
L2-L3X COSTER- KRONIG TRANSITION PROBABILITY AT Z = 82 13

in Proceedings of the International Conference on Electron
Capture and Higher Order Processes in Nuclear Decay,
(Kultura Bookexport, Budapest, 1968), p. 264.

J. M. Palms, P. Venugopala Rao, and R. E. Wood,
Nucl. Instr. Methods 64, 310 (1968); IEEE Trans. Nucl.
Sci. NS-16, 36 (1969).

~~R. E. Wood, J. M. Palms, B. Puckett, and P. Venu-
gopala Rao, Nucl. Instr. Methods 94, 245 (1971).

T. Kobayasi and A. Morita, J. Phys. Soc. Japan 28,
457 (1970).

~6M. H. Chen and B. Crasemann (private communica-
tion).

PHYSICAL REVIEW A VOLUME 5, NUMBER 1 JA NUAR Y 1972

Perturbative Studies of the 25 Lithium Atom: Total Energy and Hyperfine Interaction

J. M. Schulmant and W. S. Lect
DePartment of Chemistry, Polytechnic Institute of Brooklyn, Brooklyn, Negro York 11201

(Received 22 April 1971)

Double perturbation theory has been applied to the calculation of the total and hyperfine in-
teraction energies of ground-state lithium. The effective one-electron potential used contains
only the Coulomb terms which arise from the 1s- and 2s-electrons, multiplied by a factor of
3 for correct asymptotic screening. The first-order perturbed wave functions in correlation
and the hyperfine interaction are obtained by a numerical finite-difference solution of their
respective two- and one-particle inhomogeneous differential equations. Convergence of both
expansions is rapid, giving a total energy of —7.4793+ 0. 0038 a.u. and a spin density at the
nucleus of (2. 850+0. 076)ap, in good agreement with their accurate counterparts: - 7.47807
a. u. and 2. 9096ap .

I. INTRODUCTION

In recent years perturbation theory has made
important contributions to the solution of problems
in atomic physics. Yet there have been relatively
few perturbative treatments of lithium, one of the
simplest atoms and prototype system for studying
atomic S-state hyperfine interactions. Further-
more, the question of how to choose Hp for rapid
convergence remains unresolved, ' both in the
Rayleigh-Schrodinger (RS) and many-body formula-
tions. In this paper we apply RS perturbation
theory to obtain the S Li nonrelativistic total energy
and hyperfine interaction (or equivalently in the
point-nucleus approximation, the nuclear spin den-
sity) using a local "exchangeless" one-electron ef-
fective potential. " This potential leads to zeroth-
order energies and spin densities at considerable
variance with Hartree-Fock values. However, as
will be seen, the convergence of the expansions is
rapid. Moreover, the local nature of the potential
greatly simplifies the calculation and is thus in the
spirit of perturbation theory.

In addition to assessing the effect on convergence
of a new kind of potential it was also of interest to
see whether the perturbation treatment could be
implemented by direct numerical finite-difference
solution of the relevant ordinary and partial in-
homogeneous differential equations which arise in
the hyperfine and total energy treatments, respec-
tively. This would obviate the completeness and
convergence problems associated with. expanding
in analytic basis functions or numerical single-

particle states. Moreover, it is especially desir-
able to compute nuclear spin densities by accurate
numerical methods since even for the relatively
simple problem of the the restricted-Hartree-Fock
(RHF) S Li spin density a wide range of values
[(2.065-2. 097)ao~], where ao is the Bohr radius,
has been obtained (both analytically and numerical-
ly). For the correlation problem there are now
accurate finite-difference methods for obtaining
numerical solutions to the first-order pair correla-
tion equations. '~3'4 We report here their use for
the first time in obtaining third-order energies for
a system with more than two electrons and in ob-
taining nuclear spin densities as well.

Some historical remarks can be made about pre-
vious lithium atom perturbation treatments of both
hyperfine interaction and total energies. For the
former, it was hoped that the simple but important
physical effect of exchange or core polarization,
when treated perturbatively at the orbital level of
approximation would be sufficient; in fact, how-
ever, correlation contributions are not negligible.
Recent attacks on this problem have been ex-
pansions in Hylleraas variables, the Bethe-
Goldstone method, 7 "best spatial orbital methods"
(referred to as BRNO, ' SOGI, ' or SO-SCF"), the
variation-perturbation method" and linked-cluster
many-body diagrammatic theory. '~ All of these have
now been quantitatively successful for S lithium;
however, the most powerful and general seem to
us to be the perturbative methods since they express
the spin density as a sequence of decreasing terms,
allowing convergence to be "watched. " (The Bethe-
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Goldstone expansion is formally also a hierarchy
of corrections. )

For the total energy, the bare nucleus or Z ex-
pansion through third order in correlation has re-
cently been realized. '3 The result obtained,
—V. 472 62 a.u. , is in moderately good agreement
with the accurate value, —V. 4780V. '4 A better
value has been obtained by Chang, Pu, and Das
in the many-body perturbation treatment based on
a V" ' potential. This paper presents new pertur-
bative treatments of both the hyperfine and total
energies which are good through second and third
orders in correlation, respectively. Comparison
with the previous calculations is made in the final
section.

