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See Ref. 18, Fig. 2, for an example.' The cross section for N2'+N2- N2+N2' is in very good
agreement with the same cross section measured by J. J.
Leventhal, T. F. Moran, and L. Friedman, J. Chem.
Phys. 46, 4666 (1967).

See Ref. 1, p. 662ff; the factor f is not in Eq. (101)
on p. 663, but is in Eq. (107) on p. 667. See also Ref.
41. Particular states of A' and B may give rise to several

electronic states of the AB' molecule. f is the probability
that the colliding atoms A' and B approach each other
along an A'B potential curve (Ref. 36) which crosses an
appropriate potential curve for B'A at a point such that
dissociation into B' and A is possible.

5 It is here assumed that (l + 2) /R =0 when l =0 and
that g=~ when l=L; compare Eqs. (101) and (108) in
Chap. XIX of Ref. l.
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The coupled equations of the adiabatic-state expansion method for quasiadiabatic transitions
in atomic collisions are reduced in the eikonal approximations to a form that allows straight-
forward computation. The multistate eikonal approximation is then applied to the He'(ls)
+ H(ls) He'(1g) + H(2p) excitation process. The partial and total 2p-excitation cross sections
as well as the polarization of the light emitted by the excited H atoms are calculated. Our

results compare well with recent experimental measurements. The importance of final-state
coupling is dramatically illustrated by the above 2p-excitation process. The qualitative fea-
tures of the nonadiabatic effects are also investigated in the eikonal Born approximation as
functions of the position and distance of closest approach of the two adiabatic states.

I. INTRODUCTION

In Paper I of this series, ' the adiabatic-state
expansion method for atomic scattering and rear-
rangement collisions was critically examined.
Several difficulties and ambiguities for rearrange-
ment collisions were resolved. It was then shown
that the use of the eikonal approximation to describe
the motion of the atoms or ions or both permits the
coupled equations of the adiabatic-state expansion
method to be reduced to one-dimensional equations
defined along classical trajectories. Several prac-
tical techniques for evaluating wave functions and
Green's functions in the eikonal approximation were
introduced in Paper II. A variational technique
based on the "principle of least action" was also
developed in Paper II for the calculation of the tra-
jectory. Numerical illustrations of these various
techniques were carried out for the (H', H) and
(He', He) collision systems in both the classical
limit and the nonclassical regime of the eikonal
approximation. ' In all these applications, we
were dealing essentially with potential-scattering
problems. In the present paper we shall consider
the problem of quasiadiabatic transitions in the

multistate eikonal approximation.
The eikonal approximation will be valid if (in the

notation of Paper I)

Tj p
= 8//tip « 1, (1.1)

where p is the relative momentum of the colliding
particles. '

Our approximation scheme is expected
to converge rapidly if the adiabatic criterion is
met:

q, = v/(e'/e) «1 . (I.2)

l,et E be the initial kinetic energy (in a. u. ) of the
colliding particles in the c.m. system. We shall
assume conditions (1.1) and (1.2) and, further,
that

which permits us (see Paper II) to calculate the
eikonal with the approximation that the trajectories
lie along straight lines. When condition (1.3) is
met, the eikonal criterion [Eg. (1.1)]will always
be satisfied.

In the adiabatic-state expansion method, the state
function g; is represented by the expansion [see
Eqs. (I2. 14) and (I3. 20)]
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(~ =43 +343(R) )

with @2(R) satisfying the coupled equations [see
Eqs. (I2. 18) and (IS.45)]

(1.4)

@ = 5,@,',3+ (E + z)l —Z —W, —u „) ' 4 Z,4, ,

(1.5)
where 8' +'U are the eigenvalues of the adiabatic
states y, K is the appropriate kinetic energy oper-
ator of the colliding system in the c.m. system,
and J ~ are the appropriately modified nonadiabatic
interactions [see Eqs. (I2. 16) and [IS.28)]. In Eq.
(1.5) we have labeled the initial state as &= 0 with
incident re1.ative momentum p. Thus, the coherent
state 4,',&

represents elastic scattering. The scat-
tering matrix, for a final state n and relative mo-
mentum k is

He'(1s) + H(l s) —He'(1s) + H(2p) . (1.7)

In this (He', H) model, we have included six adiabat-
ic molecular states. The nonadiabatic interactions
between these adiabatic states are represented in
this model by semiempirical formulas obtained from
the exact asymptotic expressions of the nonadiabatic
interactions.

A detailed investigation of quasiadiabatic transi-
tions is carried out in Sec. IV in the eikonal Born
approximation. In this investigation we have studied
the qualitative features of the nonadiabatic effects
as functions of the position and distance of closest
approach of the two adiabatic states. The sa.ddle-
point approximation for the evaluation of the path
integral' is then investigated and compared with the
corresponding numerical results. The error re-
sulting from the eikonal Born approximation is ex-
amined in the two-state eikonal approximation in
which the back-and-forth coupling between the two
states is explicitly accounted for.

The application of the multistate eikonal approxi-
mation to the 2p excitation of H atoms by He' ion
impact is then carried out in Sec. V. We have cal-

(1.6)
We shall make use of the techniques developed

in Paper II for evaluating wave functions and Green's
functions in the reduction of the transition matrix
elements. In Sec. II the matrix elements for quasi-
adiabatic transitions are reduced in the multistate
eikonal approximation to a form that allows straight-
forward computations. We then consider the appli-
cation of the multistate eikonal approximation in
subsequent sections.

In Sec. III, a model (He', H) collision system is
constructed based on the adiabatic HeH' states re-
cently calculated by Michels. The (He", H) model
is constructed to provide a reasonably realistic
representation of the 2p-excitation process &,-=(e-,.;, Z.,(R, —2V)e;.,) . (2. 1)

The matrix elements may be reduced to path inte-
grals in the eikonal approximation. We have for
the coherent state C'

&
and the modified nonadiabatic

interaction Z, 2(R, —iV) [see Eq. (IS. 28)] the forms

„(R) (2+)-3/2g (R) i s&(R)

J~3(R, —2V)= 7 2(R, K(R)) —= J~3(R)

(2. 2)

(2. S)

The matrix elements in the eikonal Born approxi-
mation then take the form

r'.,=(2~)-3f d'Ra„(R)X (R)~ (R) e'"&' ' 'i, '""
(2. 4)

The eikonals S'(R) have been evaluated in Paper II.
We shall use a coordinate system with the z axis

parallel to p. In this coordinate system, we shall
suppose that J 0 has cylindrical symmetry with
the form

J 3(R) = J 3(Z, b), (2. 5)

where b is the distance of a point 8 from the z axis,
i.e. , the impact parameter. The path integrals
then take the form, to relative order IH I,

culated both the partial and total excitation cross
sections as well as the polarization of the light
emitted by the excited H atoms. Our results com-
pare well with recent experimental measurements.
The importance of final-state interactions' is
dramatically illustrated by the 2p-excitation pro-
cess of Eq. (1.7). A brief account of this work has
appeared elsewhere 8

II. MULTICHANNEL EIKONAL APPROXIMATION

In this section, we consider the evaluation of the
scattering matrix (o., klTlO, p) given by Eq. (1.6)
for multichannel quasiadiabatic atomic processes.
We shall consider first the simple eikonal Born
approximation. This corresponds to the mell-known
Born approximation in which the coupling of other
participating states is neglected. The eikonal Born
approximation, however, improves the usual Born
approximation by providing a more careful analysis
of the phase relations between the two states. After
deriving the eikonal Born approximation, we then
investigate the coupling of participating states. In
the multistate eikonal approximations, a set of
coupled first-order differential equations is then
derived for the eikonal amplitudes as well as the
transition amplitudes. The cross section for the
quasiadiabatic transitions can then be calculated in
terms of the solutions of the coupled equations for
the amplitudes.

