
G. M. CARTER AND D. E. PRITCHARD

1976 (1971).
~1E. M. Purcell and G. B. Field. Astrophys. J. 124,

1542 (1e56).
W. Franzen, Phys. Bev. 115, 850 (1959).

"H. Gibbs, Phys. Bev. 139, 1374 (1e65).
E. Rothe and R. Helbing, J. Chem. Phys. 49, 4750

(1968); W. Neumann and H. Pauly, Phys. Rev. Letters

20, 357 (1968); L. T. Cowley, M. A. D. Fluendy, and
K. P. Lawley, Trans. Faraday Soc. 65, 2027 (1969).

A comprehensive review is given by R. B. Bernstein
and J. F. Muckerman, Advan. Chem. Phys. XII, 389
(1968).

16H. C. Torrey, Phys. Bev. 59, 293 (1941).

PHYSIC AI. HEVIEW A VOLUME 5, NUMB ER 3 MARCH 1972

Calculation of Energies and Widths of Resonances in Inelastic Scattering:
Stabilization Method*

Ma,rgaret Fulton Fels~ and Andrew U. Hazi
Depart'tment of Chemistry, University of California, I os Angeles, California 90024

(Received 26 July 1971)

In previous work, the stabilization method of calculating resonance parameters was applied
to potential scattering and to elastic scattering from a target. The method is here extended to
compound-state resonances in inelastic scattering and its appIication to a model problem for
a target with three bound states is examined. The eigenfunctions associated with eigenvalues
&; obtained from the diagonalization of the exact Hamiltonian in appropriately chosen sets of
square-integrable basis functions are good approximations, in the inner region, to particular
linear combinations of the degenerate exact scattering solutions at E =

&& (above inelastic thresh-
old). The partial widths are calculated from a Fermi's-"Golden-Rule"-like formula involving
the matrix elements of the exact Hamiltonian between the square-integrable eigenfunctions rep-
resenting the resonance state and potential-scattering solutions at the same energy. The slowly
varying (as a function of E) potential-scattering 8 matrix, knowledge of which is required in the
calculation of the decay widths, is determined using the criterion that several good approxima-
tions to the resonance state yield exactly the same widths. For the exactly soluble model prob-
lem studied here, the resonance parameters obtained with the stabilization method compare
well with the exact values, especially for narrow resonances. The theoretical limitations of
the method are discussed.

I. INTR ODUCTIOX

For collision processes which involve the forma-
tion and decay of a quasidiscrete resonance state,
the energy dependence of the cross section can be
expressed in terms of a few physically meaningful
parameters, such as the resonance energy E„, the
width I' (or the decay lifetime k/1 ), and the slowly
varying potential-scattering S matrix. In recent
years, several methods'3 have been proposed for
the direct calculation of these parameters from
approximations to the exact resonance wave func-
tion, without recourse to solution of the complete
energy-dependent cross section. One example is
the stabilization method ' which, until now, has
been applied only to resonances occurring in elastic
scattering. Since many processes of interest in-
volve excitation of the target, we investigate here
the extension of the method to inelastic scattering.

In Paper I, the stabilization method was applied
to scattering from a one-dimensional model po-
tential whose barrier gave rise to so-called single-
particle resonances. Later in II, we extended the
method to elastic scattering from a target and
studied its application to a model problem in which

compound resonances occurred. In III, ' we pro-
posed a new method for the calculation of all the
resonance parameters including the potential-
scattering or background phase shift. This method
utilizes approximate resonance wave functions ob-
tained from the stabilization procedure, together
with a Fermi's-"Golden-Rule"-like formula orig-
inally proposed by Miller. s In this paper, we
shall extend the stabilization method to inelastic
scattering and study its application to a model
problem in which compound resonances decay into
two open channels. Also, we shall generalize the
method proposed in III for the calculation of the
resonance parameters, so that, in principle, the
stabilization method may be applied to problems
with an arbitrary number of open channels.