II. GENERAL

A. Formulation of Perturbation Problem

Consider the nonrelativistic Hamiltonian for the
lithium atom excluding all magnetic terms but the
Fermi contact interaction between the nuclear and
electron spins":

+3 my, y„,i Z s,b(r, ), (1)

These are only formal expansions, however, since
representation of the hyperfine operator by a 5
function results in divergencies past the first-order
correction. The latter linear hyperfine interaction
energy (E„„)is merely the expectation value of
p, 80& over the exact nonrelativistic wave function
and can be rewritten (with 1 = 1) as

Eh!I P(E»+ +11+E21+ ' ' ')

that is, the sum of all terms first order in nuclear
spin. Analogously, the total nonrelativistic energy
E«, is given by

E«t = &0+ E~o+Eao+ Esp+ ~

The terms written explicitly in both of these ex-
pansions are the ones computed here.

The choice of one-electron potential V(r, ) in ho(i)
is dictated by a compromise between convenience
of calculation and rapidity of convergence. Taking
t/' to be spherically symmetric, spin independent,
and identical for each electron, and thus eliminat-
ing, for example, unrestricted Hartree-Fock (VHF)
and Hartree Cp's, we obtain

[a„a]= [a„s']= o;
therefore an initial choice of a "restricted" pure
doublet 40,

where I is the spin of the Li nucleus of gyromag-
netic ratio y «. Choosing the nuclear spin to lie
along the g axis and using the identity

6(~) = 4m'6(r), (2)

we may rewrite the Fermi contact perturbation in
terms of the radial spin density operator ao~ (the
subscript anticipating a double perturbation ex-
pansion) as

j.
~+01 3 YeXLf +0& &

(3)

with

a„=2K,. s.,[6(r,)/r, '] .
To render the perturbation procedure tractable

it is necessary to divide the noncontact terms of II
into an Hp, the sum of identical one-electron Ham-
iltonians

a, =E,. a, (z) =Z, [--.' V, '-(3/~, )+ V(r, )],
and a residual correlation term, &II». Thus, we
have

aO, &) =a,+~a„+&a»,
and we seek to expand the total wave function 4 and
total energy E in the double power series

4'0 = 8 ls(1) 1s(2)2s(3) o.'(1)P(2)n(3), (lo)

will lead to an exact nonrelativistic 0 which satisfies
the Pauli principle and is an eigenfunction of S2
to all orders in 1 (zeroth order in p).

It should be pointed out in passing that although
there is considerable prejudice against the UHF
function as Cp because it is not an eigenfunction of
S, at least for S Li the convergence in spin space
to (S') = —,

' must be exceedingly rapid since through
first order in & it is already 0. 750 02.

In the present treatment, however, we will pro-
ceed within the restricted zeroth-order formalism.
Two examples of hyperfine treatments based on
spin- independent identical one- electron potentials
have been carried out for S Li through first order
in ~. Cohen and Dalgarno'7 have obtained the spin
density in the bare nucleus or Z expansion and in the
screened g expansion, in which the effective nuclear
charge is chosen to make the first-order correction
vanish. The bare nucleus treatment is highly
oscillatory leading to 1.5ap, while the latter has
only part of the apparently dominant term linear in

g, giving 4. 7. The experimental value is 2. 9096.
The second example, the RHF treatment, is based

on [for notation, see Ref 1(a)]

V(~) = 2[ —isl —ls]+[- 2sl —2s]
+=+0+&A„+I e„+Z~e„. ",
E = Ep+ &Ejp+ pEpg+ A p.Egg+ ~ ~ ~

(6a)

(6b)

—[ —Isl 1s —]——,
' [—2sl 2s-],

(»)
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where the exchange term has been averaged over
the o. and P spin directions. The leading term in

Ehf, is proportional to the 2s radial density at the
nucleus

where

B. Perturbation Expressions

z„= IR„(0)I',
which is -2. 1 (of course, for the P state the
zeroth-order contribution would vanish}. The cor-
rection first order in correlation may be shown to
be identical to both (a) the first-order correction
(in the spin-dependent exchange perturbation) in
going from RHF to UHF and (b) the moment pertur-
bation corr ection discussed below. Using method
(a), Cohen et a/. ' have obtained 0. 63apo, and

Gaspari, Shyu, and Das'9 have used a local approxi-
mation to the HF potential in (b), obtaining 0. S9ap .
Thus, the RHF expansion probably converges rap-
idly, though as will be seen later, not any faster
than the exchangeless potential used here.

