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A theoretical model for the pressure dependence of the intensity of a gas laser is presented
in which only velocity-changing collisions with foreign-gas atoms are included. This is a
special case where the phase shifts are the same for the two atomic-laser levels or are so
small that deflections are the dominant effect of collisions. A collision model for hard-sphere
repulsive interactions is derived and the collision parameters, persistence of velocity and
collision frequency, are assumed to be independent of velocity. The collision theory is applied
to a third-order expansion of the polarization in powers of the cavity electric field (weak-signal
theory). The resulting expression for the intensity shows strong pressure dependence. The
collisions reduce the amount of saturation and the laser intensity increases with pressure in a
characteristic fashion. It is recommended that the best way to look for this effect is to make
the measurements under conditions of constant relative excitation.

I. INTRODUCTION

The radiation emitted by an atomic system can
be significantly affected by collisions with neigh-
boring atoms. The parameters which determine
the shape of a spectral line (atomic energy-level
separation, decay rate, velocity) fluctuate due to
random collisions during the radiative lifetime of
the atomic system. There is an extensive liter-

ature on the effects of collisions on the shape of
spectral lines covering about 70 years. A recent
paper' gives a comprehensive list of references on
this subject.

In a previous publication (I) a model for a laser
oscillator was presented in which the active atoms
undergo collisions during their lifetimes. The re-
sult was a theoretical expression for the pressure
dependence of the intensity of the laser in satisfac-
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tory agreement with the experimental studies of
Szoke and Javan and Cordover. Other authors
have derived similar theoretical expressions. 5

In Ref. 2, two types of dynamic collisions were
considered. The first effect of a foreign perturbing
atom on a radiating atom was regarded as a van der
Waals interaction which caused the atomic transition
frequency to change adiabatically with time (phase-
changing collisions). In the second effect, consid-
ered as independent of the first, the forces on the
active atoms caused them to follow some complex
zig-zag path. A model in which the atoms return
to equilibrium after each collision was used to de-
scribe the velocity changes.

The calculations in this paper are similar in form
to those of I. The main difference is that a more
reasonable model for deflecting collisions is used.
It has recently been found that the simultaneous
consideration of deflecting and phase-changing col-
lisions requires a complete quantum-mechanical
treatment of the collision process. A radiating
atom is in a mixture of two atomic states and the
c.m. motion of this system, after a collision, can-
not in general be described classically.

However, the special case where the van der
Waals interaction is the same for both atomic states
can be treated classically. In that situation, phase
effects are absent and collisions only produce ve-
locity changes. This paper will only deal with ve-
locity-changing collisions. The resulting theoretical
expression for the laser intensity may be helpful in
isolating the effects of deflecting collisions.

II. NATURE OF COLLISIONS

The collisions in this paper will be described by
the binary interaction of a foreign-gas (perturbing)
atom with the radiating (emitter) atom. The col-
lision time can be approximated by the quantity
t, = bo/v„„where bo is the impact parameter, and

v y
is the relative velocity of emitter and perturber.

The time between collisions for a typical impact
parameter bo is approximately T= (nmbov„, ) ',
where n is the number density of perturbers. For
pressures of about 1 Torr, T-10 7 sec, while for
most significant collisions t, is less than 10 "sec.
The case where T » t, is called the impact limit
for collisions.

The assumption of impact collisions permits a
greatly simplified mathematical treatment of the
collision problem. The properties of the system
after the collision only depend on the properties im-
mediately before the collisions. This situation is
characteristic of a Markoff process and facilitates
the computation of complicated statistical averages.
In the case of binary impact collisions, the Boltz-
mann equation may be used to obtain a fairly sim-
ple mathematical description of the collision history
of the atoms.

Section III gives a fo"mal presentation of the laser
problem which includes the effects of deflecting col-
lisions.

III. LASER MODEL

E+! (v/0)E= —l (v/~0)~,

(v+ j'- Q)E= —2(v/eo)C,

(3a)

(3b)

where Q is the cavity frequency with no active me-
dium present.

The active medium consists of an ensemble «
atoms with levels a, 5 and with natural decay rates
y„y,. The active atoms are introduced into the
cavity at rates A„A,. If the atoms move through
the cavity, the position z at time t of an atom is
given by

z = z, + f' v(t) dt . (4)
tp

The integral on the right-hand side of Eq. (4) al-
lows for the possibility that the atoms undergo de-
flecting collisions which cause the z component of
velocity to change. If the atomic energy levels are
shifted by collisions with neighboring atoms, the
transition frequency will be a function w(t) of time.
As explained in the Introduction, these changes will
be neglected.

An atom is introduced into the cavity at the posi-
tion zp at the time tp in state a or b. The atomic
transitions a~ b are caused by the perturbation

bV(~, t) = —eE(z, t)

= —v E(t) sin/Ic[z, + f ' v (t) dt ]]cos(vt+ y), (6)
tp

where P is the electric dipole matrix element

(6)

The following model for a gas laser is taken from
an earlier paper. ~ Suitable modifications are made

to allow for collision processes.
The laser operates in a one-dimensional high-Q

resonant cavity of length L. The cavity contains a
medium of active atoms which acquire nonlinea, r
dipole moments through interaction with a sing1. e-
mode electromagnetic field of the cavity. The re-
quirement for self-sustained oscillations is that the

macroscopic polarization of the medium acts as the

source for the assumed electromagnetic field (self-
consistent field). The electric field in the cavity
mode 1s

E(z, t) = E(t) cos [vt+ y(t) ]

sinter

and the macroscopic polarization projected on that
mode ls

P(z, t) = lC(t) cos[vt+ p(t)] + S(t) sin[vt+ p(t)]] sinKz .
(2)