In order to establish the framework for the dis-
cussion that follows, we summarize briefly the
stabilization method as applied to elastic scatter-
ing. 4'~ For scattering from a target, the complete
(no-exchange) wave function may be written in the
form
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where ro represents the coordinates of the target
particles, r is the coordinate of the scatterer,
and E is the total energy. The functions Q, repre-
sent the target states. For elastic scattering,
only F, is nonzero in the asymptotic region. After
choosing an appropriate basis of square-integrable
functions {u (r)), one expands the channel func-
tions F„ t= 1, . . . , T (including the continuum
function F,) in terms of the {u„].for specific en-
ergies &,. The resulting approximate wave func-
tion has the form

(1.2)

The specific energies e,. and the expansion coef-
ficients c'~t' are determined by diagonalizing the
complete Hamiltonian in the basis set {(t),(ro)u (r )j,
m = 1, . . . , M„ t = 1, . . ., T. To search for a reso-
nance, one diagonalizes the Hamiltonian in suc-
cessively larger basis sets. The presence of a
"stable" root, i. e. , one which does not change
significantly as the size of the basis increases, in-
dicates a resonance. The eigenfunction corre-
sponding to a stable eigenvalue && is a good approxi-
mation to the inner part of the exact resonance func-
tion, and can be used to calculate the resonance
parameters. 5

The extension of the stabilization method to in-
elastic scattering is complicated by several factors.
At a total energy E, for which N channels are open,
the equation (E —H)4's=0 has N linearly independent
solutions. Based on the results obtained for elastic
scattering, we may anticipate that ~', , obtained in
the diagonalization of H, is a good approximation
to the inner part of an exact solution at energy &,.
But the important question is zohich particular exact
solution'? In the case of elastic scattering, those
eigenvalues &,. are obtained for a given basis set,
say, {t( ())uro(r)), m= 1, . . ., M„ t= 1, . . ., 7, for
which the only open-channel function F, has anode ap-
proximately at the point where the amplitudes of the
functions {u ), m= 1, . . . , M„becomenegligible.
Inother words, the e, are determinedby the channel
radius or "wall" defined by the one-particle basis
set {u ), m= 1, ~ ~ ~, M, . In the case of inelastic
scattering, however, there are N open-channel
functions and, correspondingly, N-channel radii
defined by the one-particle basis sets (u, m= 1,

~ ~ ~, M, ), t= 1, ~ ~ ~,
¹

Since the sizes of the basis
sets Mt can be varied independently, the N indepen-
dent-channel radii appear to overdetermine the
eigenvalue e&. As we shall see, these problems
have a common resolution. For sufficiently large
basis sets, the square-integrable 4; approximates
a particular solution which is a linear combination
of the N exact linearly independent solutions with,
for example, outgoing boundary conditions. The
N llinear coefficien-ts (Nth being determined by

(2. 1)

Here, & labels the N linearly independent solutions
of (E —H) )I(= 0 that result in the case of N open
channels. The functions (t), (ro), t= 1, .. . , N, must
be the exact wave functions of the N lowest internal
states of the target, whereas Q, (r,), t & N, may
represent either true excited states or pseudostates
chosen to improve the convergence of the expansion
in Eq. (2. 1).

Now consider a particular solution of (E —H)@= 0:

%so Qd, @s—- (2. 2)

By defining a set of particular channel functions
G~(r):

N

G, (r) =Q d F'„(r), (2. 3)

we can rewrite Eq. (2. 2) in the form

(2. 4)

In the stabilization method, for specific energies

the over-all normalization) and the eigenvalue e,
are uniquely determined by the N-channel radii.

The calculation of the resonance parameters in
the inelastic case is complicated by the fact that
even for one partial wave there are N partial widths
and N(N+ I)/2 background parameters (e. g. , the
elements of the potential-scattering S matrix). We
have been able to derive a practical procedure for
the calculation of the resonance parameters by
working within the eigenphase representation of the
potential-scattering S matrix. The formalism is
relatively simple in this representation because a
given partial width depends on only one of the back-
ground eigenphases.

The extension of the stabilization method to in-
elastic scattering is discussed qualitatively in

Sec. II. The method for calculating the resonance
parameters is formulated in Sec. III. To show the
utility of the method, we apply it to compound reso-
nances occurring in an exactly soluble model prob-
lem w'hich simulates the inelastic scattering of a
projectile from a fictitious target with three states.
In Sec. IV we discuss the model problem and its
exact solution, and present the results of the sta-
bilization method.

