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The complete solution is presented for the N-completeness problem, i.e. , the problem of
determining when a set of p-particle functions generates symmetric or antisymmetric func-
tions without applying a symmetrizing or antisymmetrizing operator. Then it is shown that
a symmetric or antisymmetric function has finite 2 rank if, and only if, it has finite 1 rank.
Finally, the relation between N representability of N completeness is discussed.

I. INTRODUCTION

This paper iS concerned with several problems
which arise when one tries to expand a symmetric
or antisymmetrie N-particle function in terms of
p-particle functions. Such expansions are of great-
est interest when p= 2, and are then called geminal
(i. e. , 2-particle) expansions. For example, if
N=4, p=2, a geminal. expansion has the form

+(1,2, 3, 4) = Qc,g~(12)P, (34).

Given a symmetric or antisymmetric N-particle
function, one can always find a geminal basis in
which the N-particle function can be written as a
geminal expansion. ' Furthermore, the geminal ex-
pansion will have the proper permutational sym-
metry to begin with and no symmetrizing or anti-
symmetrizing operators need be applied. As gem-
inals are being increasingly used to study physical
problems, e. g. , correlation, the properties of such
expansions and their associated basis sets have be-
come increasingly important. Indeed, one might
consider the geminal expansion as the 2-particle
generalization of the Slater-determinant expansions.

Unfortunately, it is easy to see that not all sets
of geminals will give rise to such symmetric or
antisymmetric expansions. Thus one is naturally
led to consider the so-called N-completeness prob-

lem wh.;ch was originally introduced in connection
with the so-called X-representability problem. ~ '4

A set of orthonormal p-particle functions is said to
be N complete if there exists at least one symmetric
or antisymmetric N-particle function which can be
written as a p-particle (e. g. , geminal if P= 2) ex-
pansion using only the given p-particle functions.
In this paper we present a complete solution to the
N-completeness problem.

In a previous paper, ' a partial solution to the N-
completeness problem was presented. It expressed
the final result in terms of a set of transposition
matrices (to be defined) and a very awkward con-
dition" of the form 6,4 = 4. We now show that this
latter condition is completely unnecessary. Both
necessary and sufficient conditions can be expressed
in terms of the transposition matrices alone. Fur-
thermore, we can now state the solution as one sim-
ple condition on the final transposition matrix,
rather than as a long series of conditions. We also
drop the restriction to finite rank. A detailed ex-
position of these results forms the content of Sec.
III.

In Ref. 1, we raised the following question': Can
a symmetric or antisymmetric function have finite
2 rank and infinite 1 rank'? We now show that, ex-
cept in the trivial case N= 2, the answer is no.
This and other results concerning rank are discussed
in See. TV.
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An N-particle pure state is described by a nor-
malized square-integrable function

e(I" N).

An N-particle statistical mixture is described by
the ensemble density matrix

p~ = P a) 4') ( 1 ~ N) 4')~ (1 ~ ~ N ),

and

0 &e,. &1

In a previous paper, ' we showed that one couM
make considerable progress in the difficult prob-
lem of N representability by studying the N
completeness of the natural P states. (Natural
spin geminals when p= 2. ) In Sec. V, we use our
improved results on N completeness to state some
improved N-representability theorems. Further-
more, we show that failure to consider N complete-
ness has led to some erroneous results.

s-particle states. The natura/ q states of the set
(C„jare the q-particle functions obtained by or-
tho ganalizing

U, (natural q states of C'~). (4)

They are defined only up to unitary equivalence,
and it is easy to show that the natural q states are
unitarily equivalent to the eigenfunctions of any s
matrix whose range is identical to the space spanned
by CC,)

The following well-known results will be extreme-
ly useful.

Theorem 2. 1. Any P matrix can be written in
the form

D'(x; x') =g~'„y', (x) y', (x'),

where A~ and Pf are the eigenvalues and eigenfunc-
tions of D~.

Theorem 2. 2. If '" D and D" ~ are the reduced-
density matrices of an N-particle pure state 4,
then they have the same nonzero eigenvalues. Thus

R~=R„~. Further, 4 can be expanded in its natural
P and (N-P) states as

+= Z (&~~)"'Aa(i P)Aa '(&+I "N).