Using the assumption of slowly varying amplitudes
and phases, the self-consistency requirement is
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The equations for the time development of the
density matrix p for one atom are

p..= y—.p..+ t&(z, t)(p., p—,.),
Pbb ybpbb t ~(z, t) (P. P—)

pub yobpab ~ pab+ ~(zs t) (pea pbb)i

Pba I ab&

where y„= —,'(y, + y,), and &u is the transition fre-
quency between levels a and b. Removing the optical
frequency v from the off-diagonal elements of the
density matrix by writing

Pab= PS e

and neglecting terms with time dependence e' '"',

Eq. (7) can be rewritten as

P„=—y,p„- 2 i (s E/8} sinKz (p, —p,"),

Pbb ybPbb+ 2 z(PE/k) slllKz(p& —
p& )~

(9)
Py = —['y„+ t(& —v)]p, —, i(@—E/8)sinKz(p„—p, ),

Ps = —['y, b
—t(& —&)]p, *+ ,i (&E/—8)sinKz (p„—p ),

where z is given by Eq. (4).
The initial conditions for Eqs. (9) are

p~(& zo 4 to)=&w&.. .
(io)

pa'8(~& zoi 4~ to) ~no ~be ~

depending on whether the atom has been introduced
into the cavity in state a or b. Formally solving
Eqs. (9) gives

p„(&,zo, t, to) = e '~"-'o' 5, —,'i(eE—/8}f'dt'e "~ ' ' 'sin(K[zo+ f' v(t) dt]j[p, (n, zo, t', to) —p,*(&,zo, t', to)],
0

0

Pbb(n, zo, t, to) =e-»"-'o'g b+ —,
'

(to' E/8) f' dt'e "b" ''sinlK[zo+ f' v(t)dt]] [P, (o.', zo, t', to) —P,*(&,zo, t, t )],
tp tp

p, (o.„z„t, t ) = ——,'t(b E/I} f'dt'e-'"~b''" '"' "sin(K[zo+ f'v(t)dt]'t[p„(o. , z„t', t ) —pbb(&, zo, t, to)] .
(ii)

The macroscopic polarization P(z, t) is obtained

by summing the dipole moments of all active atoms
that arrive at z at time t, no matter where or when

they were excited or how they got to (z, t); viz. ,

I (z, t)

=p f' dt, (fdz, g A (zo, to)5(z —zo —f'v(t)dt)
at=a, b 0

x[p b(n, z„t, t,)+ p„(~, zo, t, to)1&b.~b (12)

The symbol ()„,„ in Eq. (12) denotes a statistical

average over all collision histories of atoms which

start at (zo, to) with a Maxwell velocity distribution
in initial velocity vo and end at (z, t). This average
will be considered in detail in subsequent sections.
In order to find the appropriate path averages, the

]

history of each atom must be traced using the mi-
croscopic equations (11). It is convenient at this
time to define microscopic versions of macroscopic
variables to be used later. Let

n(o. , z„t, t,) = [p..(n, z„t, t,) —p„(a, z„t, t,)],
(i3a)

s(+~ zoi t~ 4) = —b" [Pt(+) zo~ t~ to) Ps (+~ zo~ t~ to)]~

(13b)
where n(o. , zo, t, to) is the microscopic version of the
population inversion density of the atomic ensemble,
and s(n, zo, t, to) is the microscopic version of S,
the out-of-phase part of the polarization of Eq. (2).

Using Eqs. (11) two coupled integral equations
for n and s can be obtained:

n(o', zo, t, to) =[e b" 'o'5„, —e "b' 6,b]+ —,'(E/8} f dt'[e "b" '' —e "b"--''] sinlK[z +f' v(t)dt]] s(o, , z, t', t ),
tp 0

(14a)

s(&, zo, t, to) = — (& E/8) f'dt [e ~ "ab ' "—' ' +c.c.]sinfbK[zo+ f v(t)dt]]v(n, z, t' t )
tp tp

For the perturbation treatment in this section, Eqs. (14) will be reduced to a single integral equation.

First, define

(14b)

s(z„ t, t,) = Q A (z„t,) s (n, z„ t, t,).
Ot=a, b

Substituting (14a) into (14b) and using (15) gives a single integral equation for s(zo, t, to):

s(z„ t, t,) = ——,'(b 'E/a) f' dt'sin(K[zo+ f 'v(t)dt]} (e-'" "+e-"'"-")-(X e-""-'o'-a e-"b"-'o')
'p 0
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——,'(P&ZE /&&to) f' dt' f'dt" sin{K[zoy f'v(t)dtj}sin{E[zo+ f"v(t)dt]}(e P(' ' '+e (' ' ')
'0 tp 0

x(e-yp (t' t"-&+ e yp(-t' t"-&) (z

where it = y„—t(p& —v) and the arguments of A, and Ap have been omitted.
Equation (16) is still a microscopic equation. The solution of Eq. (16) to first order in the electric

field E is
A

s"'(zo&t, to)= —p(& E/@ f'dt'sin{R[z + f'v(t)dt]}(e p" "+e p ' ")(A e r&"'-'o& A e-rp('-to') (17)
0 tp

and the third-order solution is

s "' (z„ t, t,) = —,
'

(t& 'E '/h') f ' dt
' f ' dt" f"dt" sin{E[z,+ f' v(t)d t]}sin{E[zp+ f '

v (t) dt ]}
~O ~0 ~0 tp CQ

&& {g f t"'
(t) dt]}( p(t t ~

& e-gt'(t t'&)(-e rp(t' t"-&+ e-yp(t'-t" -&) ( ev (t' t'"
&+-e p(-t"-t'"&)

&&(A e "p"'"-'O' —A e-"p""'-'o') (18)