Finally, we should mention that the many-body
expansion, '~ which is the only perturbative calcul. a-
tion for the lithium atom spin density going beyond
first order is also based on a restricted 4p using
the nonlocal potential

V (r) = 2[ —isl —ls] —[ —ls
I
ls —] (ia)

hp(i) =--', V, '-3/r, + V(r,),
with V(r;) from Eq. (13) and where

ho(i)ns(i) = s;ns(i), n = 1, 2 .

(i4)

(is}

We write ns=R Ypp=P Ipp/r, where P„, is found

by the usual Hartree-Numerov numerical finite-dif-
ference procedures. The correlation perturbation
Hqo is given by

which contains the HF orbitals. It is formally ob-
tained from Eg. (11) by dropping terms involving
the 2s orbital.

The V with which we will work here is rather
different from Eqs. (11) and (12), namely, the local
or exchangeless potential

V('„) =-', (2[- lsl —ls]+[- asl —as]&,
where the orbitals need not be fully self-consistent
and were arbitrarily iterated until the energy con-
verged to 0.001 a.u. A potential of this kind is the
three-electron analog of the Hartree potential for
helium, ~' but with electrons treated identically;
the factor of —,

' gives correct asymptotic screening
due to two electrons. Moreover, this choice of
potential simplifies the perturbation problem
greatly since the absence of nonlocal terms obviates
an iterative solution to the pair problem.

As a summary, then, our expansions are based
on

By substituting the expansions for 4 and E into
the Schrodinger equation, we obtain for E„,

Eo= 2&ss+ &as ~

Eio= &OIH&pl 0)

E20 &0
I
H10 Elpl 10&

zoo = &10
I
H» —E&p

I
10) —2&0

I
10&z»,

(17a)

(17b)

(17c)

(17d)

Eog ——&0 Hpgl0) =Ro,(0),

E11 2&0 IHlo Ecol 01& = 2&0
I Hpl zoll 10)

Eot = 2&10
I
H&o E&o

I
01& + &10

I
Ho& Eo&

I
10&

(19a)

(19b)

—az»&10 0) —azoo&OI 01) . (19c)

Here, the wave-function first order in the contact
perturbation, 4 p&, is the solution to

(Ho-Eo)
I
oi& = (Eol H01) IO& . (20)

From Eg. (19b) it is seen that there are two in-
dependent ways to compute Ez&, using either 4 p&

(the moment perturbation method'o) or 4 ~o. We
will thus have a convenient check on the internal
consistency of our numerical procedures. Finally,
knowledge of both first-order perturbed functions
enables calculation of Eai.

III. SOLUTION OF CONTACT PERTURBATION PROBLEM

From Eq. (20), we seek to solve

(5~, ho(i) —a&~, —eo,) I
01)

=(E i-2Z) s.g(s(r, )/r, ''I)I0& (21)

It may be seen by direct substitution that the solu-
tion to this problem, written in terms of 6-per-
turbed spatial orbitals 1s' and 2s' is

I
01) = 8 [ls' (1)1s(2)2s (3) —1s(1)1s'(2) 2s(3)

where the correlation-perturbed wave function 4 fo
is the solution to

(Hp Ep)
I
10) = (E~p H~p)

I
0) (18)

By repeated use of interchange relations we ob-
tain for Ehf, (taking the wave functions to be real)

Hgp= H —Hp -—Q g(ij)-,
j&j

(i6)
where

+ ls(l)ls(2)as'(3)]o. (1)P(2)n(3), (22)
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(ho —E„,)ns' = (R„,(0) -(5(r)/r}) ns, n= 1, 2 .
(23)

The solution 4'0& is unique except for a possible ad-
ditive term in 4 0. This we make vanish by orthog-
onalizing the perturbed orbitals to their unperturbed
counterparts.

Solving Eq. (23) poses no difficulty so long as the
6 function and the logarithmic singularities are
first removed, the latter because terms such as
xlnr and z lnz are not amenable to numerical
finite-difference approximation for small z, and it
is our intent to solve for the perturbed orbitals
numerically rather than by basis set expansion.
Thus we proceed as follows. Writing

be mapped onto a mesh [here 0. Olao from 0 to
20ao], the second derivative approximated by a
three-point finite-difference formula, and the re-
sulting band matrix equation solved by successive
forward and backward substitution. We have found
that a better boundary condition than the require-
ment that the perturbed orbital vanish at large x
is the assumption that y„,|/y„=y„/y„„which, in
turn, equals a constant, solved for iteratively.
This allows the value at the last [(n+ l)th] point to
be nonzero and is, in the spirit of the Cooley
limit, used to find the unperturbed orbitals.