The pth-oxdex reduced-density matrix of a pure
state or statistical mixture is

ol

D' (x; x') = f @(x, y) @* (x, y) dy

D (x;x') = f p"(x, y;x'y) dy,

(2)

where x and y represent, respectively, the co-
ordinates of the first P and last (N-p) particles.
A P matrix, '7 also denoted D.~, is any p-particle
operator which is Hermitian, is non-negative,
has trace 1, and has the appropriate permutational
symmetry. The rank A~ of a p matrix is the num-
ber of nonzero eigenvalues it has. The p ~ank of
an N-particle function is the rank R~ of its Pth-

order reduced-density matrix.
A p matrix is pure or ensemble N xePxesentable

if it can be derived according to (2) or (3) from an
N-particle pure state or ensemble density matrix
of a certain permutational symmetry. The (not
necessarily unique) N-particle function or ensemble
from which a p matrix can be derived is called its
Pxeirnage. In particular, one speaks of boson N
representability if the preimage is symmetric, and
fermion N representability if the preimage is anti-
symmetric.

The natura/ P states of any N-particle (pure or
ensemble) state are the eigenfunctions belonging to
nonzero eigenvalues of its pth-order reduced-den-
sity matrix. It will be useful to extend this con-
cept to any set of functions.

Definition. Let (4 ~) be an orthonormal set of

Theorem 2. 3. Any" symmetric or antisym-
metric N-particle function can be expanded in its
natural P and q states as

c;,," a„Al(~) Aa, (x&) 4a, (x,),

Theorem 2. 5. Any set of orthonormal 1-particle
states is boson N complete. A set of 1-particle
states is fermion N complete if and only if it spans

(7)
CATE'

' ' kp

where N= q+ vp, and se and x& represent the co-
ordinates of disjoint sets of q and P particles, re-
spectively. Further~o the eigenfunctions of any
ensemble density matrix (i.e. „N matrix) can also
be expanded in this way.

The above expansions of 4' suggest another prob-
lem, called N completeness, which is closely re-
lated to N representability and interesting in itself.

Definition Aset (. g~) (k= 1 ~ Mo) of orthonormal
symmetric (antisymmetric) p-particle states is
said to be boson (fermion) N complete if there exists
an N-particle function which can be expanded in
terms of jP,) and its natural q states in the form
(7) (with N= vP+ q a,nd P~~- 8~) .

We now state without proof some trivial results
on N completeness.

Theorem 2. 4. A set of p-particle states is N
complete if and only if there exists a set of (not
necessarily orthonormal) (N-P)-particle states
(y,) and an N-particle function of the appropriate
symmetry which can be expanded in the form
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a space of dimension ~
¹

III. N COMPLETENESS

In Ref. 1, the X-completeness conditions were
expressed in terms of several so-called transposi-
tion matrices. The definition below is a slight
generalization of the matrices considered pre-
viously '~'

Definition. Let (g„}be an orthonormal set of
p-particle states. The associated transposition
matrix T(P, q, r) is defined as the (double-index)
matrix whose elements are given by

„,t. fP--,*(w, x) 8,*(y, z) g, (y, x) 8, (w, z), (9)

where

P -9' -&) P&&

u, x, y, and z represent disjoint sets of coordinates
of, respectively, r, (P —r), r, and (q —r) particles,
and (8,}are the natural q states of (4~}. T(p, q, r)
is defined up to a restricted cl,ass~ of unitary
tr ansf ormations.

Associated with any transposition matrix T (P, q, r)
is a series of matrices, ~' 0 ~, which are defined
below. The full motivation for constructing these
matrices is given inRef. 1, but two points are
worth noting here. First, if T satisfies the (vP+ q)-
completeness conditions, then 0 will satisfy the
[(v —o!+ 1)P+ q]- completeness conditions. Further,
if p& q= r, thenone can write T in the form (10)
given below for Q by expanding the (0,}in its
natural q and Q —q) states. In order totreatbosons
and fermions simultaneously we let, e =+ 1 for
bosons, e = —1 for fermions, and use appropriate
powers, e. g. , E'

Definition. Let the orthonormal e" eigenvectors
(eigenvectors belonging to eigenvalue e")of T(p, q, r)
by denoted by

A = (ag)
and the e" rank (i. e. , degeneracy of e") of T by M, .
Note that the A are defined only up to a unitary
transformation among themselves, and that we have
written them as (singie-index) matrices rather than
as column vectors. Then A~ is defined by

"a .~.=G a~ a7*= (A"&"')
a~

One then defines a sequence of such matrices, using
the e~ eigenvectors of each A to define '. Let
the e rank and e eigenvectors of 0 be M~ and

If M =0, define 0 "=0. Occasionally it will be
convenient to consider T itself as an matrix.
For this purpose, one defines O'= T and Mo= the
number of (,.