A. Eikonal Born Approximation

The Born approximation to Eqs. (1. 5) and (1.6)
gives us the scattering matrix
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S&(R) = pz secp —pbtanp+Ct)(z, b),

St(R) = kzsecP+kbtanP+C, (z, b),

(2. V)

(a. s)

C, '(z, b) = —p f (—,'[p2 —p2(z )]+ Uo(R)] dz', (2. 9)

T~o=(2)() ' f pdpdydz J~2(z, b)e("((( ' '&( "
(a. s)

where we have taken A(R) = 1 (which is valid to rela-
tive order Ig, I). From Eqs. (113.14), we have for
the eikonal

by Eq. (2. S) reduce to the form

T„,= (2)() ' f bdb J,(kbsin8)

pdpdz:—bd bdz,

which is valid to relative order iH, . I.
The identity

(a. 20)

dz j (z b) e(((k - k)z+ke(g()(kyk)
Of0

(a. i9)
where we have made use of the approximation

C~(z, b)=k J {2[P —P (z')]+ U~(R)jdz', (2. 10)
~C.,(z, b) =-.'C.,(b)+bC.,(z, b),

with

(2. 21)

(2. 12)

P =-, 8, = lim P(z), (a. ii)
g:w 0O

U, (R) = i —[1-u, (R)/~, ]'",
where P(z) and 'V(R) are defined by Eqs. (II2. 2)
and (I2. 9), respectively. The coordinate z, which
was defined in Fig. 2 of Paper II, is related to z
by a plane rotation through an angle P.

We shall use the straight-line approximation for
the evaluation of the eikonal. This is valid when
[see Eq. (III. 22)]

C o(b) —= C „(b)+ C 0(b) = —f [k U„(RO) + p Uo(RO)] dz

(2. 22)
and

6C ()(z, b) = —f [PU()- kU ]dz', (2. 23)

permits Eq. (2. 19) to be rewritten as

T, =(ar) g b, dbms (kb sing) Q (b) e" ~ '

(2. 24)
with

)l„= (920A„,/E2)" 2 « I, (a. is)
q8 (b) f d

—
d (~ b) i [z(P - k)+() o ~0(z, b) ]

where A„-, is the value of the reduced mass M, ex-
pressed in units of the proton mass. We then have

S5 —Sk= (p -k,„)~ R —kbg,'+AC „()(z, b),
z & 0 (2. 14a.)

= (p()
—k) ~ R —Pbg +b, C n()(z, b),

z & 0 (2. 14b)
with

~C.,(z, b)-=-P J U, (It,)dz'-k f U. (R,)dz',
(a. is)
(a. is)R()= (z +b )

where p0 and k,„are the asymptotic relative mo-
menta in the post and prior regions, respectively.

I et k lie in the xz plane and p0 be radial. It then
follows that

k;„. R = k cosg,' [z cosg+ p sing cosy]
—k sing,'[p —z cos8 sing cosy],

p ~ H =ps,

p0 ~ H = p cosa,z+ pp sin8

k. H = 4 cos8z+ kp sine cosy,
(2. IV)

where 8 is the scattering angle, 8 = cos '
(p k).

To relative order I 8,. t, we then have for all values
of z

S& —S=„= (P —k)z —kp sing cosy+ AC) ()(z, b) .
(2. 1s)

After integrating over y, the path integrals given

(a. as)

The local phase difference 54 0(z, b) can be rewrit-
ten as

bC)m()(z, b) (a. as)

where we have assumed that V and U0 are small
in comparison with the total energy E.' The transi-
tion amplitude given by Eq. (2. 24) may be solved
by the stationary-phase approximation in the clas-
sical limit. This is shown in Appendix A.

The differential cross section in the eikonal Born
approximation may be obtained from T 0:

(2 )4~2 k
~

TB 2

'Up

The total cross section

(2. 2V)

(a. as)

can then be obtained from Eq. (2. 2V) in the simple
form

,
'f t as

~
t)'„,(s) ~'-

=,
—

0

(a. 29)

where we have made use of the approximation giver
by Eq. (115.23).

B. Multistate Eikonal Approximation

In atomic collisions, a number of adiabatic states
which are closely spaced would participate in the
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interaction simultaneously. To provide an adequate
description of such collisions, one must account
for the dynamic coupling of these states. For such
collisions, Eq. (l. 5) may be solved directly. We
consider the case that only a finite number of adia-
batic states 0, need be included and that the energy
E is large compared with the spacings of these
states.

We rewrite Eq. (1.5) as

evaluated to give

I (R, r) = (2v/i(& r) [e'"B"J (R+Pr) y (R+Pr)
—e '"B"J,(R —jr) y, (R —)pr] . (2. 42)

Then for ]t." x» 1, the conventional asymptotic eval-
uation gives us

M„e' ~js (R)
G„J g+g= . ",2,3/2 dr J,g(R —pr) yg(R —pr)

ZK8 (2F /

4 =5 04' &+ ~~ t" J ~4~,
8(& ~)

(2. so) i x(n(R)- gg(R) y (2.43)

where in our eikonal approximation the Green's
function takes the form

(R, R') = —(M. /2)()
I
R —R

I
e' s (a, R )

(2. 31)
Here

Because of the assumed cylindrical symmetry of
J 8, we have

Jng(R —Pr) = Jng(z —r, b), (2. 44)

yg(R-ir) =yg(z r, b) . - (2. 45)

Let us define
S (R, R') = g, (& (R) ds,

with

)&, = [2M, (Z —W —'U )]

(2. 32)

(2. 33)

I
Z =Z —X'

we then have

[)&,(R) —)&g(R)]r =- S,(z, b) —S,(z, b)

(2. 48)

where it is supposed that the eikonal amplitude y~
is a relatively slowly varying function of position
and Sg(R) is the eikonal function

Sg(R) = J )&gds . (2. s5)

and the path of integration runs over that trajectory
which passes through R' and R.

We attempt to solve Eq. (2. 30) with the ansatz

eg(R') = (2~)-3"y (R') e"B'"' (2. 34)

—[S.(z', b) —S,(z', b)] . (2. 4V)

Taking this together with Eq. (2.43), we write,
finally,

- tS~(8, ~)

4'„(R)=5 P4',~(R) —+
(2 )3/2ste V8 r

x~t
dz' J~(z', b) yg(z', b) e 'n B'" ' . (2. 48)

Here, in the straight-line approximation, the path
integral is taken parallel to p and

Here we have set

vg —i&g /M„= v~, ) (2. 49)
lim Sg(R) = [2M„(E—Wg)]' p R .

50 g»» no

(2. 36)
Q„g(z', b)=—S (R') —Sg(R') . (2. 50)

(See Secs. II and III of Paper II for a discussion of
boundary conditions for the eikonal. )

Now, let us define

r =O' —8 (2. 37)

and write

S (R, R') =-)& (R)r,

S,(R')-=~, (R) r+S,(R),

(2. s8)

(2. s9)

where (&g=)&gp. When Eqs. (2. 31), (2. 34), and
(2. 3V)-(2. 39) are used, the quantity G„J g@g takes
the form

G J e = — " e"B'"' rdre'" '"'"I (R r)n ng B (2 )5/2 a,g

0
(2. 4o)

with

I„g(R, r) = J dre'"B' ' ' J~(R+r) yg(R+r),
(2. 41)

where the angular integral can be approximately

dy, (z, b)
A.,(z, b) y, (z, b),

Qg g g 0f

with
/i. ,(z, b)-=v, 'J.,(z, b) e-" B&""

(2. 52)

(2. 5s)

The boundary condition for the eikonal amplitudes
ls

y, (z, b)-1 as z- —~,
y (z, b)-0 a.s z- —~ for o(&0,

(2. 54)

which merely states the fact that in the asymptotic
prior region the scattering system is in the lop)
state.

Equation (2. 48) can be further simplified. Sub-
stitution of Eq. (2. 2) for 4,'„5(R) and Eq. (2. 34) for
4'„(R) into Eq. (2. 48) yields the set of coupled
equations for the eikonal amplitudes y,:

N

y„(z, b)=b„,-f 2' dz'/i„, (z', b)y, (z', b)

(2. 51)
or
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i[s()(R)- sI(R)] (2 55)

This path integral can be evaluated just as before
for Eq. (2. 4). We obtain

T,'"()' = (2)[) f b db J (kb sin8) Q,'"'(b) e'
(2. 56)

with
N

q(Ã) (b) s(i /2) [@~(b)-eo(b)1 ) d~ d (s b)

« ".s' "r,(~', b), (2. 5V)

where the (t),(z', b) are given by Eq. (2. 50). For
the case with P=0 we have

- y.,(s, b) = s(p b)+be-. ,(s, b)+-,'- [C,(b) - 4.(b)] .