A useful identity serves as a convenient test of
our computational accuracy:

ns 2R (0)y (r) Yoo/r

where

(24)
&ls'

I
2s& + &2s'

I
ls& = 0 . (29)

This may be obtained by substitution of the formal
solution for ns in terms of (ho —q„,) into Eg. (29).
We find that

(ls'
I
2s& = 20. 0664, (2s'

I
ls) = —20. 0613,

dg„, 6
2' + —-2U+ &ns ns=~ns 0 Pas ~dx (25)

That logarithmic terms are contained in g„, is seen
in the simple example of the hydrogen atom 0" for
which

y„= (1 2rlnr 2r—')e-
Moreover, with an effective potential U present,
g„, contains also terms like r~lnr whose second
derivative is rapidly varying and which should
therefore also be removed. Thus, we write

P„,= (1+a„,r + b„, l rn+rc„,r lnr)e '+y„,(r),
(26)

where the constants a„„b„„ancd„,(the factor
e '" eliminates terms in r lnr) are chosen to be

a„,= V(0) —e„,+22. 5,
&ns= -6

~

c„,= 9 —2[V(0) —6„,] .

(2Va)

(2Vb)

(27c)

The remaining function y„,(r) is then numerically
well behaved and is the solution to

dy„, 6
2 + 2U+ 2~ns ~ns + +ns +

dx (26)

with y(0) = y(~) = 0, and g„,(r) containing at worst
terms like x lnz. The differential equation may

and using the identity

V'(1/r) = —5(r)/r ',
we introduce a new 5 function on substitution into
Eq. (23) which identically cancels the one present. 0'

The function p„, is obtained by solving

which sum to 0. 0051, in error by only 0. 03 /0

relative to each term. The large magnitudes
of these overlap integrals stem from the fact that
they contain Ri, (0)- 8. 9 and R~,(0)- —2. 1, and make
it necessary to treat the behavior at the nucleus
with great care. The appropriate procedure is to
expand the numerical solution P„, in a power series
in x about the origin to start the outward numerical
integrations. When the final solution is obtained,
P„,/r is extrapolated to r=0.

= [Cz -g(12)]ls(1)2s(2) + Cols(2)2s(l) . (3lb)

Here, the constants C&, C2, and C, are required
to make the inhomogeneity orthogonal to the homo-
geneous solutions and are given by

C, = (ls(l)ls(2)
I
g(12)

I
ls(1)ls(2)&, (32a)

Cz = (ls(l)2s(2)
I
g(12)

I
ls(1)2s(2)&,

C, = (ls(l)2s(2) Ig(12)2s(1)ls(2)) .

(32b)

(32c)

IV. SOLUTION TO PAIR-CORRELATION PROBLEM

We have previously shown" that the wave function
first order in correlation, 4 &0, can be written in
terms of intrashell, U&»„and intershell, U1s2s
spatial pair functions:

@&0= @{Uia~(12)2s(3)+ (1+P,2)ls(l) Ui, q, (23)}

x a(l)P(2)ry(3), (30)

where the pair functions are solutions to

[ho(l) + ho(2) —2@q,]Ui,&,(12) = [Ci -g(12)]ls(l) ls(2),

(3la)
[ho(l)+ ho(2) —eg, —e~,]Up,2,(12)
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To correlate the ls-2s pair only one U&,&, pair
function is required, however, if desired the usual
singlet and triplet pairs may be projected from it
as discussed in Ref. 1(a).

When the expansions of the pair functions in
spherical harmonics,

U~,„,(12)=~, [(2l+ 1)/47(]U~', „,(rq, ra)I', (cos6,z)/(r~r2),

n= 1, 2 (33)

and the Neumann expansion of ~&2 are substituted
into Eq. (31) the equations for the U ' decouple.
For example, for the U»&, pair we obtain the equa-
tions

s' 3 t(f+ 1)() +P~a) ——,——+ + v(r~)) —2&~, Ui,'~,
2 O'I/g Jy 2t g

~l
5 l0(Cl+ 2 I. F(rl) + ~(+2)]]

21 1 l+12l+1 x&'

x ~„(r,)Z„(r,) . (34)