Theorem 3.1. The matrices T(=Q~) and Q'
defined above have the following properties:

(a,) Q = (Q')~

(b) o- &a., a. -l
(o.= 1, 2, . . .);
(o. = 1, 2, . . .);

(d) spectral radius of Q (1
(e) Z

I
~ ;. ..I

' - 1
ln

(f ) TrQ ' = M, = e ~ rank of Q ' '

TrA =M, =e" rank of T,

(a= 1, 2, . . .);
(n=l, 2, . . .);
(~=3 ");

Tr T (p, q, q) = Mo = number of g~;

(g) Tr(Q")~Q' ([TrQ ]~ (o.= 1, 2, . . .);

I 1;;,, I

=
I f E„,(x, z) E,*; {x,z)

- f I
E.~(x z)l' f I

E*(x z)I '

kj, kj ti, ti s

where E,~ (x, z) = f dw P~ (w, x) 8 ~ (w, z);

(dkm, tn =,. akf al

g,.I
a"„.

I

' P, I
a „I'

kn, kn lm, tm

(d) LetXbeanyeigenvalueof Q and V= le~
be the corresponding eigenfunction. Consider
the (o!p+ q)-particle function:

(h) 9' defines a, bounded self-adjoint operator
on a (possibly infinite-dimensional)
Hilbert space.

Proof.

(a) Trival.
(b) The only nontrivial part is

~a&, a =fD e'(X w) De (3' w)

~([Tr(D") Tr(D") ] t (1
where B~ and De are the Hh-order reduced-density
matrices of g~ and 8;, respectively. The first step
is just the Schwarz inequality for the trace norm.

(c) This follows from (b) and various applications
of the Schwarz inequality:

respectively. ' ' ~ ' is defined as

CO
e+1 n(lt mQ +
)en~, lnl ktn~ g tnt~ g

~

where

f„,..., 8, (w) q, ,(x,)~ "q, (x.), (12)

ikey

~ ~ 'k
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mg mg ~ m~ j
b~h~ y~ Z p(f +lit) g(g gfll~ 2 y~m(g

mf m(g

(iS)

where

mp mv
Off +kg y +%pm' y

m], ' ' 'mph

so, x, ~ -x represent disjoint sets of q- and p-
particle coordinates, and a„,', , u „~,are the e"
and e~ eigenvectors of T and A~ defined previously.

Let P be the operator which permutes x, , and

x or, equivalently, interchanges k, and k in

b, ~ ..., . Then a simple calculation shows thatf Qj
~ ~ Q(g

(4„P 4, )=X.
Since (P )a= 1,

~ll@gll ~ IIP +, II

= II +, II' = 1.

(.) Zl;. ..~'=[~ (g")'I..,..
ln

~ spectral radius of &"(0')
= [spectral radius of g']

(@,P4') = a. (19)

Since the projector onto the subspace generated by
eigenfunctions to eigenvalue o of P is 6,= —,'(1+ oP),
(19) implies that II 8PII =1. Therefore,

8,4=4, P@=e4. (2O)

u, x, ~ x„are disjoint sets of q- and P-particle
coordinates, and we have omitted the superscript
m„on% and L Now, let Pbe one of the following kinds
of permutations: Class A-P interchanges particles
completely within any nor x; class B-P inter-
changes x particles in zv with x particles in x;
class C —P interchanges x and xz, or, equiva-
lently, interchanges k and kz in b,„,. . .„. Let o

be either the sign of P or + 1 depending on whether
fermions or bosons are under consideration.
Clearly, P4 =a% for permutations of class A. For
classes B and C, a slight extension of the argument
given in the proof of part (d) of the previous theo-
rem shows that

1=M~ (.