(2. 56)
It is then clear that Eqs. (2. 56) and (2. 5V) reduce
to Eqs. (2. 24) and (2. 25) in the eikonal Born ap-
proximation by setting y0=1. The total cross sec-
tion can again be expressed in the approximate
form given by Eq. (2. 29) with Q 0(b) replaced by
q'.",'(b).

It is, however, convenient to introduce the mod-
ified equations obtained from Eq (2. 57).:

Q„(z, b) = &~ ds' A (z', b) y, (s', b), (2. 59)

with

q.(s, b) -=v ' q's'(s b) e""'"0'"'-'-'"" (2. 60)

From the comparison of Eq. (2. 59) with Eq. (2. 51),
it is clear that

y. (s, b) = e.,—iq„(s, b) .
Consequently

(2. 61)

= A ()(1 —b,o) —i 5 A,()q, .
84 0.

(2. 62)

It is apparent that Q (s, b) in the limit g- ~ is the
transition amplitude. In terms of Q (~, b), the
total cross section takes the form

o = of2)[bdb~q (, b) (2. 63)

III. MODEL (He+, H) COLLISION SYSTEM

In this section, we construct a reasonably realis-
tic multichannel model system for quasiadiabatic
collisions. In Sec. IV we apply our eikonal Born

The scattering matrix ([)k I T ~ 0I) ) given by Eq.
(1.6) can also be evaluated in the multistate eikonal
approximation. Considering the case a40, we
have

1'.",'-=(Rw)'E f d'RA. (R)J„,(H) y(R)

approximation to this model system and investigate
the qualitative features of the quasiadiabatic (diabat-
ic) transitions. In Sec. V, an application of our
multistate eikonal approximation to this model sys-
tem is carried out in order to investigate the final-
state interactions in a quasiadiabatic excitation
process. With these applications in mind, we con-
struct our model to represent the (He', H) system
This is the simplest two-electron heteronuclear
molecular system. In addition, experimental mea-
surement of the

He "(1s)+ H(ls) - He'(ls)+ H(2P) (3. 1)

2p-excitation process has recently become avail-
able. s

A. Adiabatic He H+ States y

The nonrelativistic Hamiltonian for the (He', H)
system can be written as

IJ = —(I/2~„) v, ,'+ a. + 2e'/ft,
with

(3.2)

e 2e 2e e
Ki — —— — + K~-

Ir& I IR, +r& I lr, I I R, —r, I

(3. 3)

where K, and Ka are kinetic-energy operators of
the two electrons labeled as 1 and 2. The adiabatic
states are defined to be the eigenstates of the adia-
batic Hamiltonian 8, :

h, [() = ([),(R,)p (3.4)

The eigenvalues [(),(R) give rise to the adiabatic
potential Z, (R)

'U, (R,) —= ([) (R,) —lim (() (3. 5)
R j ~Do

for the He'-H interaction.
For a reasonable description of the 2p-excitation

process of Eq. (3.1), we need to consider a number
of such adiabatic states. For the 2p excitation in
the singlet spin multiplicity, we take into consider-
ation the A'Z, O'Il, and E'Z adiabatic HeH' states.
For the triplet 2p excitation, we take the a Z, e II,
and f Z adiabatic HeH' states into consideration.
The correlation of these adiabatic molecular elec-
tronic states with the separated as well as the united
atomic states is summarized in Table I.

These adiabatic HeH' states have recently been
calculated by Michels for several values of the
internuclear separation. Using these calculated
values, we have constructed a model set of adia-
batic HeH' interaction potentials by extrapolating the
calculated HeH' molecular states to their appro-
priate Li' united atomic states. This set of model
adiabatic HeH'potentials are shown in Figs. 1 and
2 with and without the 2/R nuclear interaction, re-
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TABLE I. Correle ations of atomic and molecular states for HeH'

—5.047 15

—4. 720 325

—4. 722 2

—5.111025
—4. 730 573

—4.730 573

United atom (R =0)

Li'[~S (1s2s) ]

Li' [~P (ls3p, ) ]'

Li.'[~D (1s3d,) ]

Li' ['S(1s2s) ]

Li'[3P(1s3p.) ]

Li'['P(1s3p. ) ]

MoI.ecular
state

a3z

f3g

Separated atoms (R ——~)

He' ['S(ls) ]+ I-I ['S(1s)]

He'['S(1s) ]+H ['P(2p, ) ]

He'[ S(ls)]+H[~P)2po)]

He+[ S(1s)]+H['S(].s) ]

He'['S(1s) ]+H['P(2p, ) ]

He'[ S(1s)]+H[P(2p )]

—2. 500

—2. 125

—2. 125

—2. 500

—2. 125

—2. 125

spectively. Analytic fittings of these potentials are
given in Appendix B.

In this six-state model we have included the
coupling of channels arising from the asympt t l-olca-
y egenerate 2P and 2p, states. There are
er o c annels also asymptotically degenerate or

near degenerate with the 2p excitation channels
which were not included in this model. For ex-
ample, we have neglected the coupling with the 2s
excitation channel as well as the electron-transfer
rearrangement channels in which the He atom is
formed in the (ls)(2s) and (ls)(2p) atomic states.
As a first example for the application of the multi-
channel eikonal approximation derived in Sec. II,
we shall neglect the latter channels and confine our

treatment in the simple six-state model which
should give a reasonable description of the 2p-ex-
citation process.

B. Nonadiabtic Interaction JaP

In addition to the adiabatic HeH' states, we re-
quire in the model the interaction between adiabatic
states. Such a nonadiabatic interaction is essen-
tially given by the Born-Oppenheimer (BO) matrix
elements [see Eg. (13.22)I

1
~8= —2~[(gn, Vg( Pg)+ 2(P~Vz)PS) ' Vz j .

(3. 6)
To account for rearrangement collisions, we write
this nonadiabatic interaction J ~ as

- I.6

l

-I 7

- l.8

C3 2,2

HeH'

I

l

- l,9—

1

~ -2.0 —
l

o

o -2.l

UJ
2.2

,EK!

o~ 30

w -3.4I—

z -38o

-4.2
LLJ

-2.4—

I—~ -46

'CC

—5.0

-2.5—

2.0
I

4.0 6.0 8.0 l0.0 12.0 I4.0
INTERNUCLEAR SEPARATION (0 I0

—5.4
0

I

0.4 0.8 I.2 I.6 2.0 2.4 2.8
INTERNUCLEAR SEPARATION (o )

. 0

FIG. 1. Adiabatic interaction potentials for He' and H.
Thesese potentials which are relevant for the 2p excitation
of H atoms by He' ion impact are constructed from the
recent calculation of Michels (Ref. 4).

FIGG. 2. Electronic energies of adiabatic HeH' states.
These states which participate in the 2p excitation of H

atoms by He' ion impact are constructed from the recent
calculation of Michels (Ref. 4) with particular attention to
the united atom limit.
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J 8=&
&

—limd
&

R1~ oo.

(3. 7) z2, the asymptotic expressions for the potential
gradients [see Eq. (Cl)]

(for a detailed discussion, we refer to Sec. III of
paper 'I). This guarantees that J 2

= 0 in the limit
81-~.

In the eikonal approximation, the nonadiabatic
interaction may be written as [see Eq. (2. 3)]

~~2(H1) =
M

' (& '41&2) —
2M (Pn &Z, Fg) ~

(s. 8)

2 2 28 881 8
2 ((r1 r2)IB,+r, —r2l

28 28 R1 282 2 2

+

(3. 17)
The identity

(1p —2U, ) (q, V, ,p, ) = —(q, V, ,b, cp, )

permits us to rewrite Eq. (3.8) as

(s. 9)

2 2 28 8R1 8
V — — -, ——,[r, —3R, (R, r, )] .