To effect solution of Eqs. (34) and their analogs for
the U&,&, case, the square in x&-xz space from 0
to 20go in each direction is divided into four re-
gions. An inner square extends from the origin to
4ao along both x& and x& and is partitioned by a mesh
(0. 1x 0. 1)ao. On the sides of this square are two

rectangles, each (4&& 16)ao which are sectioned by
rectangular meshes (0. 1x0.4)ao; finally, the re-
maining large (16& 16)ao square contains a square
mesh of (0. 4x 0. 4)ao. The reason the outer regions
can be treated by a coarse mesh is that the pair
functions die off rather rapidly outside the inner
square and therefore these outer regions make

relatively small contributions to the perturbation
terms. (An exception is the term E2q in which ap-
proximately 30% of the value is obtained outside
the inner square; however, this term is sufficient-
ly small already that large errors in it are toler-
able. )

In each region the differential equation is mapped
onto the relevant grid, using a five-point finite-
difference formula to approximate the two radial
second derivatives. The resulting algebraic equa-
tion involves a banded supermatrix of the form
shown in Fig. 1 of Ref. 1(a).~ The solution to this
equation is obtained in the following way. Working
first with an inner (5&& 5)ao square we impose the
boundary condition U, ,~/U~ = U, /U, q, the analog of
that used in the one-dimensional case, Eq. (28).
Now the limiting ratio varies somewhat around the
periphery since j symbolizes a pair of ~&-x& co-
ordinates, but values of U on an inner (4& 4)ao
square remain constant to at least eight decimal
places, no matter which ratio is chosen. Thus the
solution on the inner 4&4 square is known and its
values on the periphery then serve as inner bound-
ary conditions for the three outer regions. Notice,
of course, that whenever x& or x2 equals zero there
is no difficulty with boundary values since U then
vanishes.

There are a number of independent checks on the
validity of these procedures and we mention only
one at this time. In analogy with the one-particle
identity, Eq. (29), we may show that

(ls(l) ls(2)
~

U~,z, (12)) +(ls(1)2s(2)
~

U&, &,(12)) = 0 .
(35)

This follows since, from Eq. (3la), we have

= (q„—e„) '(ls(l)2s(2)
i
g(12) ls(l) ls(2)),

and an analogous result with opposite sign is ob-
tained from the second term of Eq. (35) and the
formal solution for U»». We find that

(ls(1)ls(2)
i U„a,(12)) = —0. 028 08,

(ls (1)2s (2) i U„i (12)) = 0. 028 73,

which give a difference of 0.00065, in error by
only 2P~. This error is, of course, larger than that
for the perturbed orbitals which are obtained on the
much smaller one-dimensional mesh.

V. EVALUATION OF TOTAL ENERGY

A. Energy Through First Order

We evaluate the energy through first order using

40 in Sec. VA and through third order using 4» in
Sec. V B. From the orbital energies (in a. u. )

&s= 2 0469
~ ~p = 0 2376

we obtain Eo as

Eo = 2c~, + eq, ———4. 3314 .

This result is rather different from the RHF Eo
equal to —5. 15182 obtained, in turn, from

—2. 477 75 and e2, ———0. 19632. The difference
stems largely from the fact that the exchangeless
1s orbital sees a greater 1s Coulomb potential than
the HF ls orbital (+3 vs 1 electron), while the ex-
changeless 2s orbital experiences a lesser 1s po-
tential than its HF counterpart (+ vs 2 electrons).
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Values of Ep differing from the HF result are also
obtained in the V~ ' and bare nucleus expansions.

To obtain E,o we use Eq. (17b) and find that E„(1s,1s; l ) E20 (1s, 2s; l )

TABLE I. Second-order energies of 9 Li (a.u. ).

E,o= [lsls
i
lsls J+ 2[ls2s

i
ls2s J

—[ls2s i
2sls J

—2(ls Vlls) —(2sl Vl2s),

0
1
2
3

—0.003 78 (- 0. 003 40)
—0. 026 39(-0.026 39)'
—0.004 10
—0.001 22

—0.035 22(—0.03108)
—0.003 32 (-0.003 31)
—0.000 36
—0.000 09

where the order of the electrons is implied by the
order of the orbitals: (abc) —= [a(1)b(2)c(3)). Evalu-
ation of these integrals by trapezoidal rule on a
mesh of 0. 00lap furnishes, to four-decimal ac-
curacy,

Eio = 3- 0818

Ep+Eqp = 7, 4132

which is in good agreement with the HHF energy,
—7. 432 73. '

B. Second- and Third-Order Energies

The evaluation of Egp and E3p is considerably more
complex, involving large numbers of two- and
three-electron integrals. We compute E2p from
Eq. (17c) as

E,o= ((1 —P„)lsls2s
i
3 r;,' —Q V(r;) —E,oi

x(U„„(12)2s(3)+ (1+P, )ls(I)U„,(23)t)