The atoms under consideration arrive at the point z at time t. If s("& (zp, t, tp) is the nth iteration of Eq. (16),
then define

z("&(z, t, t,) =- fdz, s("&(z„t,t,) 6(z- z, —f' v(t)dt).
'0

The ~th-order contribution to the out-of-phase macroscopic polarization is

S '"'(z, t) = f ' dt, (s '"'(z, t, t,))„,„.
The path average is taken before summing over all initial excitation times tp. The first-order contribution
then becomes

S"'(z, t)= —p(t»'&/@ f' «o f'dt'(sin{E[z f,'v(t-)«j}(e "' ' '+e ' " ' ') (A,e rp"' to& —A e-~p"-to'))

(21)

and the third-order contribution is

S(p&(z, t)= p(t&'E'/8 )f'dtp f 'dt f' dt"f" dt"'(si n{A[ z f,' v(t-)dt]}sin{E[z-f' v(t)dt]}sin{I'[z —f' v(t) dt]}

&t(t t ~
& -p-*(t--t' h ie-y, (t ~ t"

& rp(t ~ t"
&) (

-t-(t" t-"'&-+ t*(t" t'" &)---

x(A.e "" 'o'- A, e-"b(t"'-(o')&,.t.. (22)

In Eqs. (21) and (22) A, and A, have been assumed
to be constant. When the product of the three sine
functions is written in exponential form eight terms
will result.

Section IV will deal with path averages.

IV. PATH AVERAGES

The calculation of the path average for the first-
order contribution to the pol.arization must consider
the following history for a single active atom.

An atom is excited to state a or b at a time tp,
at zp in the cavity, with random velocity vp given
by a Maxwell-Boltzmann distribution W(vo). The
selection of zp's is restricted to those atoms which
arrive at point z at time t [see Eqs. (12) and (19)j.
At a later time t at point z in the cavity, the atom,
which now has velocity v, interacts with the cavity
electric fieM and acquires a dipole moment. The

I

dipole moment of the atom is wanted at a later time
t at a point z. The velocity at (z, t) is v. During
the time intervals t —tp and t- t the active atom
undergoes collisions with foreign-gas atoms that
change its z velocity.

To calculate the path average, the conditional
probability that an atom with velocity vp at point zp

at a time tp goes to z with velocity v at t and to z
at time t with velocity v is needed. The conditional
probability can be written as (see Appendix I of
Ref. 2).

f(vp, zp, tp
~
v, z, t; v, z, t)

I I I
:f(vp& zp& tp I

v zQ+ Azo t vp zp+ Azp + Az )&

(23)
I tt I

where b,gp= z —z0 and hz = z —z .
The path average of the first-order term in Eq.

(21)
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sin(g[z f («) d«])(e ~ t + e ~ )

x(p e-rz(t'-tp) g e yp(t-' tp-&) (24)

ls

(W&)&)„,„= fdvpW(50)fdbzp fdv fd«t. z fdv

xf{vo zo «o I
v', zo++zo «'; v, zo+~zo+«z', «')&"& .

(25)

f("0 zo «ol v', z, «) f(v', z' «'I 5 z «) (27)

If the medium is spatially homogeneous and the

statistical process stationary in time, f may be re-
written in the following form:

It has been assumed in Eq. (25) that the medium is
spatially homogeneous. Therefore, except for the
constraint on zo that the atoms arrive at z at time t,
the path average only considers the disp1acements
4zo and 4z and should be independent of zp.

Using elementary probability theory, the con-
ditional probability in Eq. (23) can be rewritten as
the product of two conditional probabilities, i. e. ,

f( o, o «o I

=f(vp~zo, «pl v, z, «)f(50 0, 0,
'

(26)

Because of the Markoffian character of the statistical
process, the second conditional probability on the
right-hand side of Eq. (26) reduces to f(v, z, «v,
z, «), and Eq. (26) becomes

f(vo& zot «o
I
5, z, «; v, z, «)

x (e t(-t t' &+ e-)t*&-t t' ))-(„e r~(t-' tp& p-yp&t-' to)-Ae ~ o —,e- -o,
( )

where &z = f v(«)d«.

It is useful to define the quantities

G„(v' v, « —«')= fd(«tz)f(v lv, &z', « —«)e'" " (30)

29

so that Eq. (29) becomes

(y'(&)...„=fdv, w(v, }Jdv' 'f dv G, (v, l
v', «'- «,)

x(et" G )(5'I 5 « «') -e'"—G )('I 5-« «')]-
x(g e-r &t' to& g yt(t tp-&)( ew(t -t' &+e-p t(t tae a te b

(31)
Then from Eq. (21), the first-order contribution to
S(z, «) is

S"'(z, «)= —.'()e'Z/—If) f' d«, j' d«(r &))&...„. (32)

Although the quantities ep and zp do not appear ex-
plicitly in& ", and will later drop out of the prob-
I.em, it is instructive to include them at this time.
The product Gp(vpl v, « —«0) G„(v

I
v, « —«) in Eq.

(31) clearly shows the history of an atom from «0

to t.
The same procedure may be used to evaluate the

path average for the third-order term. The con-
ditional probability

f(vot zot «o
I

v', z', «') =f(v()
I

5, azp, «' —«()), (28)
Iwhere 4z, =z -z.