I K1 —r2 f R1 B1

(3. 18)

(-
)

22 (y~, (Vz,b. )91,) 1
(M„(W, —111&) 2M

(3. 10)
The second term on the right-hand side of Eq.
(3. 10) is comparatively much smaller and will be
neglected in the following considerations. It is
understood that if 6 ~ & 0 in the limit A, -~, J~
should be redefined according to Eq. (3. 7).

The gradient of the adiabatic Hamiltonian for the
(He', H) system may be written as

8 28 8

(3. 11)
with

R1+ r1 —r2-, , (s. i2)
I I,+r, —r2l

R1+ r1 (s. is)

Consequently, we have

28 R1 8 1
(V2, b, ) =

2
'+—

2 [r, —3R, (R r, )]+0 —,
1 1

(3. IO)

In this asymptotic region, the adiabatic molecu-
lar states go over to the atomic states

lim y =g
R 1 w oo

(s. 20)

g = „1 (r2) Pp(9 2)R2 (rl) Wl(r )]

g, = a [R'„' (r, ) Y',(r, )R"„(r,) Y',(r, )] .

(s. 21)

(3. 22)

The nonadiabatic interaction between the initial
and final states takes, in this asymptotic region,
the form

For the 2p-excitation process of Eq. (3. 1) including
only the adiabatic states given in Table I, g are
simply the proper antisymmetric product of He'
and H atomic wave functions:

, R, —r,
t R, -r2) (3. 14) I g (1 2 )

g( PP +1)
R1

The BO matrix elements in Eq. (3. 10) can then
be computed if the adiabatic states are available.
It is rather unfortunate that in the past such BO ma-
trix elements were not calculated when the adiabat-
ic states were optimized in the determination of
the energy eigenvalues. The inclusion of BO ma-
trix elements will not greatly increase the compu-
tation. This is particularly true in the straight-
line approximation, for which we have, for example,

(y (r, H, ), vs, y, (r, H, ))

= 2(y (r, b, 2), (S/az)q (r, b, 2))

= (z/az) [(p (r, b, z), y, (r, b, 2+ az)) —5„],
(3. 15)

where we have taken R, = (b'+2 )'
These matrix elements at large internuclear

separations can be determined analytically using
the separated atom approximation. It can be shown
that, in the limit R, -~, we have, for finite r, and

with
6Wap llm [2p+ (R1) Kp(R1) ]

R1

g(ls —2pp „)=(R2 (r, ) Y, (r, ),

(3. 24)

x 5 [r, —3R, (R, r, )]R"„(r,) Y,(r,)), (3 25)

Thus, we obtain

g(is - 2Pp) = (2"/3")"' (1 —3 cos'y),
g(ls- 2P, ) =+ (2 /3 ) siny cosy .

(s. 27)

(s. 28)

We also need the nonadiabatic interaction J ~ be-
tween the final states in the asymptotic region.

where we have taken the local tangent k to be in the
direction of 4 parallel to the z axis. Now, let 8,
lie in the xz plane and 0 A, =cosy. We then have

[r1 —3R1 (R, r, )] = z(l —3 cos y) —sxsinycosy .

(s. 28)
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From parity considerations, it is clear that the
corresponding matrix g(2(b5- 2p, ) is zero. We must
therefore consider the higher-order terms in Eq.
(3.19). We then obtain (see Appendix C) the asymp-
totic expression for the nonadiabatic interaction be-
tween final states

Eq. (2. 23) [or Eq. (2. 26)j for the local phase dif-
ference |IC,(z, b) and Eqs. (3. 29) and (3. 30) for
the 0-0 and 0.—m nonadiabatic interactions, re-
pectively. At high energies, v~=v, =v, , and con-
sequently 5 C 5(z, b) is given by the potential
difference ~g 0=, —'U0

3e2 / )'3 g(2p, -2p, ,)
bC.,(z, b)=(1/v...) f ~V.,(z', b)dz.

0
(4. 1)

(3. 29)
with

g(2p2- 2p, ,) = (90/v 2) siny(cos y ——,) . (3. 30)

This then completes the derivation of the nonadia-
batic interactions in the asymptotic region.

In our model (He', H) system, we shall adopt
semiempirical expressions for the nonadiabatic
interaction obtained from the above asymptotic ex-
pressions upon replacing R, by (R2+ a2)'/2. We have

A. Constant-Spacing Model

As a first example of the two-state eikonal ap-
proximation we consider the special case in which
the potential difference is zero. In this case 54 0

is zero and Q ()(b) can be evaluated analytically.
We have

q'. ,(b) = f„dzd.,(z, b) e '" " .

d„(ls- 2p )

3ezv...~2
g5 ()(// 2)5/2 ())2 2)///2)

ie e~& 2 b&
Z«(1S - 2Py1)

W P (R2 2)5/2
n0 1+Q~.

and

(3.31)

The nonadiabatic interaction J 0 is given by Eq.
(3. 31) for o- o transitions and by Eq. (3.32) for
0- n. transitions. We have

2 29+ 1/2
dz cos(gz)

3(b'+ a2)

(z2+ b2 ~ e2)5/2 (z2 ~ b2 ~ 2)3/2
3e v„,1

v2 (R +a2)2 R +a 5ZU~ 0 1+~ 2

(3. 33)

where we have made use of the relations

cosy= z/R, , siny= b/R, . (3. 34)

The parameters a~„~ are to be determined semi-
empirically. We note that in Eqs. (3.31)-(3.33)
we have labeled the nonadiabatic interactions by

their corresponding momentum along the molecular
axi s.

IV. APPLICATION OF EIKONAL BORN APPROXIMATION

As we have already noted in Sec. III, from the

spacing of the adiabatic states it is clear that a
reasonable treatment of the 2p excitation in the
(He', H) system requires at least the explicit con-
sideration of the close couplings of those states
given in Table I. Before engaging in such a calcu-
lation, we first examine the qualitative features
of quasiadiabatic transitions in the eikonal Born
approximation. A comparison of the eikonal Born
approximation with the Glauber approximation as
applied to the e-H excitations is given elsewhere. "

To calculate the cross section for the quasiadia-
batic transitions in the eikonal Born approximation,
the quantity Q 2(b) given by Eq. (2. 25) must be first
determined. This can be done numerically using

bz
x dzsin(gz), 2 b2, 5„, (4.4)

(z +b +(2,
0

with

g -=(p —u) =
(p+u)/(2~„) v„, ' (4. 5)

where we have labeled @22 according to the type of

transition.
The integrals in Eqs. (4. 3) and (4. 4) can be

evaluated in terms of the modified Bessel functions

by making use of the integral

cos(xy)dy 1/'/2 x(, ,).„/2 = (,)
—K,(cx) . (4. 6)

P P+2

We obtain from Eq. (4. 3)
2 29+1/2 (

Q /((///-//) = „"', ~/
N') //I (/ ) ——)// (/. )), .

(4. 7)
with

= g(b2 ~ 2)1/2

Similarly, from Eq. (4. 4), we have
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q'„,(t a-v)=+ "'
(m) (- t f—(. . .)„,) + ="'(p) (- (, ,

)
—[('rc (~((b'+e')'")]) .

0
(4. 9)

The identity

—[x2e"'K2(x)]= x'e"K,(x)
dx

reduces Eq. (4. 9) to the form

q„,(b, o- ~) =+ " —, K, (~,),hW 3
with

—g(b2 + 2)1/2

(4. 10)

(4. 11)

spacing. This is, of course, expected since the
nonadiabatic (or diabatic) effect would increase with
a decreased level spacing. For a more relatistic
two-state system, the level spacing is generally not
constant. We would then expect that the nonadiabat-
ic effect depends on the position and distance of the
closest approach of the two adiabatic states.

