.
On the other hand, we believe that most people
working with high-temperature series would grant
the required properties of this expression. Upon
the reversal of the limits, we obtain

. 1 9 Zy(B,H)
s (ﬁNZN(B, 0)> o

M(p) =

3
H=0

and the derivative of the partition function is

= - BZ f J’ in P(gi) e.sE(Qp.
H=0

This must vanish because one of the N integrations
may be done by rotating all N vectors simultaneous-
ly. In this integration the 6;; are invariant and the
integration of the factor P(6;) gives zero, since both the
first and second Legendre polynomials are orthog-
onal to a constant over the sphere.
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1A simple procedure is to assume that one has the
thermal-equilibrium ensemble, i.e., that the probability
of being in the state ¢ with energy E; is proportional to

eBEi, The probability of generatmg an upward transition
by the above procedure to a state j with E; >E; is the
product of the probability of being in ith state times
e EyED | and is therefore proportional to e**%i, The
probability of generating the downward transition is just
proportional to the probability of being in the jth state or

e®%4, Since these are equal we have detailed balancing,
and the procedure should generate the thermal-equilibrium
ensemble. We have assumed that the i and j states are
connected by a single step and that the probability of con-
sidering a change to the jth state, given that one is in the
ith state, is equal to the probability of considering the
opposite transition. It is not necessary that all pairs of
states of the lattice be connected by a single transition,
but only that they be connected by some sequence of transi-
tions.