Since the pair functions contribute additively to E2p
and, in turn, the contribution from each pair is the
sum of contributions from each l [cf. Eq. (55) of
Ref. 1(a)J,we may write, in obvious notation,

E =Q, E (ls, is;l)+Q, E (ls, 2s;l) .
Values for the individual terms were obtained by
numerical integrations and are give. n in Table I.
Convergence in l is extremely rapid and requires
only values of l ~3 for three-decimal accuracy.
Also, as seen from the values in parentheses for
l =0, 1 which give the contributions from the inner
(4x4)ao square alone, the exterior three regions

—0.035 49
l =0 + 0.
Tot,al —0.074 48 —0.0015

—0.038 99

—0.069 95

Values obtained solely from the inner (4x 4)ao square.
For l =2, 3 the exterior regions .make negligible contribu-
tions. The total second-order energy computed on the in-
ner square is 94% of the total.

"Error estimates are obtained by extrapolation to zero
mesh as described in the text. The second-order energy
is in error by 2% at most.

E~p ———0. 0752+ 0. 0008,

Ep+E)p+ E~p = 7, 4884+ 0, 0008 a u.

The error is approximately 2% and is consistent
both with that found for Eq. (35) and also with the
spin-density results given in Sec. VI.

Finally, E,o may be computed from Eqs. (17d)
and (33) as

need not be considered for l & 1.
Summing Ezo(ls, ls; l) and E20(ls, 2s; l) we find that

the two pair functions make approximately equal
contributions to E,p of —0. 035 49 and —0. 038 99,
respectively, giving a total E2p of —0. 07448. The
accuracy of this number can be assessed by the fol-
lowing argument. Since 94% of Eho comes from the
innermost square (mesh, h =0. 10) only this region
need be studied in detail. By recalculating the inner
square for the mesh h =0. 11 and assuming an even
power-series expansion in h of Epp,

20(~) 201h=0+~ E20I h=o+ (&')

we obtain E„(8=0)=—0. 07598. Thus we may re-
express our result in terms of a symmetric error
bound as

E,o= (Q, (U,'„,(12)2s(3)+ (1+P,a)ls(l)U, ',h, (23)j~g r, ,' —5 V(r, ) —E,o~

x (1 —P„)P, , '(U„'„(12)2s(3)+ (1+P, )ls(1)U,", ,(23)))

—2E2O((1 —P,h)ls(1)ls(2)2s(3) ~Z) (Ug', g, (12)2s(3)+ (1+Pg2)ls(1)U, ',2,(23)t) . (37)

Pairwise additivity is no longer present in E3p,.
however, the contributions to E3p, obtained from
expressions analogous to Eq. (58) of Ref. la can be
indexed in the following manner. We define E,o(l)

as the sum of all contributions to the third-order
energy obtained from using pair functions up to and
including angular momentum l, minus the sum of
all contributions obtained using pairs good through
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TABLE II. Contributions to E30 and E~& indexed by E

value.

Total

830(E)(a.u. )

—0.0086
0.0130
0.0032
0.0015

0.0091

Z„(i)(a-, ')

—0.151
-0.147
+ 0.000
-0.001

-0.299

l —1. For example, E~o(0) is the sum of all terms
resulting from U,„,and U,,z, in Eq. (37), whereas
E~o(1) is the sum of all terms resulting from U,„„
U&», U&', &„and U~», minus E3Q(0). By definition,
the E~o(l) sum to E30. Using the values given in
Table II we obtain

E =y, E (l) =0. 0091 .
The convergence in l is again rapid, indicating that
l «3 is sufficient for an accurate value of E3o.

Again, also, the bulk of E~o (80%) comes from the
inner (4x4)ao square and calculation on the outer
square is unnecessary for l & 1. From examination
of the dependence of the total value of E,o on h we
can give a conservative error bound of +0.003.
Thus, the total energy is given as

Et t = Eo+Eio+ Eao+ Eso = —7- 4793 + 0. 0038 a. u. ,

which is in excellent agreement with the accurate
nonrelativistic value, —7. 478 07. '

VI. EVALUATION OF SPIN-DENSITY AT NUCLEUS

A. Density Through First Order

From Eq. (19a) we evaluate Eo, as

Eo~ ——Ra, (0) = 4. 497ao

This result is rather far both from experiment,
2. 9096, and also the RHF value, 2. 065-2. 097, and
is probably due, in part, to the absence of exchange
terms from V. It is not, however, much further
off than the RHF.