B. Two-State Model

The total cross section for the special case of
5C 0=0 in the eikonal Born approximation can then
be obtained from Eq. (2. 29). For the cr- o transi-
tion, we have

Examining Figs. 1 and 2 for the (He', H) system,
we have found that the level spacings Asv 0= se —zo0

of these adiabatic electronic states may be reason-
ably fitted by an analytic function of the type

~e4)4 220 ( 2 2

g (a-o)= -- — b
dbms

K(v ) ——K (r, )
0

(4. 12)
For the 0-7t transition, we have

hw„o(R1) = AW~o+ 6'0~0(R))

= ~W„, —a.,/R', + C.,/R', ,
with

b, W 0= lim [wn(R1) —wo(R, )],

(4. 14)

(4. 15)
~~4go 217 1 2

o,o(o- (() =-, 2 -10 b db —K, (r, )
(AW 3 7fi

(4. 13)
In Fig. 3, we have plotted as an example the

cross section for the 0 —z transition given by Eq.
(4. 13) for several values of the constant level spac-
ing DR'. In this calculation we have taken a, = la0.
It is seen that the cross section drops rapidly with
decreasing energy and the over-all magnitude of
the cross section decreases with increasing level

where 8 0 and C 0 are constants. In this subsec-
tion, we shall adopt Eq. (4. 14) for the level spac-
ings as a model and investigate the qualitative fea-
tures of the cross section (for quasiadiabatic tran-
sitions) as a function of the characteristic param-
eters of the level spacings. We examine the energy
dependence of the cross section on variation
in the characteristic parameters, such as the posi-
tion and distance of closest approach of the levels.

The position and distance of closest approach of
the levels for Eq. (4. 14) are given, respectively,
by

I 0.0

8.0—
I I I

Ro = 2Cuo/&uo

(nw„o) („=AW„0 ——,
' B,o/C ()

(4. 16)

4.0—

0.2—

E
I.O—

Io 08—

0.6 bW=

AW=

In Fig. 4, the level spacing bw„o(R) is displayed
for the case where the position of closest approach
is taken to be R0= 5a0 and the distance of closest
approach is taken to be AM) „=0. 1 a. u.

One of the convenient features of the analytic
form of ~w„o(R) given by Eq. (4. 14) lies in the fact
that the local phase differences 5C 0(z, b) given in
Eq. (4. 1) can be solved analytically. With the help
of the integrals

0.2—
(4. IS)

O. l

0.1
I

0.2
I

0.4 0.6 0.8 l.0 2.0 4.0 6.0 8.0 l0.0

CENTER-OF- MASS ENERGY I keV j

FIG. 3. Vari. ation of cross section with energy for
quasiadiabatic transitions between states with constant
level spacings as predicted by Kq. (4. 13).

f dy x 1
& x

(y+b) 2b(x+b) 2b b
0

we obtain for 54 „0(z, b)

(4. 19)
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2.2

z.o—

1.8—

1,6—

1.4—

l.2—

1.0—

0.8—

0.6—

0.2—

0.0 I I I I I I I I

0.4 0.8 l.2 1.6 2.0 2.4 2.8 5 2

INTERNCLEAR SEPARATION R (op)

Now we are in a position to calculate the quantity

Q'0 and then the total cross section using Eq.
(2. 29).

We have carried out a numerical model study of
the total cross section for the 0- m transition using
Eq. (4. 20) for the local phase difference and Eq.
(3.32) for the nonadiabatic interaction (with a, = lao).
The results are given in Figs. 5 and 6. In Fig. 5,
we have taken the distance of closest approach of the
two states to be 6~,„=0.1 a. u. and displayed the
energy dependence of the cross section for several
values of the position of closest approach Ro. It
is seen that the cross section is considerably in-
creased at the low-energy side when the position of
closest approach is located at a smaller internuclear
separation. If we fix the position of closest Bp-
proach at Ro= lao and change Asv, „, we again find
that the cross section at the lower-energy side in-
creases when the magnitude of ~sr „decreases.
This is shown in Fig. 6.

C. Saddle-Point Approximation
FIG. 4. Example of level spacing vs distance as given

by Eq. (4. 14) with the position and distance of closest
approach of the two states set at Bp = 0. 5ap and &gem&„
= 0. 1 a.u. , respectively.

Co 8 Co 58054 0(z, b)= 2 2 2 + q tan
2b z +b

(4. 20)

The z integral for Q 0(b) given by Eq. (2. 25) can
also be evaluated using the saddle-point approxima-
tion for the two-state model of Sec. IV B. We re-
write Eq. (2. 25) as

q'. ,(b) fdic =Z„,(z, b) e" 0"", (4. 21)

with

y.,(z, b)= (i/v, ) f asm„, (R) dz', (4. 22)

8.0

6.0—

2,0—
E

'o
I.O—
0.8—
0.6—

0.4—

Rp=

Rp=

I I I
I 0.0

8.0—
6.0

4.0

2,0—

I.O—
0.8—o
0.6—

hW=

I I I I I I

0.2— 0.2

O. l

O. l

I I I I I I

02 0.4 0.6 0.8 1,0 2.0 4.0 6,0 8.0 IO.O

CENTER-OF- MASS ENERGY (keV)

O. I

O. l

I I

0.2 0.4 0.6 0.8 1.0 2.0 4.0 6.0 8.0 1.0

CENTER-OF-MASS ENERGY (keV)

FIG. 5. Effect of varying Bp (the position of closest
approach of the states) on the energy dependence of the
cross section for quasiadiabatic transitions between
states with a level spacing given by Eq. (4.14). The dis-
tance of closest approach of the states was fixed at ~~fg
=0.1 a.u. The nonadiabatic interaction given by Eq.
(3.32) with a, = 1&p was adopted in the calculation.

FIG. 6. Effect of varying Dam&„(the distance of closest
approach of the states) on the energy dependence of the
cross section for quasiadiabatic transitions between states
with a level spacing given by Eq. (4. 14). The position.
of closest approach of the states was fixed at Rp=1 Qp.

The nonadiabatic interaction given by Eq. (3.32) with a
= l.ap was adopted in the calculation.
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QB (t&)
J' (0 I&&) J dz eirnp&z, b& (4. 23)

The integral in Eq. (4. 23) can be evaluated by the
method of steepest descent.

From Eq. (4. 22), we have

dy„(z, /&)v, " ' =au. p(z, f&) . (4. 24)

The saddle point for y„p(z, /&) is therefore the solu-
tion of

where we have made use of Eq. (4. 5). We assume
that the nonadiabatic interaction J 0(z, b) is a slow-
ly varying function of z so that it can be removed
from the integrand in Eq. (4. 21):

This implies that the transition integral is small.
For quasiadiabatic transitions, such integrals are
indeed small.

The total cross section given by Eq. (2. 29) can
now be written in the saddle-point approximation
as

2'&1' IZ i&(0, b)l 4 a1 '
0 ~o = 2 b dt) g2/2 exp

Vrel LQ2Q2) 3 Q2
0

(4. s4)
If we further assume that J 0 is also a slowly vary-
ing function of b, Eq. (4. 34) reduces, ' after chang-
ing the variable to u = 1 —

f& /Rp, to the approximate
form

bw 0(z, f&) = 0 . (4. aS) 0 J 2 e 2go/tf (4. s5)

To solve Eq. (4. 25), we expand hw„p in a Taylor
series around z= zp (zp = Rp —f& ):2 2 2.

1 d'(a&4& 0)'
6K~0(Z, /&) = Aii&~ie+ 2 (Z Zp) + ' ' '

2 dz 8'= 80 with

(4. 36)

with

- [a, + a, (z —zi&)'] v„„, (4. 26) 0 1 re& 0 m&e (4 37)
3 B~p 3VI el ~earp

~~min 2&noa, =- -', Q2= 4
Vl.e2 Vre I~0 ~0

(4. 27)

+ (a /a )1/2 iz /2 (4. 26)

In the neighborhood of the saddle point z, we have

%hen the approximation for ~u 0 given by Eq.
(4. 26) is used, we obtain from Eq. (4. 25) the sad-
dle point z, :

A comparison of the saddle-point approximation
with the numerical result is given in Fig. 6 for the
case with hu, „=0. 3 a. u. It is seen that the sad-
dle-point integration of the path integral is reason-
ably adequate in the regime of quasiadiabatic en-
ergies.