Using Eqs. (24), (27), and (28), Eq. (25) becomes

(r '")„t„=fdv, W(v, ) fdv' fd(«)zp) f(vp
I

v', &zp, «'-
«())

x jdv J d(«).z')f(v lv, bz', « —«') sin(Kz —K«).z')

can be reduced to a product of four f functions of the formf(v„z), «,
I
vz, z, «). Equation (22) then becomes

S"'(z, «)=(+)("E'i~') f'd«, ft«' f'd«" f"d '«(~ 0)
tp to tp

The function (V' ')„,„ is the integrand of Eq. (22) and can be written in the following form:

( & "')y„„=(I/2i) fdv() fdv' ' ' fdv" fdv' fdv G, (50
I

5' ",«"' —«„)

x(et"'[G (5"'lv" «"-«'") Go(v"I5', «'-«") G (5'lv, «-«')

+ G, (v'
I

v", «" —«"') G-p(v'
I

5' «' «")G-)("
I
v, « —«')

+G+)(5'
I

v", «" —«'") Gp(v" v', «' —«")G, (v
I

v ««')j e '"'(G G-))

)( (e u(t t') -pt'(t -t'-))(e-y (t' t'') -yt(t ~-t'~))e ~ +e

x (
- (tett"') + e-) *(t ' -t"'

&) ($ e ra-(t " t()) g e r-b(t"'-tp&) (34)-,e

where the two terms in e' ' ' have been negI. ected.
By changing orders of time integration, S"' (z, «) and S&P&(z, «) can be written in terms of Laplace

transforms g„of the G„'s where
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Then

'("'Iv~)=f «e "G.(v'lv &) . (36)

S"'(z, t) = —(1/4i) (P E/8) fdv W(v )fdv f dv [ A, g o( o I v, y, ) —A, g (v
I

v' y,)]

xfe'"[h (v'lv»+5 (v
I

»]-""«,t(v'Iv, »+ s„(v'Iv, t *)]) (36a)

s& (z, t)=(1/64t)(y E/a) fd vow(v) fd'"[A go(volv''', y,) A go(volv'' »)]

fdv" fdv' fdv('"'&« t(v"'I v" »+&. (v'"I v" »+& i(v"'I v" »+s (v'"I v" »]
x[go(v"

I

v', y.)+so(v"
I

v' »)] [b-i(v'I v»+~- ("'I v p*)]] e '"'(8 8- )) (36b)

U = (mv+ 1IR)/(m+ M). (39)

Since the magnitude of the relative velocity does
not change after the collision, v, is given by

v', =[M/(m+M)]lv-vl8, (4O)

In the third-order contribution only the terms cor-
responding to the Doppler limit~ have been included.

The function f(vo, zo, to v, z, t) can be interpreted
as the phase-space probability that an atom at (vo,

zo, to) will go to (v, z, t) in the time t —to. f(vo, zo,
to I v, z, t) may be found by using the Boltzmann equa-
tion for the z-component motion of the active atoms

—+ v, —= J(f)sf sf (37a)
8$ Bg

where J(f) is an integral operator describing the
collisions. The initial condition for Eq. (37a) is

f(vo, zo, t,
I
v, z, to) = 6(v —v,) 5(z —z,). (37b)

Section V will be devoted to finding a reasonable
collision operator J(f) so that the expression for/„
in Eqs. (36a) and (36b) can be calculated.

V. BINARY COLLISIONS AND THE BOLTZMANN
EQUATION

For the following calculations, assume that the
active atoms have mass m and undergo binary col-
lisions with inactive atoms of mass M. The gas of
inactive atoms is considered to be in thermal equi-
librium. At any time let the velocity of the active
atom be denoted by v and the velocity of the perturb-
ing atom by 0 both measured in the laboratory
frame.

Viewed in the c.m. system the scattering process
changes the velocity of the active atom from v,
to v, by rotating it through an angle 8 (see Fig.
1). The velocity of the active atom in the c.m.
system before the collision is given by

v, =[M/(m+ M)] (v —V), (38)

where (v-0) is the relative velocity of the emitter
and perturbing atoms. The velocity of the center
of mass in the laboratory system is

I

where the unit vector 8 makes an angle 8 with the
relative velocity (v —V) (see Fig. 1). The velocity
of the active atom in the laboratory system after a
collision is

(41)

Adding and subtracting v from the right-hand side
of Eq. (41) and using (39) and (40), Eq. (41) becomes

v =v+[M/(m+M)][lv —VI 8 (v V)] (42)

Let P and q be unit vectors parallel and perpendic-
ular, respectively, to (v-0) (see Fig. 1). Pro-
jecting the vectors in square brackets inEq. (42) onto

P and q gives the result

v'=v+[M/(m+M)] Iv-V [sin8j- (1 —cos8)p] (43)

or

v = v —[2M/(m+ M)][sin —,'8P —cos ,'8 q]—
x [sin—,'8 Iv —VI] ~ (44)

The quantity in the second square bracket in Eq.
(44) is a unit vector s making an angle [—,'(8 —v)]
with the relative velocity (v —V), a,nd the quantity
in the third square brackets is the inner product
s ~ (v —0). Equation (44) then becomes

P
C..

FIG. 1. Scattering in c.m. frame. Velocity v, m. is
scattered through angle 8 and becomes v, m. . The unit

rvector 8 is in the direction of v, .m; the unit vector P is
parallel to v~.m. {and the relative velocity); the unit vec-
tor j is perpendicular to v~m .
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v' = v —[2M/(m+ M)]s[s (v —0)]. (45)

If the potential between the two atoms is U(r) then
8 is given by

where

[with Ps = (M/2Kss) and 8 = temperature] is the
velocity distribution of the perturber atoms multi-
plied by the number density of perturber atoms.
The differential cross section for the collision
(v, f) - (v, V ) which turns the relative velocity

and

ri = [mM/(m+ M)] (reduced mass),

E= 2rI~ v —0'~ (kinetic energy in c.m. system),
(46)

& =2gb E (square of angular momentum),

b = impact parameter.