Using the first equality of Eq. (19b) we may obtain
E» using +o, as

E»- 2&(1 —P,~)1sls2s
I
5 r, ~

—&~ v(r, ) —Ecol

x (ls'ls —lsls ')2s+ lsls2s ')

or expanding further

E» = 4[ls2s
I
ls2s'J- 2[ls2s

I
2s'ls] —2[ls2s

I
2sls']

(38)

VI 2s'&+ 2&&is
I
2s'&+&2s

I
ls') }

Turning now to the alternate calculation of E» via
+&o we obtain

x (& ls
I vl 2s& —psls

I
2s»]}

Here, terms containing the factor (&ls) 2s&
+&ls'( 2s&} which result from the expansion of Eq.
(38) would vanish identically from Eq. (29) for the
exact 1s and 2s functions and, in fact, make neg-
ligible contributions to E». Notice also that only
the l = 0 term in the expansion of x&z contributes.

The total value for E», obtained by numerical
integration on a mesh of 0. Olao, equals —1.346ao,
of which —1.631 is the contribution from the 1s or-
bital. Since the perturbed orbitals are known only
at a single mesh value, we cannot improve our re-
sults by extrapolation. However, the high accuracy
of the test of Eq. (29) and the smallness of the mesh
suggest a conservative error estimate of 1/o, giving

E»-- ( —1.348+ 0. 013)ao

Eoq + E» ——(3. 151a 0. 013)ao

Eii =4&ls2s I8(r2)/r2l ~&»& —2&2s»
I
5(r~)/r', +5(r, )/r',

I U„„&+2&is
I
5/r'I ls& &2sls

I U„„)

—2Eoq/2&ls2sl Uq»& —(2sls
I U„&&}—2(lsl5/r

I
2s&82sls

I
U„„&+(lslsl U„2,)} . (40)

Since U„z, has not been orthogonalized to ls(l)2s(2)
or ls(2)2s(1), their overlaps enter, as do the ap-
proximately cancelling "mixed" overlaps of Eq.
(35). Notice that aside from the latter, U„„does
not contribute to E» for the obvious reason that the
correlation perturbation treats isa and lsP sym-
metrically. The value of E» is somewhat more
difficult to obtain accurately in this second for-
malism due to the necessity of evaluating 5-function
expectation values of pair functions, known only on
a sparce grid. The appropriate method to use is
best shown by the following. For the integral

(ls (1)2s(2)
I
5(r,)/r, I U„„(12)&

= »m &[Ea(rs)lr2) f«, f'fg(rg)Ugggg(rgyrg)]},
r~-o

the function (of rz) in curly brackets approaches
r2= 0 with a cusp and the desired limit should there-
fore be obtained by Aitken's interpolation and

extrapolation algorithm. 4

When all the integrals of Eq. (40) are evaluated
there still remains the usual numerical error con-
tained both in the pair functions and in the normal
(non-8-function) integrations. These can be taken
into account by h extrapolation as in previous sec-
tions. Our value for A, =O. lap 1 364ao3, extrap-
olates to —1.337ao, giving a symmetrical average
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Exchangeless Many bodyb Z expansione

TABLE III. Comparison of perturbative S Li total
energies (a.u. ) .~

tradiction since there is no lower bound to the sum
through E,p. An upper bound to the ground-state
energy may be found from 4p and 4,p by minimizing

Ep 4 ~ 3314 (42%)

—7.4132 (1%)

—5.7823 (22%) —10.1250(- 35%)

7 432 23 (0 6%) —7.056 585 (- 6%)

(+0+a +10~+0++10~ +0+ + M)

( @0++ 10~ 0+ + ls)

E ' —7.4884 (-0.1%) —7, 474 19(0.05%) —7.464 93(-0.17%)

E ' —7.4793 (—0.02%) —7.478 78 (0.01%) —7.472 61(-0.07%)
n

The partial sum E ' is defined as
f wo

Reference 12.
~Reference 13.
~Percent errors are given in parentheses.

of l. 350+0. 014, in very good agreement with the
previous values ( —1.346+ 0.013)ae', confirming
explicitly the interchange theorem and validating
the accuracy of our numerical procedures for the
hyperf ine problem.