II. QUALITATIVE DISCUSSION OF STABILIZATION
METHOD

We consider the scattering of a projectil. e from a
target with internal states at energies E„ t= 1,
2, . . . . In the case of scattering at a total energy E,
where E„&E& E~„, the exact (no-exchange) scat-
tering wave functions with outgoing boundary con-
dition can be written in the form'



M. F. FE LS AND A. U. HAZI

the channel functions G, (r), including the continuum
functions G„G» . . ., G~, are expanded in terms
of an appropriate set of square-integrable functions
u (r) m=1, . . . . Thus, the scattering wave func-
tion 4~~ is approximated by the expression in Eq.
(1.2). The specific energies e& and the expansion
coefficients c",), j= 1, . . . , Mo, are just the eigen-
values and the corresponding eigenvectors obtained
from the diagonalization of the complete Hamilto-
nian in the basis (P,(r )0u ( r )j m = 1, . . ., M„ t = 1,
. . ., T (where Mo= g, , M,). Here we emphasize
that because the approximate wave function con-
tains open-channel components [terms t=1, . . . ,
N in Eq. (1.2)], the stabilization method differs
significantly from previous methods in which the
approximate resonance functions are obtained by
projecting out the open-channel components„

Next we come to the major assumptions of the
stabilization method. Let us assume that the basis
set is sufficiently large to span the range of the
potentials involved in the problem. Then, the ex-
pansion of the closed-channel functions G„ t & N,
in terms of (u }converges because for t&N the G,
themselves are exponentially decaying in the asymp-
totic region. The expansion of the open-channel
functions G„ t+N, however, cannot converge in
the strict mathematical sense. Nevertheless,
based on the results obtained in I and II, we shall
assume that the expansion of G„ t&N, in terms
of the square-integrable basis functions, deter-
mines the specific energies &, and contains the
scattering information. In order to discuss this
assumption in more detail, we need to consider
the point x, at which the amplitude of the basis
function u„(r) becomes negligible. The point r„
is not uniquely defined, but in most cases one can
reasonably assume that it equals the outer clas-
sical turning point associated with u . This is the
definition we adopt for the following discussion.
If the basis (u (r)J is so ordered that r &r, for
all m, then the amplitude of any function expanded
in terms of (u j, m=1, . . . , M, must become neg-
ligible for r& y~. This result was utilized in the
case of elastic scattering to find a relationship
between x~ and the eigenvalues e,. obtained in the
diagonalization. In particular, for a given basis
(u ), m = 1, . . ., M, those e; (between E, and Ez)
are obtained, for which the only open-channel func-
tion has a node at x~. In the case of inelastic scat-
tering, however, one cannot find a particular &,
for which, simultaneously, E', „(r) has a node at
r„,, Ez (r) has a node at ru, etc. , for any n.
Fortunately, there are N linearly independent solu-
tions, so that one can construct a particular solu-
tion with channel functions G, [see Eqs. (2. 3) and

(2. 4)j which, for selected energies c,, have nodes
at ~~, , t &N, respectively. Correspondingly, the
expansion

Ng

Z(r) = Q u (r) c",'
1

(2. 6)

is a good approximation (apart from a t-independent
but otherwise arbitrary normalization constant) to
the function G, (r) out to ru, and decays exponen-
tially to zero for x& r„,. The numerical results
presented in Sec. IV show that these assumptions
are essentially correct.

The linear coefficients (d,j are determined by
the set of homogeneous equations

G, (r,)=P d E', (r,)=0, t=1, . . ., N. (2. 6)
a=i

In order to obtain a nontrivial solution for (d ), one
must require that

det F(E) = 0 (2. 7)

where 6' is the N N matrix with elements E', (ru, ).
(Here, we explicitly denote the energy dependence
of F, because the channel functions E'„are, of
course, energy dependent. ) The eigenvalues e,
that result from the diagonalization of II in a partic-
ular basis set are given by the roots of Eq. (2. 7).
For each e; there is a corresponding set of coef-
ficients (d (e,.)).