The collision operator in Eq. (37a) in general is'o

J(f) = f d V fdQ
~

v —+
~

o(~ v —V ~, 8)

x [f(v')F (V') f(v) F(V-)], (47)

where

through the an .e 8 is o(~v —V ~, 8).
In practice, J(f) 'is difficult to express in closed

form for specific laws of force. In only one case,
that of Maxwell molecules [ U(r) = B/r '], can a use-
able form of Z(f) be obtained. In that situation the
product

~

v —V~ o depends only on 8.
For most applications it is sufficient to choose a

phenomenological collision kernel W(v ~v') (prob-
ability per unit time for going from velocity v to
velocity v ). In that case the Boltzmann equation
may be written in the following three-dimensional
form:

+v vi f&v'(W(~'~v)f'(i', i, t)

—W(v~v )f(v, r, f)]. (48)

Comparing Eq. (48) and Eq. (47) for Z(f) gives an
equation for W(v~ v )

W(v~v')= fdic fdn~v-V~o(~v-VI 6)

x F(V) 5 (v' —v'(v, V, 8)), (49)

where v'(v, V, 8) is given by Eq. (45).
For the laser problem, only velocity changes

along the cavity axis (s axis) will affect the polari
zation. Therefore, a collision kernel W(v, l v', ) can
be used which only describes the z-velocity changes.
Averaging Eq. (49) over all possible initial v„and
g, with a Maxwell distribution and integrating over
all final p„' and p,

' gives

W(v,
~
v,') = Jdv„W (v„) fdv, W (v, ) fdv„' fdv„' W(v~ v')

= fdv„W„(v„) fdv, W (v, ) fdVf«l v Vlo(lv--v&, 8)F(V)

x fdv„' fdv,'5(v„' —v„'(v, V, 8)) 5(v', —v,'(v, V, 6)) 5(v', —v', (v, V, 8)) . (50)

Doing the v„' and v,
' integrations gives the expected one-dimensional counterpart of Eq. (49):

W(v.
l v') = fdv. W (v.) fdv, W (v, ) fdv fd&

I
v —V

I
o(I v —V

I
6) F(V) 5(v,' —v', (v, V, 6)). (51}

The quantity v,'(v, V, 6) is given by Eq. (45) as

v,'(v, V, 8) = v, —[2M/(m+ M)] s, [s ~ (v —V)] . (52)

Figure 2 shows a typical intermolecular poten-
tial. The potentia. l usually varies as 1/r for large
values of x. The repulsive part of the potential
is not very well determined, and fits of I/r~ and
higher inverse powers of z have been used. In
order to simplify the calculation, the repulsive
part of the intermolecular potential will be repre-
sented by a hard core. The potential U(r) to be
used then becomes (see Fig. 2)

U(r) =
—B/rs for r &ro (van der Waals potential)

0() for r = ro (hard-sphere potential),

(53}

where B is the dipole-dipole interaction coefficient
and zo is the hard-core radius.

It is very difficult to calculate a closed form for
W(v,

~

v', ) from Eq. (51) using the potential (53). An

approximate form can be deduced using a computer
to simulate the integrals in Eq. (51). The following
procedure was used to determine W(v,

~
v,') for the

potential in Eq. (53). Choose and fix v,. The fol-
lowing steps are repeated many times: (i) Choose
v„and p, from a Maxwell velocity distribution.
(ii) Choose V„, V„V, from a Maxwell velocity
distribution. (iii) Choose impact parameter b at
random in the range 0-10 6 cm. (iv) Calculate
v', from Eqs. (46) and (52) for the potential (53)
by integrating the equations of motion. (b) Assign
weight Nbab I v —V I Lprobability of collision per
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V(r)

l2
rp

'II((r) = A rl2

Ar 6
0

V( r)= for r +rp

for r = rp

where (1/T) = the frequency of collisions.
After integration Eq. (56) becomes

where

I = [(m —M)/(m+M)]

(
/I

)
I

lt
II
II

rp 2rp 3ro
r

FIG. 2. Intermolecular potentials. The solid curve is
a typical intermolecular potential and the dashed curve is
a simplified version used to calculate W(v l v'). Note

that the coefficient B used in the text is Aro in the figure.

unit time associated with impact parameter in the
range [b, b+ n. b] and with relative velocity (v —V)) .
(vi) Construct frequency table, i. e. , sum up all
the weights NbhbI v -Vl of final z velocities in
bins of size &p,. For the computor calculation
8= 4. 22& 10 '6 erg cm and yo = 5. 0 && 10 ' cm.

Considering only collisions which miss the bard
core, the final z-velocity distribution is sharply
peaked around the initial velocity v, with over 95%
of the v', within 1% of v, . Collisions reaching the

hard core, however, lead to more significant ve-
locity changes. For these collisions, the resulting
N'(v, l v', ) has the form of a displaced Gaussian (see
Fig. 3).

The following discussion of one-dimensional
hard-sphere elastic collisions may give some in-
sight into the above result for hard-core collisions.
Assume all the particles are constrained to move

only in one dimension and make elastic collisions.
The same notation will be used as in the three-
dimensional case.

Using conservation of energy and momentum we

f3nd

v'=[M/(m+M)] [V+(m/M)v+ v —V ]. (54)

In the case of a collision (v' 4 v) we find

v' = [2M/(m+ M)I V+ [(m —M)/(m+ M)] v. (55)

The probability of going from v to v' is analogous
to Eq. (49):

W(v~ v')=(1/T)(P„/m) "JdVe '&"

x5(v' -[2M/(m+M)] V-[(m -M)/(m+M)]v),
(56)

P=P~[(m+M)/2M] . (56)

The results of the above one-dimensional cal-
culation suggest fitting the numerical results for
the three-dimensional hard-core collisions to a
kernel of the form

&( .
~

!)=(1/T)(P/ )"' (59)

As in the one-dimensional problem, P and I" are
functions of the mass ratio (m/M) (see Fig. 4).
In addition P and I" and (1/T) are functions of v, .
However, the v, dependence of those parameters
will be neglected in order to simplify subsequent
calculations. (Note: Henceforth v, will be de-
noted by v since only one velocity component is
under consideration. )