(g) This follows from (c).
(h) Sincethisistrivialinfinite demensions, we

consider only the infinite-demensional case, i. e. ,
Mo

——~. The argument given when proving (d) is
equally valid for any truncation of , so that ail
truncations also have spectral radius &1. This is
a sufficient condition for 0 to define a bounded
operator on some Hilbert space. Furthermore, it
implies that all later theorems are valid for both
finite and infinite sets of (g„}.

The complete solution to the N-completeness
problem can now be stated in a simple way.

Theorem S. 2. Let N= vP+ q. Then a set of (sym-
metric or antisymmetric) P-particle states is (boson
or fermion) N complete if and only if the associated
0" matrix has e~ (e" if v = 1) as an eigenvalue.

Remark. By the definition of Ao, whenever the
above condition is satisfied one also has (i) e' is an
eigenvalue of T(P, q, ~); (ii) e is an eigenvalue of

for 2 &6 &v,
Proof. Necessity was shown previously, ' there-

fore, we consider only sufficiency here. Let 4 be
an N-particle function of the sort considered in the
proof of part (d) of the previous theorem with X=e~,

„„S,.(~) y„(x,) ~ ~ ~ q, (x„), (1V)
iky' ' kp

Since any permutation can be decomposed into a
product of permutations of the above classes, 4 is
actually symmetric or antisymmetric as desired.

IV. RANK

In Ref. 1 the following question was raised. Can
a symmetric or antisymmetric function have finite
2 rank and infinite 1 rank'? The next theorem shows
that this can only happen in the trivial case N= 2.

Theorem 4. 1. Let 1 &P, q&N. Then the P rank
of any symmetric or antisymmetric N-particle func-
tion is finite (infinite) if and only if the q rank is
finite (infinite).

Proof. By theorem 2. 2 we can assume without
loss of generality that p&q ~-,'N. Let se, x, y, z,
respectively, represent disjoint sets of P-, (q —P)-,
(q —p)-, and (N+ p —2q)-particle coordinates, and
expand 4' in its natural p, (q- p), and (N- q) states
as

+ = Q b„;,P (wl Qf
' (x) P, '(y, z) . (2i)

Consider the transposition matrix T(N- q, q —p, q —p)
formed from (Q~ '}and (P; ~}. For each m, b„,„
defines an e' ~ eigenvector, A = (a„=b;,) of T.
Since the P~ are eigenfunctions of D,

Tr(A A"")= Q b„,, b„*;„=X~„5 „, (22)

Thus, the A define R~ orthogonal g' ~ eigenvectors
of T. Since e =1 and (TT ) A = (e )A, Tr(TT )

But theorem 2.2 and parts (f) and (g) of theorem
3. 1 imply that
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Tr(TTt) &(Tr T)' =8'„,=R', .
Thus

R~ & Tr (TT') &A', (p & q),
and B~ is finite whenever B, is finite.

Conversely, suppose B~ is finite and let q= pp
+s (1 &s &P). By theorem 2. 3, all P', lie in the
space spanned by

(c) the @~rank of 0 =M ~ (o.= 2. . . ) .
pQ+ q

V. N REPRESENTABILITY

As mentioned earlier, there is a close connec-
tion between N completeness and N representability.
In particular, it follows from theorem 2. 3 that a
necessary condition for N representability of a p
matrix 1s that its eigenfunctions to nonzero eigen-
values form an N-complete set. In fact, one can
say more. For this, let {g,)be a basis in which
D can be expanded in the form

D'= &a~. r 4a(x) 4*& (x') . (24)

Such bases always exist. In particular, one can
choose Qr„]to be the eigenfunctions of D; then

0~= 4'a a"" dpi= ~a ~» ~

Theorem 5. 1. Let N= vp+ q. A p matrix D~ is
(boson or fermion) pure N representable if and only
if {g~j is (boson or fermion) N complete and one of
the e~ eigenvectors (e" if v= 1) W of &" satisfies

WW =D, (25)

where Qr~j and D = (d„,) are as in (24).
Theorem 5. 2. Let N= vp+q. A p matrix D~ is

(boson or fermion) ensemble N representable if
and only if {g,) is N complete and there exist posi-
tive numbers o.„and normalized e~ (e" if v= 1) eigen-
vectors 8'" of 0" such that

D= Q„n„W"W"',

where Q„J and D = (d») are as in (24).
These theorems represent a considerable im-

provement over the results of Ref. 1, where it
was actually necessary to generate the preimage

(26)

K p gg ~ ' ~
p X~ ~

By the first part of the theorem, A, =the number of
P; is finite. Therefore, we have 8 q &A, R&~ & ~.