D. Comparison of Eikonal Born and Two-State Eikonal
Approximations

r.p(z, f)=r.p(z„ t)+2 2 (z- z, ) + ~ ~ ~,
8=ZS

(4. 29)
with

We now estimate the error introduced by the
eikonal Born approximation in a two-state model
with the level spacing given by

y 0(z, , i&) = i —:(a1/a2) + zp(a1+ zazzp) (4, 30)
/&, &v 0=0. 375 —0. 056/(R +1) (4. sa)

yuo 2( )1/2 ir /2
Q2Q2 e

8 8=2S

(4. 31)

Substitution of y 0(z, /&), which is given by Eq.
(4. 29), into the integral in Eq. (4. 23) yields dQ~"=/i

o
—i/~. oQ0dz

(4. 39a)

and the nonadiabatic interaction given by Eq. (3. 30).
In our estimate of the error, we consider the two-
state eikonal approximation [obtained from Eq.
(2. 62) by taking b/=2]

d~ etr Oio(z:, b ) dip = —iA0 Qdz
(4. 39b)

2/2 2 3 2/2a,
«/4 exp —— — + izp(a1+ 2 aozp)

LQ2Q2) 3 Q2

(4. s2)

where a factor of 2 was introduced to account for
the case where the trajectory passes through the
saddle point twice. The condition for validity of
the saddle-point integration is that

(4. ss)

to be reasonably accurate. This differs from the
eikonal Born approximation in that it allows for
the back-and-forth coupling between the two states.
If we were to drop the Qo term in Eq. (4. 39) and
solve for Q, we would obtain the eikonal Born ap-
proximation.

The fractional error in the eikonal Born approxi-
mation, ( o —a ~/v, can now be estimated by solv-
ing Eq. (4. 39). The result is shown in Fig. 7. It
is seen from this figure that the error introduced
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7.0.
i

6.0
—0,6

50— —0.5

04m
CO

0$ 2)

FIG. 7. Estimated errors in the
eikonal Born approximation. The
solid curve is the cross section ob-
tained in the two state eikonal ap-
proximation [Eqs. (4. 39)7.

1.0— O. I

0.0
O. I 0.2 0.4 0,6 0.8 I.O 2.0

CENTER —Of-MASS ENERGY (keV)

4.0
I I

6.0 8.0 I0.0

by the eikonal Born approximation is reasonably
small in the regime of quasiadiabatic energies.

V. MULTISTATE EIKONAL APPROXIMATION FOR 2p
EXCITATION IN THE (He+, H) SYSTEM

In this section, we apply the multistate eikonal
approximation discussed in Sec. IIB to the 2p ex-
citation in the (He', H) collisions. For the two-
electron system, we may treat the singlet and the
triplet spin multiplicities separately. For each
of the two spin multiplicities, we take into consider-

ation two Z states and one II state. The II state is,
of course, doubly degenerate. These states are
shown in Figs. 1 and 2. To simplify our notation,
we shall label these states in the numerical order
0, 1, 2, and 3, where 0 and 1 denote the initial and
final Z states, respectively, and the degenerate
final H state is denoted as 2 and 3 for A =+1 and
X = —1, respectively.

A. Determination of Excitation Cross Section

In the four-state approximation, we need to solve
the following coupled equations [see Eq. (2. 62)i:

p(s) p(s) A(s) ~(s)
01 02 Q3 ~Q

0 A(s) A(g) ~(s)
12 13 ~1

P(s) A(s) 0 ~(s)
31 32 'V3

(5. 1)

where the superscript (s) is introduced to denote

the spin multiplicity with s = 1 for singlet and s = 3

for triplet.
Physically it is clear that Qo" accounts for the

elastic scattering. The 2p-excitation amplitude
coming from the three final states is given by Q,'",
QS", and QS". Thus, for excitation, we need to
solve

q(s) A(s& A&s& q&s& A(s& Q&s& A(s&q(s)
dz 1 10 2 10 0 Z 12 2 2 13 3

We have observed that the spacings between the
initial and any of the three final states are much

larger than the spacings among the final states
(see Figs. 1 and 2). This suggests that the back
coupling of the final states with the initial state
should be much smaller than the coupling among the
final states. In solving Eqs. (5. 2), we shall, there-
fore, neglect the back coupling with the initial
state. Equations (5. 2) then reduce to the form

q(s& A(s) -A(s&q&s) .A&s) Q&s&

dz 1 10 S 12 2 2 13

dz QS Az(~& ZAMBO Q() ZA21 Ql SASS q3 (5 )

dZ QS = A30 —ZASO QO
—ZA31 Q1 —ZA32 Q2

q&s) A(s) A&s) q(s) .A(s) q(s)
dz 2 20 21 1 23 3

d Q(s) A(s) A(s) Q(s) 'A(s)Q(s)
dz 3 3Q 31 1 32 2

(5. 3)
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A(s) ~ A(s) A(s) ~ A(s)
21 12 & 31 13 (5.4)

From the symmetry of the gradient matrix ele-
ment in the nonadiabatic interaction, and the fact
that the final states are close together, we may set

Q,'"=J dz'[A,' (z', b)+iV2A&"(z' b)]

x«exp[+i)& 2 f A'"(z", b) d "]. (5. 18)

A3o = —A2o
(s) (s) A31' = —A21'

For the degenerate II states 2 and 3, we have

(5. 5)

The 2p-excitation amplitude coming from the final
Z and II states can now be recovered from Q,'".
We have

~(s) ~( s) A( s) A(s) 0'Q3 Q2 ~ 23 32 (5. 6)

When the relations given by Eqs. (5. 4)-(5. 6) are
used, Eq. (5. 3) reduces to a pair of coupled equa-
tions:

q(s& A(s& 2A(s) q(s&
1 10 2

d ~(s) A(s) + A(s) ~(s)
y& ~2 20 ~1

with
A"' —= —iA21' = iA12' = iA31' = —SA13' . (5. 8)

q(s) = C Q(s& + C Q(s& (5. 9)

This pair of coupled equations may be decoupled.
We write

q'"(z b)=-'[q'"(z b)+q'"(z, b)], (5. 19)

q,'"(z, b) = (i/2v 2) [q'"(z, b) —Q',"(z, b)] . (5. 2o)

The 2p excitation is then given by

o(s&(is 2P) o&s) + 2o(s&

We then obtain for the total cross section

(5. 22)

(5. 23)

The partial cross sections for the 1s- 2pp and
1s- 2p, , excitations of H atom by He' ion impact
can now be calculated using Eq. (2. 63):

2

o,"-=o&,"(Is-2P,)=2&( bdb lim q,'"(z, b)
0 z oo

(5. 21)
&&c( 2

o&"=-o&"(Is-2p„)=2v bdb Iim q,'"(z, b)
0 8' m &)CL'

then from Eq. (5. 7) o(is —2p) =-,'o"'+ lo&" . (5. 24)

czqI' —2c(qz' =ca(c)q(" + czqz")

we obtain

cz=+ 2 M2c(

Upon setting el =1, we obtain

q(s& q&s) ~ ~2q&s)

Equations (5. 7) are then decoupled to give

(s)

dz
=(A"'+ &PA'")+.WZAQ'"

To solve Eqs. (5. 14), we let

(5. i()

(5. iS)

(5. 13)

(5. i4)

&s&

= (c~A)&) + czAp(')') + A'" (cgqy' —2czqz )
dz

(5. 10)
Now, by requiring

'Uio =aV20(1) &&(3) &(3)
10 20 (5. 25)

These potential differences, which are shown in
Fig. 8, can be fitted analytically by the forms

B. Numerical Results

For the evaluation of the amplitude Q,'"(b) and

Q2", we need the energy differences between every
two states. From our model (He', H) potentials
given in Figs. 1 and 2, it is seen that the potential
difference between the A. 'Z and E'Z HeH' states
is not appreciably different from that between the
A'P and O'll states. This is also the case for the
(a Z', , f Z', ) and (a'Z, e II) pairs. In view of the
uncertainties in these model potentials, we shall
assume them to be equal:

Q"'=q'" exp(ai)i2 f A'"dz") . (5. 15)
2. 16 10.94 2. 21

(R'+ l. 99) (R'+ 1.99)' (R'+ 1.06)

Substitution of Q&') from Eq. (5. 15) into Eq. (5. 14)
yields

d (3) 8

ip 20
= (A'"+i)& 2 A'") exp(+ &/2 f A'"dz")

&)0

(5. 16)
We then obtain for q,"

q,"'=f dz' [A,' (z', b)+ iW2A& )(z', b)]

(5. 26)

(3) 2. 26 8. 0 '7. 35
(R + 0.83) (R + 0.83)z (Rz + 0. 94)

(5. »)
This then permits the phases &t&60' in A„"o [see Eq.
(2. 53)] to be evaluated analytically as shown in
Sec. IVB.