The conditions of equilibrium impose certain
restraints on the values of P and I'. At equilibrium,

(rn/M) = I.O

0

Vo

(m/M) = 4.0

)
a

I

I

I

I

I

I

I

I

I

I

I

I

I

Yo

(b)

0
'\

FIG. 3. {a) Numerical resultfor @vo tv) for hard-sphere
collisions with {ypg/M) = j..0. Five thousand {5000) nurner-
ical collisions were used to obtain this result. (b) Numer-

ical result for 8'(vo ( v) for hard-sphere collisions with

(I/I) =4. 0. Five thousand (5000) numerical collisions
were used to obtain this result.
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I.O

.5

5.04.00 l.0 2.0 5.0
{miMl

FIG. 4. {I8 /P) and I' as a function of {m/M) for hard-
sphere collisions based on 5000 encounters.

Simplifying Eq. (62) gives

[Pi(Pr'+ p.)]"' p(- p- '([p(1 —r') —p-]/

(pr'+P. H) =1.
Equation (63) is satisfied for every v only if

p(1 —r') = P. . (64)

For the collision kernel (59) as obtained by nu-

merical methods, it was found that the quantity

[P(1 —I'2)/P ] ranged from 0. 982 to 0. 962 for
mass ratios (m/M ) = 1.0, 2. 9, 4. 0, 5. 3 when 5000
collisions were used in each case.

In the one-dimensional model of Eqs. (54)—(58)
P and I' fulfill the same equilibrium condition.
Taking P and I' from Eq. (58) gives the required
relationship

P(1 —r') = (m/M)P„= (m/M) (M/2KsO)

= [m/2', o]= P„. (65)

The significance of the parameter I can be de-
termined by finding the average velocity (v') after
a collision in a time T:

the collision operator in Eq. (23) must vanish.
Writing J(f) in te'rms of the collision kernel (59)
in the form of Eq. (48) at equilibrium gives

J dv' [W(v
~

v') W„(v) —W(v'
~

v) W„(v')1= O, (6O)

where W(v Iv') is given by Eq. (59) and

W„(v) = (P./~)"'e-'-" (61)

Doing the v' integral in Eq. (60) gives

(1/T) e '~" —(1/&)[P/(Pr'+ P )]' '
x exp[- pp v /(pr'+ p.)]= O. (62)

r=m/M«l . (7o)

This situation corresponds to what is usually called
a "strong-collision model. " For I'= 0 in Eq. (59)
we have

W(v
~

v') = (I/~)(p/~)"'e '"'=&(v'), - (71)

which is an equilibrium distribution.
When rn»M, we have x«1 for most of the range

of v and

or

r= 1 --,'(M/m) (72)

(1-r)«1 . (73)
This case is called the "weak-collision model. "
If the collision operator d(f) is expre'ssed in terms
of the kernel of Eq. (59) and expanded to first
order in (1 —I'), the Boltzmann equation reduces
tp a Fpkker-Planck diffusion equatipn.

In intermediate cases I depends on v in contrast
to the assumption of constant P and r following
Eq. (59). For the remainder of the paper it will
be assumed that P, I; and (1/T) are independent
of velocity and that the kernel of Eq. (59) is a
reasonable good model for elastic hard-sphere
collisions.

VI. STRONG-COLLISION MODEL

When the velocity after a collision is totally in-
dependent of the velocity before a collision we find

Therefore, I" is the ratio of the mean v after a
collision to the velocity before a collision. It can
also be considered as the fraction of the original
velocity that is "remembered" or the "persistence
of velocity. "

In the case of the one-dimensional model it was
found that after a collision we have

v' = [2M/(m+M)]V+ [(m —M)/(m+ M)]v . (67)

The mean value of v' is

(v', = 1 dVW„(V)v'=[(m-M)/(m+M)]v . (68)

This direct calculation gives a 1" of [(m —M)/(m
+M)] which was obtained in deriving W(v

~

v') of
Eq. (57).

For the three-dimensional case I' can be calcu-
lated exactly for hard-sphere collisions from first
principles. ' The result given by Chapman and
Cowling is

I = [m/(m+M)]+ —,'[M/(m+M)][x-'(1

xerf(x) —x e" ] [e "+(2x+x ')erf(x)] ', (69)

where x= v/V with V= [2Kes/MP~2
If M»m, then x»1 for most of the range of v

and

(v') = T f dv' v'W(viv') = I'v (66) W(v
i
v') = A(v')
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It is required that the gas approach equilibrium
with the passage of time. Therefore, the collision
operator in Eq. (23) must vanish at t= ~, giving

mann equation (48) can be written in terms of
G„[defined in Eq. (30) as the Fourier transfoI m
of f] as follows:

f(v, ~)A(v') =f(v', ~)A(v)

This gives

A(v') = cf(v', ~);

(75)

(76)

8G 1 —z)(Kv G„(v()
~

vi T)
8'p T

I/2
2

d g e-8(v-I'v') G (v ~vt &)'T r

—+ v —= & — . [A.(v)f(v, t)j,Bf Bf 1 ()"

Bt ez „1 n.' Bv"

where

A„(v)= f dv' (v —v')" W(viv')

Using

W(
i

z
) (I/T)(p/&)II2e 8(v' I'v )--

(77)

and keeping only first-order terms in (1 —1") gives

( f) (79)
Bt Bz T Bv 2PT Bv

Equation (V9) is a Fokker-Planck diffusion equa-
tion for Brownian motion.

The kernel W(v' —I'v) of Eq. (59) can be used
for a wide range of collision problems with F be-
tween 0 and 1.