From Eqs. (2. 6) and (2. 7) it is clear that as the
basis set is enlarged (i. e. , the corresponding M,
increase), different sets of eigenvalues (e,.J result.
More specifically, the Hylleraas-Undheim theorem'
predicts that all the eigenvalues must decrease as
the number Mo= Z «M, increases. It is the dif-
ferent behavior of eigenvalues near and far from
the exact resonance energy E„that allows the identi-
fication of a resonance.

In the case of elastic scattering, "we found that,
as the Hamiltonian is diagonalized in successively
larger bases, the presence of a stable eigenvalue
(i. e. , one which changes only slightly as the basis
is increased) indicates the existence of a resonance.
Now we must consider the stabilization property of
eigenvalues representing resonances at energies
above inelastic threshoM. The Hylleraas-Undheim
theorem ensures that for some basis set there will
be an eigenvalue, say &,, close to E„.' Let us as-
sume that this basis is large enough so that each

ru, (/= 1, . . . , T) is greater than the range of the
potentials in the problem. Then, based on the re-
sults of Papers I and II, we predict that e J will be
stable with respect to addition of basis function

P,uu, , „regardless of the value of t. For f &N, e&

will not change significantly as P,u„, , , is added to
the basis, because, if r„, is greater than the range
of potentials, then the expansion of the closed-
channel functions G, in terms of (u„), m=1, . . . ,
M„has already converged. For t& N, && will de-
crease only slightly (depending on the magnitude of
the width) with the addition of P,u„... to the basis;
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this behavior can be argued as follows. It is known
that for energies near E„, +» has a much smaller
amplitude in the asymptotic region than in the inner
region. If r& is greater than the range of potentials,
then iti, u„, ,„ t&N, contributes only to the asymp-
totic part of 4~~ which has a relatively small am-
plitude. As a result, u&„, enters the expansion of
G, (an open-channel function) with a small coef-
ficient, and the eigenvalue is only slightly affected.
Again, the numerical results presented in Sec. IV
show that these arguments are essentially correct.

Here we wish to emphasize that in searching for
a stable eigenvalue representing a physical reso-
nance, it is very important to test the stability of

e& with respect to all types of basis functions which
may contribute to the open-channel part of 4».
If this is not done, one can be misled by an ap-
parently stable root to conclude that a, physical
resonance exists. For example, it is conceiv-
able that for a problem in which no physical reso-
nances occur, a particular open-channel function
(or functions), say G„, has a much smaller asymp-
totic amplitude than G„ t tv, t&N. In this case,
e, will be relatively stable with respect to the ad-
dition of P„u„„„,but it will decrease significantly
when iti, u„, ,„ t x i/, is added to the basis. Fortu-
nately, only for physical resonances, i. e. , at E„,
will the asymptotic amplitudes of all the open-chan-
nel functions be smaller than the inner part of +~~.
Thus, only those eigenvalues &, which represent
physical resonances will be stable with respect to
the addition of all P,u (t= 1, . . . , 7) to the basis.

In addition to the stabilization property of an
eigenvalue near E„, the magnitudes of the expansion
coefficients in the associated eigenvector C', also
indicate that a stable root represents the resonance
state. In the sense that a resonance state is a
"quasibound" state, and thus 4', is larger in the
inner region than in the a.symptotic region, we ex-
pect, for a resonance associated with the t th target
state, that c",' (for one or more m values) in Eq.
(1.2) will be large for the u which contribute most
in the inner region. In particular, large c",'for
E, & E, will indicate single-particle resonances while
large c",'for E, & E, will indicate closed-channel,
or compound, resonances. Hence, we can apply
the stabilization method equally well to both types
of resonances.

III. CALCULATION OF RESONANCE PARAMETERS

As the eigenfunction C associated with a stable
root e is a good approximation, apart from an over-
all normalization constant, to the inner part of a
particular exact solution 0» at E= e, C satisfies
the criterion for its use in the computation of the
decay widths. " In this section, we utilize the
analysis of the method developed previously for
elastic scattering' to derive explicit formulas for

the resonance energy and partial widths which are
applicable to inelastic processes.