The equality assumed in Eq. (5. 25) implies that
zl

x exp[+ i' f, A'"(z", b)dz"], (5. 17) y(s) y(s& (5. 28)

and finally Consequently, we have from Eqs. (5. 18)-(5.20)
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0.2—
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0.0

II -0i

-0.2

-AX EZ—I

may be taken to be zero. This, together with the
fact that these final states are asymptotically de-
generate, allows 5q,'~ to take the approximate
form [see Eqs. (2. 50), (2. 53),and (5. 8)]

8

bqi (z, z')= v 2/v„„J, J„(2P0-2P, ,) dz" .
(5. 32)

When Eq. (3. 33) for the nonadiabatic interaction is
adopted in Eq. (5. 32), we obtain, in the z- ~ limit,
the simple results

(1) ( ii 180 bz
q12 i i / =

(b2 ~ 2 )1/2 (zi2 ~ b2+ g2 )5/2+ a~& + +a„y
FIG. 8. Energy-level difference assumed between the

A 'Z and E ~Z singlet adiabatic HeH' states between the
a3Z and f3Z triplet adiabatic HeH' states. These energy-
level differences are adopted for the calculation reported
in subsequent figures (Figs. 9-12).

360 bz'
q12 i =

(b2+ 2 )1/2 ( f2+ b2+&2 )5/z+ a~) r1

(5. ss)

(5. s4)

1
q,'"(z, b) = dz' [Z„cos(bq,',")

'Urei

—v 2 Jzosin(bqI2')] e' Io, (5. 29)

1
q,'"(z, b) = dz' [2-'/zd|o sin(bq, ',")

&rei

(s)
+Zzocos(bq, ' )]e""

with

(5. so)

8

bq,'"(z, z') —= W2 J A'"(z", b) dz", (5. 31)

where 6q,'~ is the local final-state coupling ampli-
tude.

In view of the assumed equality given by Eq.
(5. 25), the potential difference between final states

where we have taken Ace») = 0. 1 and As','z' = 0. 05.
We note that these are not the asymptotic values
but are reasonable approximations in the required
R range (see Figs. 1 and 2).

Calculations were carried out using Eqs. (5. 29),
(5. 30), (5. 33), and (5. 34) with the nonadiabatic in-
teractions J,o and Jzo approximated by Eqs. (3. 31)
and (3. 32), respectively. In this calculation, we
have taken a, = a, = a„=1.2ao for the nonadiabatic
interactions. The calculated cross sections are
not sensitive to variation within 20(g of the a' s. The
result for the total 2p-excitation cross section
[see Eq. (5. 24)] is compared with experimental
measurements in Fig. 9. It is seen that the agree-
ment is remarkable in view of the approximations
that we have adopted in the calculation. For com-
parison, we have also included in Fig. 9 the result
obtained in the eikonal Born approximation without
final-state interactions. It is seen that the coupling

7.0

6.0—

4.0—

2.0—

TOTA L CALCULATED CROSS SECTiON

i/5 TOTAL CROSS SFCTION WlTH

NO FINAL- STAT E COUP LlN G

4 ~ FJG. 9. Comparison of the energy
dependence of the 2P-excitation cross
section in the eikonal Born and multi-
state eikonal approximation with ex-
perimental measurements (Ref. 6).
The dashed curve is obtained in the
eikonal Born approximation in which
the coupling of final states is not con-
sidered.

LO

I

0.2
I

0.4 0.6 0.8 I.O 2.0

CENTER -OF- MASS ENERGY (keV)

I I I

4.0 6.0 8.0 10.0
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7.0

6.0
iO

~ 50

H e
' {Is) + H (Is) - He ( I s) + H (2p)

(E Z)

with

&ut, —= ck= (W, —W, )/k, (5. 35)

where c is the velocity of light and d is the dipole
vector. The intensity of the light so emitted is
given by

40
CO (f z)

(c rr)

2 4

I„(9)= ';Z (bid e,. a) '. (5. 37)

2.0
0.2

I

0.4 0.6 0.8 1.0 2.0
CENTER —OF-MASS ENERGY (keV)

) I I

4.0 6.0 8.0 I0.0

FIG. 10. Energy dependence of the partial 2p-excitation
cross sections coming from each of the four final states
considered in t;he calculation.

of the final states is extremely important.
The contributions to the 2p-excitation cross sec-

tion coming from each of the four final states are
shown in Fig. 10. In general the 0.—0. transitions
have a larger magnitude than the 0- m transitions.
To test the sensitivity of our results on the approx-
imation adopted for the local final-state coupling
amplitude 5q,'2', we have repeated our calculation
for different values of 6q,'2" as shown in Fig. 11.

C. Polarization of Emitted Radiation

The probability of an atom undergoing a transi-
tion from state a to b and emitting light into a solid
angle dQ per unit time is

2

Wg, (&)d~= 2, ~ (hip e, a) 'dn
2vam c~

2 3

=2@s~ l(b d e, a) dQ, (5 35)
27TAC

I(8) = I(9, 2PO- js)+2I(8, 2P, —js) . (5. 38)

The intensity of light emitted for a 2Po-1s transi-
tion is

2 4

I(8, 2&o-js)=' "3' 60(l(2&0 dl js) I'

~ ~2idO0 5'0(1 —cos'8), (5. 39)

where 0'0 is the probability of the atom being in the
2po state. Similarly, the intensity of the light
emitted for the 2p, ,- 1s transition is

2 4

I(8, 2p, ,—1s) = z' s', (l (2f&, , l dl 1s)

2 4d2
5', —,'(1+cos'9), (5. 40)

271 c

where +, is the probability of the atom being in the
2p„state.

The sum in Eqs. (5. 35) and (5. 37) sums over the
polarization direction e,

For a 2p- js transition, the intensity is given by
a sum of contributions coming from the 2po- 1s and

2p, &
- 1s transitions:

7.0

6.0— -Sq
12

5.0— 0.5 Sq

C)
ce PO

FIG. 11. Effect of varying the local
final-state coupling amplitude ~q2&' on
the energy dependence of 2p-excitation
cross section.

IO—
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Substitution of Eqs. (5. 39) and (5. 40) into Eq.
(5. 38) yields for the intensity

2 4

f(9) = ", d(&((P, +(P, ) (1 —Pcos'(&),
27T C

with
{po- +.
{pg+ {p~

(5. 41)

(5.42)

where P is the polarization which can be experi-
mentally measured.