Coleman' has shown that the p rank of an anti-
symmetric N-particle function is ~ (~~). One can
easily translate this into an N-completeness condi-
tion.

Theorem 4. 2. If Q,j is fermion N complete, then

N
(a) the number of (~=Mo ~

0

(b) the e" rank of T = M, ~ Ã
p+ q

in order to check for N representability. How-
ever, Eq. (17) still gives a means of generatingthe
preimage, so that testing for N representability is
still implicitly equivalent to generating the pre-
image.

It is not clear whether theorems 5. 1 and 5. 2

actually represent a solution or merely a restate-
ment of the N-representability problem. In fact,
both extremes can occur. The extent to which these
results actually simplify the N-representability
problem depends on M„, the e~ degeneracy of 0'.
The smaller M„, the greater the simplification.
This aspect of the problem, together with some ex-
amples, is discussed in more detail in Ref. 1.

Recently, Kiang has suggested that the N-rep-
resentability problem is contentless, i.e. , every
p matrix is N representable. This is clearly false
as examples' "of p matrices which are not N rep-
resentable exist in the literature. The errors in
Kiang's paper arise, in part, from a failure to
consider the N-completeness aspect of the N-rep-
resentability problem.

Before discussing Kiang's work, we point out that
the N-completeness problem itself is not content-
less. The results of Sec. IV provide an easy method
of generating sets of functions which are not N com-
plete. However, large rank is not sufficient in
itself. One can construct examples of non-N-com-
p}ete sets of functions of arbitrarily large or small
rank.

Kiang's theorem' is stated in somewhat non-
standard terminology. It can be restated as fol-
lows: (i) Every p matrix has a preimage, which
does not necessarily correspond to any special
permutational symmetry. (ii) Every P matrix has
a preimage of prescribed permutational symmetry.

Part (i) is a well-known result of Von Neumann34

and will not be considered further here. To prove
(ii), Kiang expands D~ in the form (24) and then
assumes that symmetric N-particle functions of
the form (8) always exist, i. e. , that {gi,) is N com-
plete. Since we have already shown that this as-
sumption is false, this explains the contradiction
between Kiang's theorem and the known fact that

p matrices do exist which are not N representable.
Even in an N-complete basis set, however, Kiang's

argument still fails. First, N-completeness con-
ditions may reduce the number of independent pa-
rameters; this corresponds to small e~ degeneracy
of 0". Second, the existence of solutions of non-
linear equations does not simply depend on the num-
ber of parameters alone; indeed, his argument
gives erroneous results even when p= 1 and N com-
pleteness is trivial.

VI, CONCLUSION

We have presented a number of important new
results. In particular, theorem 3. 2 contains the
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complete solution to the N-completeness problem.
Theorem 5. 2 will greatly add to our understand-

ing of the complicated N-representability problem.
In view of Eqs. (IV) and (18)we have an algorithm for
constructing all possible preimages of any p matrix.
This will discourage those who hoped that they could
greatly simplify N-particle calculations by using
2 matrices. But the results will be very useful
for further study of N-representability and related
problems, e. g. , when does a p matrixhave aunique
pr eimage.

Theorem 4. 1 has a number of interesting con-
sequences. It has long been assumed (but never
proved!) that the eigenfunctions of Hamiltonians

containing I/r, z interactions will have infinite 1
rank. We now know that, if this is true and N+2,
these eigenfunctions wiH also have infinite 2 rank.
Many people have tried to approximate N-particle
eigenfunctions by antisymmetrizing a simple (i. e. ,
one term with no permutational symmetry) product
of geminals. We now know that the resultant anti-
symmetric function will have infinite 2 rank if any
of the geminals have infinite 1 rank.
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