Guided by the Feshbach formalism" of projection
operators, we define Q= ~@') ( @

~ and P=1 —Q, and
construct Q+ ~:

I
Q~'.)= I')(c»y'. )(e-E,+ fr/2) ' (3 1)

The lth partial wave of the potential scattering
solution Pir/'e„which satisfies (E P»-jP(e =0,
has the asymptotic form

( /2@2 )1/a ~ i+1 Q y (r ) [6 y-&/2 e-i&a&

( )&+1 y-1/2~/ eiAir] (3. 2)

where E=E,+Sak2i/2p, , t=l, . . . , N. Pit/'e and 6'~

are slowly varying functions of E and represent the
background or nonresonant part of the scattering.
The total width I' is a sum over open channels:

N N

(3.3)

where h/r is the lifetime for the decay of the reso
nance into the nth physical channel.

In order to express the proportionality constant
between C' and Q4"e, in terms of the resonance
parameters, it is convenient to work with the func-
tions P(» in the eigenphase representation of B~.
The relationship between tne two representations is

P ir/z„= g Pg 'z~ 'll,» (3 4)

where the real orthogonal matrix %L diagonalizes 6'~

to give the background eigenpha. ses (6„):
%L 6' '4=e' (3. 6)

In Eq. (3. 5), e '~ represents the diagonal matrix
with nonzero elements e '~&. The lth partial wave
of Pge, has the asymptotic form

where (C'HPitie„) is the amplitude for the decay of
the resonance into the yth eigenchannel of 6'~. Of
course, the total width is invariant under the trans-
formation %t and is a simple sum of partial widths,
I'= g, I'„. In Eq. (3.6) all the factors except e' i

are real, so one may write"

.(@PPg+ ) (2~) &IS ei&i ri/-a (3.8)

Substituting Eqs. (3.4) and (3.8) into (3.1), one

(2'/ti'7/)"' e'~& Q it, (ro)ti, ' ' %,„sin (k,r t'ai/2+ &„) . —

(3.6)
Without loss of generality, one may define a set of
partial widths (r,) according to

r, =2.I&C»&„) (3.7)
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finally obtains

l@~z-&=I'&(») "'(E E-„+ir/2) 'Z g „e' "I'„''.

(s. 9)
Next we assume that the normalization constant

relating @ and 4» can be deduced from the pro-
portionality constant given in Eq. (3.9). Using the
definition of 4'~~ in terms of +~ [Eq. (2. 2)], to-
gether with Eq. (3.9), we obtain, for E= e,

) =
~

tel)(2p)- / (g @ +iI'/2)

(e)ctt e'lky Zll/2 (s. io)

It should be emphasized that Eq. (3. 10), in contrast
to (3.9), is valid only in the inner region where the
square-integrable function 4 is significantly dif-
ferent from zero.

If the exact solutions 4'~ are defined according
to the usual outgoing boundary conditions, then the
lth partial wave of +» has the asymptotic form,
for E=e,

x(E —E„+il'/2) ']St „e' ~ . (3. 12)

While considering practical methods for the corn-
putation of decay widths, Miller suggested' that if
@ is a good approximation to the inner part of the
exact solution of (E —H)4' = 0, then the matrix ele-
ment in Eq. (3.8) has no contribution from the inner
region. As a result, in evaluating (@HPg») one
may replace Pg» by a function X~, which has ex-
actly the same asymptotic form as Pgs„, but whose
inner part is arbitrary. This procedure simplifies
the computation of the widths, because, provided
the assumption about C' is correct, one needs to
know only the asymptotic behavior of Pgs„, i. e. ,
the elements of 6'~ or e' and '4, but not its func-
tional form for all x. Unfortunately, in most cases
one does not know a priori the potential-scattering
parameters; so in order to compute I'y one must
either solve (E —PHP)PPs„= 0, a bleak prospect,
or estimate 6'~. Even the second alternative seems
to be impractical, because, as we have found for
the case of elastic scattering, ' the computed width
appears to depend strongly on the assumed value
of the potential-scattering phase shift 6~. Fortu-
nately, in the elastic case we were able to use this
dependence of the computed width on 6~ to good ad-

(p/2@'m)~'i "Q d„(e)Q, y, (r,)[&„u"'8-
( )l+ly 1/2~ eiAgr] (3 11)

(Henceforth, all sums run from 1 to N, unless
specifically noted otherwise. ) In terms of the reso-
nance parameters, the elements of the full energy-
dependent 8 matrix are given by'

where

x Q„L [Q,d*(e)e „]e '~" sin(v —4 ),
(3. 16)

and

Before discussing the implications of Eq. (3. 16), we

vantage by recognizing that, in general, two slightly
different but equally good resonance functions @'

give exactly the same width only if the assumed
value of &~ is close to the exact value. Thus, if at
least two good C' are available, say from the sta-
bilization procedure, then one can determine both
r and &, by requiring that the two @ give exactly
the same I'.