The polarization of the light emitted from the 2p

state of an H atom excited by He' impact can be
calculated from the partial cross sections 0,'" and

a2" for the 2po and 2p, states, respectively. We

have for the probabilities

(1& (3)

0 (5. 43)

where 0 is the total cross section given by Eq.
(5. 24). This then yields for the polarization

(o,"' —o,'" ) —3(o,'" —o,'")
(o(&& + o(&&) ~ 3(o(3) +o(8) )

(5.44)

APPENDIX A: CLASSICAL LIMIT OF MULTISTATE
EIKONAL APPROXIMATION

We have plotted in Fig. 12 the calculated polariza-
tion of Eq. (5. 44) using the partial cross sections
given in Fig. 10. For comparison we have also
included in Fig. 12, the polarization based on the
partial cross sections which are calculated without
allowing for the final-state coupling. The theoreti-
cal results (including final-state coupling) are
larger than the experimentally estimated magnitudes

by approximately a factor of 2.

and (2. 57) can be rewritten as

j(gbsine)Q(2)(b)e(i /2)cna(b)

(Al)
with

(I&' '(b)= J dz'Z (z', b) e' ()( ' 'y (z', b),
(A2)

(A3)4„,(z', b) =-'[@.(b) —@,(b)]- e„,(z', b),

d 2' dO 3/2 «1 p+ 1 /2
@1/2 ".c

9202eff

(A4)

where 0, is the classical scattering angle defined
in terms of the appropriate phase. For the pres-
ent problem, the classical scattering angle is de-
fined in terms of —,'C

(( [see Eq. (2. 22)]:

M, vsbb. a(b)= ——b„(b)=—(-—b, (b)+—
bg(b))

(A5)
On using the asymptotic form for the Bessel func-
tion

where Eq. (A2) reduces to Eq. (2. 25) for p=0 if
yo is set equal to unity. Equation (Al) resembles
the familiar eikonal approximation of Moliere for
potential scattering [see Eq. (II5. 11)]. The gen-
eralization of the eikonal approximation to multi-
channel scattering give rise to the factors Q~' to
account for transitions between states. A classical
limit of Eq. (Al) may be obtained in a manner sim-
ilar to that for Moliere's expression.

The error resulting from the classical descrip-
tion of the collisions is of order [Eqs. (II5. 19) and
(111.25)]

The inelastic transition amplitude in the multi-
state eikonal approximation given by Eqs. (2. 56)

S/2
Zo((), b sin8) =- — . cos(kb9 —4&(),

nkb sin8
(A6)

0.7—

0.6—

0.4—

03CO
CL

NO FINAL- STATE COUPLING

FIG. 12. Comparison of the
energy dependence of the calcu-
lated polarization of emitted
radiation in the eikonal Born
and multistate eikonal approxi-
mations. The dashed curve is
obtained in the eikonal Born
approximation in which the
coupling of final states is not
consider ed.

I.O—
FINAL-STATE COUPLING INCLUDED

0.0
O. l

I

0.2 OA 0.6 0.8 I.O 2.0
CENTER-OF-MASS ENERGY (keV)
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we may rewrite Eq. (Al) as
1/2 N

8&( &(kb sin8

i7' ~ (5 )+ i coif j 4 (A7) with

()/) 1 P 1 bcg dbcg

&ev) M„B,, va ein8 eo, ~ )

X q(2)(b ) e&)'mg&bcg)+&eg/4 (p 13)

with

( ) =- 8„( )/ 0„( )

y.,(b) =- —,'e., (b) —e,(abc) .
(A8)

(A9)

d Ocg /db~
eg = eg(bcg) —2+

~

(A14)

This then leads to the multistate classical approxi-
mation for the cross section

The integral of Eq. (A7) can be evaluated in the
stationary-phase approximation.

The stationary-phase point at 5= b, ~ is obtained
fr om

do (/b '+ 1 bg dbg i 1/2

dQ v~
~

8~ va sin8 de&

X q(2) (b )ei)'ctg &beg ) + ieeg /4
0,'8 (.g

(A.15)
dy, (b„)= M„(/8(ocg(b, g)

—e&8) = 0 .

This then defines b~ as

(Alo) For the case with N=2, Eq. (A15) reduces to

c0 cO
~

q(2)(b )~2
dQ v sin8 d H

p cp
0'p cp (A16)

In the neighborhood of h, ~

M1) do b

+ O[)I(class)] . (A12)

A stationary-phase evaluation of Eq. (A7) leads to
the classical limit of T p'

The classical limit of the eikonal Born approxima-
tion is given by Eq. (A16) with q'8 (b, g) replaced by
q'„8(b,g) [see Eq. (2. 25)].

APPENDIX B: ANALYTIC MODEL HeH ADIABATIC
POTENTIALS

The set of model He H' adiabatic potentials
shown in Fig. 1 can be represented by the following
analytic forms (in hartree units):

(A'Z) V(R) = —2. 5+(2/R)e ' 72 +6. 987R e —8. 9285X10 Re

(O'II) V(R) = —2. 125+ (2/R) e '2'~7 +0. 3A2 8 '2 —5. 999)(10 2Re 8'22"~

(E 'Z) V(R) = —2. 125+ (2/R) &.
-'"8~ + 2. 5R'e '" +0. 0640'7Re '"4'",

(((2Z) V(R)= —2. 5+(2/R) e ""88g+9.3077R'e '88"g —1.6254X10 'Re '"4"",
(e II) V(R)= —2. 125+(2/R) e ' +0. 625e

(f Z) V(A)= —2. 125+(2/R) e ' +0. 428758 "' '2'

These potentials j V(R) —= w(R) = W+'U(R)] reproduce
reasonably well the calculated values of Michels4
at intermediate internuclear separations and go
over to the exact united and separated atom limits
indicated in Table I.

APPENDIX C: NONADIABATIC INTERACTION BETWEEN
FINAL STATES

The nonadiabatic interaction between the final Z

and II states in the asymptotic region vanishes to
order B 3. We must therefore consider the higher-
order terms in Eq. (3. 19). By utilizing the expan-
sion

3&~ ' 15(R q)'
=Rj 1 —3 ——

I

—+— 2 + ~ ~ ~

we obtain from Eqs. (3.11)-(3.14)

(17~,11,) = ~ '+ —,[r, —3R, (R r, )]
1 1

+ 4 [-,R1(R1 ' r1) —,Ry~ —r1(R r1)
A1

+ 5(R1 ' r1)(R1 r2) rl(R1 ' 2)

r2(R1 r1) 2R1(r1 r2)1+ o« ') ~ (C2)

fR, +qI ' Because the helium-ion electron 2 is tightly bound
to He, we may neglect the contributions coming
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from electron 2. The matrix element in Eq. (3. 29)
then takes the form

8(2&0 @+1) (~2@(rl)+g (rf) ~ ' [2 +f(+$ rg)

( g'(rg), (& ~ g)(&g I) rj(r, ))

= r, f l,"(r,)*cose, [cosycosS,

We have

(rj'(r, ), (Zi, r, )' r', (r, ))

=r'siny/5v 2 .

This then leads to

+ siny sine, cosy, ] ro(r, ) dr,

(c5)

= r', f l,"(r,)* [cosycose,

+ sinycos&, cosy f] r$(r$) dr)

g(2@0-2p, &)
= (3/v 2) siny[cos y ——', ]

=- (v 2/5) r2 cosysiny, (c4) which is equivalent to Eq. (3. 3P).
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Deduction of Heavy-Ion X-Ray Production Cross Sections from Thick-Target Yields

Knud Taulbjerg
Institute of Physics, University of Aarhus, 8000 Aarhus, Denmark

and

Peter Sigmund
Physica/ Laboratory II, H. C. grsted Institute, DK-2100, Copenhagen, Denmark

(Received 26 October 1971)

The conventional formula determining x-ray production cross sections from thick-target
yields has to be corrected for the effects of energy-loss straggling, x rays from recoil atoms, and
nonstraight ion trajectories when heavy (keV and low MeV) ions are used as projectiles. The
first two corrections are evaluated in this paper for the case where the last is small (negli-
gible absorption). Carbon K x-ray cross sections are deduced from published yield data.
Large corrections, up to one order of magnitude, are found.

I. INTRODUCI'ION

When heavy ions slow down in gaseous or solid
targets inner-shell excitations are created in vio-
lent collisions even at velocities v & e /a. Char-
acteristic x-ray production cross sections o.„of the
order of up to almost 10 b have been reported. '

As a function of ion energy E, the reported cross

sections rise steeply from a rather well-defined
threshold energy ' U. At higher energies, O.„ in-
creases more slowly with energy. Eventually, a
dropoff of O„at still higher energies must be ex-
pected, similar to the case of light ions at veloc-
ities' v» e'/@.

Experimentally, cross sections were determined
either directly, in gas targets under single-collision