VIII. SOLUTION OF BOLTZMANN EQUATION
WITH PERSISTENCE OF VELOCITY

With W(viv') = (1/T)(P/z))Itze 8'" "', the Boltz-

that is, A(v') is an equilibrium distribution. This
was the result obtained in Eq. (V1).

VII. WEAK-COLLISION MODEL

If the active atoms are scattered by light per-
turbing particles, the velocity undergoes signifi-
cant changes only after many collisions. Section
V, Eq. (V3) gave (1 —I')«1. Expanding the col-
lision integral J(f) of'Eq. (37a) in a Taylor series
in (1 —I') givesI2

(80)
The formal solution of Eq. (80) with the initial con-
dition G„(vo

i
v, 0) = 5(vo —v) is

G„(voiv z)= &(vo —v)e "
+ (I/Z')(P/)I)Ii2 fp

x f dv'e '" " ' G„(voiv', 7') . (81)

The expressions for S'I'(z, t) and S'2'(z, t) [Eqs.
(36a) and (36b)] involve () „, the Laplace transform
of G„[see Eq. (35)]. Taking the Laplace trans-
form of both sides of Eq. (81) gives the integral
equation

g„(vo iv, n) = &(vo —v)[n' —z)(KV] '

+ (1/T)()3/)I)' [n' —i)&KV] '

x f dv' e 8'" "'' &„(voiv', n), (82)

where n' =n+ 1/T.
A solution of Eq. (82) can be found by iteration

with the following sequence of equations:

g(o)(vol v, n) = 5(vo v)[n' —I ~-KV]-I,

g„'" '(v,
i
v, n) = (1/r)(p/)I)' '[n ' —i)(KV] '

X J d i e-8(v-I'v')2 g(N-I)( i p

(83b)
It can be verified by induction that the solution of
(83b) is

~„'"'(vo
~
v, n) = [(1/T)(P/)I) ] (n' —zi(Kvo) (n' —z)(KV) exP [—(P/&)()(v —I'"vo) ]

x f f dv dv2 g exp(- (Pt)„/t)„ I)[v„—(I'v„,I + 1"" vo/&„ I)(&„ I/t), „)]g[n' —i)(KV„], (84)
fI-2

where &„=(1 —I' )/(1 —I' ), v)v, I = v, and

g„(vo
i
v, n) = Z 8 (")(vo

i v, n) .
N=P

For )(= 0, Eq. (84) simplifies to

Bo '(voiv, n) = (1/n')[1/(n'T)]

x exp[- (P/~„)(v —I'"v,)'] fP/(~t2, )]I", (85)

so that

Bo(voiv, n)= ~(vo —v)/n'+ n' ' 2 (Tn')"¹g
x [P/()IS„)]"2 exp[-(p/&8)(v —I'"vo)'] . (86)

Equation (86) is identical to the result of Keilson
and Storer. ~2

IX. CALCULATION OF INTENSITY PROFILE

For both S '(z, t) and S' '(z, t) [Eqs. (36a) and

(36b)] the following integral R(v') is required:
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R(v')= f dvo W (vp)[/)&. (&p(vo v ', y,') R(v') =XW (v') (88)

where

—Ao eo(vo I",yo)], (87)
where

i( = [(~./y. ) —(/l. /y, )] (89)

W~(vp)= [1/(u )()] e "o "~

u„o = 13 =P(1 —1 )=u (1 —I' )

Using (86), (87) becomes

is the unsaturated population inversion of the
active medium. The significance of the result
given in Eq. (88) is that a gas starting in equilib-
rium wall remain m equ&lxbrzum.

Using the solution for (&„[Eq. (84)], to first
order in (1/T) for low pressures, in Eq. (36)
gives

S(& &(», t) = ——,
' f(/(PpE/h) sinK» f dv' W„(v') f dv (5(v' —v) [Ii' —iKv]

+(I/T)[I/(ua)()P/P[ii' —iKv] i[g' —ihv'] ' exp[- (1/u )(v —I'v') ])+c.c.
where

I/' = y.o
—i(o) —v) + (I/T)

Recognizing the plasma dispersion function

Z(p', u) = iKu [I/(u'p)]"' fdv e-"""'[ii'+iKv] ',

(90)

(91)

we find that Eq. (90) reduces to

S' &(», f) = ——' fi(P E/Ii) sinK»((iKu ) Z(p, ', u ) + (1/T)[I/(uo&/)]i/P(iKu) i

&( f dv W„(v)[p' —iKv] Z(tu' —iI'Kv, u)J+c. c. (92)

In the Doppler limit where [y'„/(Ku„)]« I, the plasma dispersion function is approximately

where
Z((((', u)= i)&' 'e "~ '""' —2iii'/(Ku),

//'; = Im(//' ) = —((d —v),

(93)

)(('„=Re( p,
'

) = y,„+1/T .

The expression for S i&(», f) in the Doppler limit is then

S' '(» t) = —)(i/ N(P E/h)(Ku ) sinK»(e '" "' /'»" ' [I+a»i e '" "' " ' /(»"& ] —2y,'„/(Ku„)J

where &= (KuT) '.
The expression for S'o'(», f) [Eq. (36b) J can be evaluated using similar techniques. To first order

in (1/T) we find

(94)

S(o&(», t) =,', (F'E'/h')i(/sinK» 2 (1/y', )(iKu ) '(/i' 'Z(li', u„)+(2y,'„) '[Z(//. ', u )+Z(p, '*,u„)]]
a=a, b

+ (1/T)(iKu„) i(1/y')((2Ii') ' f dv W„(v)[Z(p,'+i I Kv, u) +Z()((' —iI'Kv, u)][(ii' —ihv) '+ (ii' +iKv) ']