We now show that an exactly analogous behavior
of the computed widths holds for resonances above
inelastic threshold, and suggest a procedure for
the calculation of all the resonance parameters.
We propose to calculate the partial widths from
Eq. (3.8) by replacing Pg+ by a function ys whose
lth partial wave has the asymptotic form

(2p/h'm)"'7, y, (r,) u /3@, e"sin(a, r- fm/2+ r)

(s. 13)
but is otherwise arbitrary. The variables v' and 'U

represent the "trial" values for a given ~ and the
corresponding column of '4, respectively. Writing
the computed Partia/ widths as I'(e, r, U) to show

their dependence on C', z, and the "trial" back-
ground parameters, we have, from Eq. (3.8),

I'(e, ,7')U' '= e "(@(H &)y,)(2m)"—' . (3. 14)

In Eq. (3. 14) the operator H —e instead of H appears
in order to remove the restrictions that g, be or-
thogonal to @'. If R is the point at which the square-
integrable function @ becomes negligible, then the
matrix element in Eq. (3. 14) has no contribution
from x&A. Assuming that C' is proportional to 4,~

for r & 8, we may substitute Eq. (3.10) into (3. 14)
to obtain

I (e, ~, ~)"'= 2~e-"(e —Z„- iI'/2)

& [P„g.d.*(e)~.„e-'"r„"']-'(~„(H—e) X. & .
(s. is)

If the point R is beyond the range of interactions,
then the matrix element in Eq. (3. 15) can be eval-
uated using the asymptotic forms of +@ and g given
by Eqs. (3. 11) and (3. 13), respectively. The de-
rivation, whose details are given in Appendix A,
yields the following expression for the computed
partial widths:

I'(& T 9)' =Q I,„e""~"&I' ~+2D(e —E„-iF/2)
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emphasize that the validity of the results depends
on the assumption embodied in Eq. (3. 10).

Equation (3. 16), which is the generalization of
Eq. (10) of Paper III to inelastic scattering, shows
the dependence of the computed widths on the reso-
nance function C' through d,*(q) and c, the eigenvalue
associated with @. In addition, as expected from
the results obtained for elastic scattering, 1 (2, v', '0)
becomes independent of e and 4, and reduces to
the exact partial widths when the "trial" background
parameters become equal to the corresponding ex-
act parameters. Specifically, if 'Ut='sty, k=1, . . .,
N, then I.„=&y„because is a real orthogonal
matrix, and Eq. (3. 16) reduces to

p(e r g )1/2 e(( y-/1y ) p1/2 + 2~(g E

i'll/2)

e (4y

x sin(r —b,„)P, d,* (e) %,y . (3. 17)

(Here %y denotes the yth column of the matrix '(ty. )

lf, in addition, 7 = b,„, then Eq. (3. 17) becomes

p(~ g c(t )1/2 = zd/2 (3. 18)

~z(1) (~ ~ ) ~z,(2) (~ g ) . . . ~~(1y~1&(~ ~ )

(s. 19)
Since '4 is an orthogonal matrix '4» is determined

To summarize, all resonance functions C' that sat-
isfy Eq. (3. 10) give the exact partial widths via,

Eq. (3. 14) provided the function g has exactly the
same asymptotic behavior as Pg;y; or, equivalently,
if the background parameters associated with g, are
equal to the corresponding exact parameters in PP', y.

Based on the results contained in Eq. (3. 16), we
suggest the following practical procedure for the
computation of all the resonance parameters from
several good resonance functions 4', which are ob-
tained from the diagonalization of II in successively
larger basis sets.