B. Second&rder Spin Density

Employing 4'py and +yp determined above, and

Eq. (19c), we may obtain Es, . Although the com-
plete expression is rather lengthy, it may be sum-
marized by the values

(10 He, —Ee, i10) =0. 539,

2(10 H, e —EM 01) = —0. 218,

2E,t(0 10) =0. 620,

where the term EM(0) 01) vanishes by the orthog-
onality previously mentioned. In Table II, the con-
tributions from each / value are given and, again,
convergence in l is seen to be rapid. The final
value of E» obtained is 0. 299ap, with a conserva-
tive error estimate of 0. 06 or 20%. The error is
rather large because for Ez» unlike the previous
terms, a significant contribution (-33%) comes
from the outer regions of coarser mesh. The total
spin density is thus

Ee&+ E»+ Es~ —(2. 85Q + Q. 076)ae

in good agreement with the experimental value
2. 90S6. '

VII. DISCUSSION

The most interesting feature of the two perturba-
tion expansions considered in this work is their
rapid convergence to very accurate values despite
rather poor starting points. Thus, while the total
energy is in error by 42% in zeroth order, the er-
ror through first order is only 1% and through third
order it has converged to within 0. 001 hartree
(- 0. 02%%) of "experiment. " The fact that the energy
obtained lies below the accurate value is in no con-

with respect to the variable parameter a. The re-
sult obtained is —7. 4779 a. u. for n =0. 875, based
on a 4&p orthogonalized to +p.

It is interesting to compare the perturbation ex-
pansion for the total energy in the exchangeless po-
tential with the many-body and Z exapnsions given
in Table III. Through first order this and the many-
body treatments are quite similar, being in error
by 1% and 0. 6%, respectively. The second-order
energies are rather different, however, both in
magnitude and in composition; that is, we find com-
parable contributions from correlating the ls-ls
and 1s-2s pairs, whereas the many-body treatment
furnishes them in the ratio 25: l. In addition, the
exchangeless potential leads to convergence from
below while the many-body V" ' treatment converges
from above.

Notice that in Table III we present a many-body
"third-order energy" whereas technically that
method computes an infinite-order energy, ob-
tained, in this instance, by laddering the ls-1s
pair. The total result of the laddering is to change
the 1s-ls pair energy from —0. 039413 to —0. 044. '
As we have previously shown, ' it is often possible
to apply a geometric approximation to whole orders
of perturbation theory as opposed to individual
diagonal diagrams. Thus, writing

—0. 044= —0. 039413(1+x+x + . . ),
we obtain x = 0. 104 and a fourth-order term of only
-0.0004. This implies that essentially all the
higher correlation energy, at least to the accuracy
reported, is contained in EN, . The many-body
(V" ') and Hayleigh-Schrodinger (exchangeless) cal-
culations are thus comparable. The error in each
order for the former case seems to be uniformly

half that found for the latter. A more slowly con-
vergent series than these is the Z expansion also
given in Table III, for Z=3, in error by -0. 005
a. u. through third order. Thus, unlike the Z ex-
pansion for helium which converges more rapidly
than the Hartree and HF expansions, for three elec-
trons the use of effective potentials enhances con-
vergence, at least through third order.

Turning now to the results for the spin density we
find again rapid convergence. The three partial
sums determined here are 4. 497(54%), 3. 149(8. 2%),
and 2. 850( —1.9%) compared with the accurate value
2. 9096. The rather poor starting point is perhaps
due in part to lack of exchange potentials, but in
any case, the result through first order is superior
to that obtained in the HF expansion through first
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TABLE IU. Comparison of perturbation treatments of
S Li hyperfine interaction (ao ).

RS(V ") Many body (V+ )+ RHF

EOi

Eoi+&ii

Eoi ++ii+ E2i
E3 i + hi gh er ord er s
Total'

4.497
—l.348"

3.149
-0.299

2. 850

2. 850

2.578
0.270
2. 848d

0.042
2. 890

2.065
0.63
2.695

Reference 12.
"The average of the values obtained from bio and +of

is given here.
Reference 5.
Estimated by geometric approximation as discussed

in the text.
~The experimental value is 2. 9096.

(in that calculation), and the sum through first or-
der (E» = 0. 513) is 2. 578as or in error by —11%,
slightly worse than the HHF and exchangeless ex-
pansions. Of the remaining contribution, 0. 312,
part comes from E2, and part from laddering EPV
diagrams. Using the geometric approximation
described previously, we estimate that 0. 270 is
from E» and 0. 042 from E» and higher terms. If
this assessment is correct, then the V" ' potential
gives 2. 848ap through second order, essentially
the same value obtained in this work. Again, we
find similar rates of convergence between the ex-
pansion based on V" ', chosen by physical intuition
and V L, chosen for mathematical convenience,
vindicating use of this unorthodox potential and re-
affirming that little is known about the choice of
effective V for rapid convergence.

order, 2. 70(- 7/~). Thus, important physical ef-
fects may be very rapidly picked up in higher or-
der s,

It is useful to compare our results for the hyper-
fine problem with those of the many-body treatment
(Table IV), though now the separation of the latter
into orders of perturbation is somewhat more dif-
ficult. The many-body Epi is the HF value 2. 065
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