+ (2y,'o) i f dv W (v)[Z(p, '*+iI'Kv, u)+Z(p' —i I'Kv, u)][(p,' —iKv) i+ (p,'*+iKv) i]]

+2y' '(1/T)(iKu )
' f dv W (v)Z(p, ' —irKv, u)(li'+iKv) '

+ 2y (1/T)(iKu ) f dv W„(v)Z(/), ' —iI'Kv, u)()(i'*+iKv) &

In the Doppler limit, Eq. (95) reduces to

S"'(», t) =(I/8)(5"E'/h')iV&)' '(y, y, ) 'e '" "' '"~"[I+I'(o) —v)+ c&(' 'Z'(o) —v)

~ (
-((v-v) (1-1 )p/ (»lg)o -(4I v) (i r& / (»+u)p

) + 2e 1/2 -(~-v& (i-r& / (»»2 2 2

1/2 ) &( ) p+ i -(e-v) (1-1') / (»g) -(ru-v) (1+r) / (»»
]

2 1+7 ~ (EC (96)
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where f((u —v)=(5' E /h )(y,y, ) (98)

&'(~ v ) = y'.
& [y!&+ (~ —v)'] '.

Taking the projections of S' '(z, t) and S' '(z, t)
on the cavity mode [this merely eliminates the fac-
tor sinKz in Eqs. (94) and (96)] and substituting the
result into the amplitude equation (8) at steady
state (E = 0), we find that the following equation
results: X =N/Nr . (loo)

and the threshold population inversion density
N~ as Nwhen I=O and &=v, i. e. ,

N, = (~,/q) [(IKu„)/(&'~"')]

x [1+en' ' —(2y,'„)/(m Ku )] . (99)

Let

0 = eoE/Q + S' '(t) + S ' '(t) .
Define the dimensionless intensity as

(9V)
To first order in a= [KuT] the intensity of the
laser is

f(co —v) =8[(y,'y&)/(y, y&)](1+ Em l —&'" "' ' " ' [(2y',q)/(m' Ku ) +& (1+ex ~ —2y,',/Ku~ ~ )]].

xLZ'(&u —v)[1+en. ~ (1,+l )] +1+2am ~
& +pm ~ (y'yq) (y', +yI )(l, +l )}, (101)

e = (Ku T) '= (KuT, ) 'p, (102)

where

f, = exp[- ((u —v) (1+1")'/(Ku) ].
The frequency of collisions 1/T is directly pro-

portional to the number density of atoms in the
laser cavity and is therefore directly proportional
to the pressure p. Thus, we have

where 1/T& is the collision frequency per torr.
Figure 5 shows a, plot of Eq. (101) as a function

of & —v for various values of the pressure p. At
each pressure the relative excitation & is kept
constant.

Figure 6 is a plot of the maximum intensity I ~
and the intensity at the central tuning dip Idfp for
each tuning curve in Fig. 5 as a function of pres-
sure. The nonlinear variation of I and I«, with
pressures comes mainly from the coefficient
A= (y', yt', )/(y, yt, ) in Eq. (101). Recalling that (1/T)
= (p/T, ), we obtain

10.0

20.0,

15.0

5.0

I O. 0

5.0

0
(au- v) / ( Ku )

FIG. 5. Intensity P) as a function of detuning [((d —v)/
(h'Nm) 1 for various values of the pressure. For this plot,
Em~=5000 MHz, (1/Tf) 58 MHz~ &a = 17.7 MHz, and )/&

= 8. 3 MHz.

0
0 t.o

Pressure (Torr)
l.5

I

2.0

FIG. 6. I~ and Id&~ for tuning curves as a function of
pressure. The parameters are the same as in Fig. 5.
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& = (r.rb)
' [r.rb+ 2r.bV /&~)+ (PIT&)'] (103)

(104)

where 5& is the broadening factor per torr from
phase-changing collisions [see paper I, Eq. (].44),
for definition of 6= 5g]. In that case the maximum

This increase of laser intensity with pressure
comes basically from a reduction of the third-order
(or saturation) term. An atom gives up energy to
the radiation field and then makes a deflecting col-
lision before it can reabsorb any radiation at the
same frequency.

If there were no deflecting collisions and only
phase-changing collisions [see paper I, Eq. (126)),
1/T = 0 and A becomes

intensity would have a linear variation with pres-
sure.

Thus, if the tuning curves are measured as in
Fig. 5 with % constant, the existence and magnitude
of the effect of deflecting collisions can easily be
determined. It is not expected that the coefficient
A[Eq. (103)] will be as simple as the pure velocity-
changing case, but the major effects of deflecting
collisions can nevertheless be discerned.

The detailed features of the tuning dip will not
be discussed here. In general, the dip shows
the effects of phase-changing collisions. The fine
structure determined from Eq. (101) will be use-
ful when there are only velocity-changing collisions
present. This might be the case in some molecular
lasers.
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A thorough reanalysis of the early measurements of pleochroic halos in light of today's stan-
dards and knowledge indicates that, contrary to widespread belief, these halos do not provide
proof that the laws of radioactive decay are constant in time.

Qne of the great bedrocks of physics and astron-
omy is the belief that physical processes are in-
variant over cosmologically long periods of time.
Despite the fundamental importance of this belief,
there is extraordinarily little direct evidence of its
validity.

Qne very familiar piece of evidence comes from
the examination of the identifiable spectral lines
of distant galaxies. The frequencies of these lines
appear to have been the same at the time of their

creation (billions of years ago) as the frequencies
of equivalent lines created today in terrestrial lab-
oratories. Qbservable differences between these
two sets are attributed (almost certainly correctly)
to the Doppler red shift caused by galactic reces-
sion.

There is another piece of evidence often cited,
considerably less familiar however, which has
been around for over 60 yr. ' This is the informa-
tion obtained from geological phenomena known as