(a) By requiring that several different @ give
exactly the same partial width I'„computed from
Eq. (3. 14) for r=&y and 'U, ='((,y, t=1, . . ., N, one
can determine approximations to the background
eigenphases 4y and the matrix 'h.

(b) Once the potential-scattering parameters, and
thus 6'~, are known, one can calculate I"„from Eq.
(s. 14).

(c) After &y, '((, and I; are known, approxima-
tions to E„may be found from an expression equiv-
alent to Eq. (3. 16) for each C'.

To see how the first step of the above procedure
works for N open channels, consider I""' (e'"', r, &)
computed from C'"', n= 1, . . ., N+ 1, where n dis-
tinguishes the stable roots obtained from different
diagonalizations. Equations (3. 17) and (3. 18) show
that all the I"'"' become equal as v' and Ut take on
the values ~y and 'ht» respectively. As a result,
the Nunknowns 4y and typ t 1

&
N —1, may

be determined from the equations

by the normalization condition

N

P ci(2 (s. 20)

d./d, = (c.+ is.)/(c, +is, ) . (3. 23)

For a given C', the quantities St and Ct are defined
by the equations

S, = (4i(/I(2k, )'/2 f dr dro R, (r, ro)(H, ~ —e)
0

xf(r) p, (ro) sin(k, r —l y(/2) (3.24)

C, = (4p/haik, )'/2
, f dr dr, R, (r, ro)(H, ~ —&)

where

x f(r) (t1,(r,) cos (k,r 1y(/2), — (3. 25)

( r, r, C') = r 'R, (r, r,) Y, (f').

It is worthwhile to point out that the partial widths
given in Eq. (3. 21) describe the decay of the reso-
nance into the eigenchannels of 6'~. Whenever it is
desirable to determine the physical widths defined
in Eq. (3.3), one may calculate them from the ex-
pression

Z ~p eiay 11/2~ ~2
y=1

(3. 26)

which is obtained by applying the inverse of the
transformation in Eq. (3.4) to (@HP(a ).

In general, eliminating 'sty, t=1, . . ., N, from
Eqs. (3. 19) and (3.20) gives an Nth-order equation
whose solutions are the potential-scattering eigen-
phases 6y, y = 1, . . . , N. If Eq. (3. 10) rigorously
holds, then the matrix 1( obtained from Eqs. (3. 19)
will be orthogonal. Since in practice this is rarely
the case, one has two options available-either to
work with a nonorthogona1%. , i. e. , a nonunitary
6'~, or to force the orthogonality by relaxing some
of the conditions in Eqs. (3. 19). As we shall see
for the model calculations presented in Sec. IV,
the second method appears to give the better results.

In order to derive explicit expressions for E„
and I"y, y=1, . . ., N, one must assume a specific
functional form for g~ which is regular at the origin
and which is consistent with Eq. (3. 13). Here we
choose the lth partial wave of g~ to be the expres-
sion in Eq. (3. 13) multiplied by a function f(r) with

the properties f(0) = 0 and f(r) =1, r& R Th. e
algebraic manipulations outlined in Appendix B give
the following simple results:

I",/2 = g, 'll, „(S,cos&y+ C, sinAy), y= 1, . . . , N

(s. 21)

E„=g + p„-2' I','/2 p, (S, sinb „—C, cos &y) (t,y,
(3. 22)
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The model problem to be examined here simu-
lates electron-target scattering in which excitation
to the target's first excited state is energetically
allowed. In direct analogy with the model in Pa-
per II, we consider the scattering of a projectile
from a fictitious target which consists of exactly
three bound states with energies E, ((= 1, 2, 3).
If H= —d2/dxa+Ho(y)+'0(x, y) is the complete Ham-
iltonian of the system, and (P,}represents the
target states satisfying Hop, = E,p„ then a partic-
ular solution of (E —H)kz= 0 can be written as

@zs = & W~(y)~~(x) (4. 1)

Writing Schrodinger's equation in matrix form,
the projectile functions Gt satisfy'

dE —E,+ z 6„—V„(x) G, (x)=0,
t=1 dx

where

s=1, 2, 3

I'. (x)= f A.b)U(x, y)4 b)dy .

(4. 2)

The matrix elements V„are taken to be square
wells of height &„(=X„) and width a. If V» is suf-
ficiently negative to hold a bound state, resonances
associated with the third target state will occur.

For a total energy E satisfying E, & Ez &E&E3,
each function Gt is a particular combination of two
linearly independent solutions F,„of Eq. (4. 2),

G, (x)=g b„F,.(x) . (4. 3)

The choice of eigenphase normalization gives
linearly independent solutions (denoted by o.'= 1

and n=2) with asymptotic forms

F, = k, ' W, (sink, x+ tan6, cosk, x), t= 1, 2

(4. 4a)

(4. 4b)E3„=C„e "3"

Finally, we note that, in contrast to previous
theories, ' our expression for the "energy-shift, "
or Eq. (3.22), does not require the evaluation of
integrals involving principal-value Green's func-
tions. Also, the ratios of the coefficients d com-
puted from Eq. (3. 23) allow one to construct, apart
from an over-all normalization constant, the par-
ticular solution 4zz [Eq. (2. 2)] which the square-
integrable function 4' approximates.

IV. APPLICATION TO MODEL PROBLEM

cos& —sin~)
VP=

sin(d cos~ I
(4. 6)

The scattering information is contained in the three
real energy-dependent quantities &l, &&, and ,
from which the 8 matrix is readily constructed.
Specifically, if + is the diagonal matrix with non-
zero elements e~"~, then O'='VVI)%"~.

The exact solution of Eqs. (4. 2) is straightfor-
ward. A transformation of these equations gives
three uncoupled sixth-order diff erential equations
for F, , f = 1, 2, 3. Using the requirement F, (0) = 0,
the solutions I't for x& a may be written

3

F„(x)=Q A„sin);x (4. 6)

Ft~ —0, tW&.

We shall adopt this convention for the mixing param-
eter & throughout the calculation.

In the eigenphase representation, the resonance
parameters consist of the energy E„, the potential
eigenphases 4, the partial widths I' (o!=1,2), and
the potential mixing parameter p at energy E= E„.
The first five satisfy a relationship with each 6 (E)
similar to the Breit-Wigner form for elastic scat-
tering'4:

Z- Z„= —,'1r,cot [~, —6„(Z)]+r,cot[~, —6.(Z)]},

The constants A~,. and A„depend explicitly on A„.
and $, . The quantities (; may be determined by
solving the algebraic equations that result from
substituting Eq. (4. 6) into the sixth-order equa-
tions. Connection of the logarithmic derivatives
of F„in Eqs. (4. 4) and (4. 6) at x=a yields 2„.
(i=1, 2, 3) and 6 (E) for o.'=1, 2. Finally, ~ may
be found by setting the ratio F, (a)/F2, (a) in Eq.
(4. 4) equal to the corresponding ratio in Eq. (4. 6)
for either +=1 or 2.

Before discussing the extraction of resonance
parameters from the exact values of 6, (E), 5z(z),
and +(E), a remark should be made concerning the
labeling of 5 . From the V7 matrix in Eq. (4. 5)
one can see that interchanging the labels in 5 (i. e. ,
the columns in 'W) is equivalent to taking & = ~+ z/2.
If the coupling between channels occurs mainly
through resonance, then at energies far from E„,
is either near zero or near z/2. By labeling 6

for E«E„so that + is near zero, 6 corresponds
physically to the phase shift which goes with k,
i. e. , asymptotically for E«E„:

F,„=k '~ (sink x+ tan 6 cosk x)

and

Here k, =E —E„ t=1, 2, and I(. 3 E3 E.
For the two-channel case, the orthogonal 'VP

matrix may be parametrized in terms of a mixing
parameter , e.g. ,

@=1,2. (4. 7)

For a given set of parameters E, and ~„defining
the model problem, 5, (z) [along with &(E)] were
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found for an energy range exhibiting resonance
behavior. We calculated the quantities I' and 4
at E= E„by fitting the exact 6„(E) to Eqs. (4. 7),
in which 4 were taken to vary quadratically with
energy. The quantity p, which is related to the
background 8, matrix

cos p —sinp
sinp cosp

is determined from the parametrization of the 8
matrix in terms of I', ~, andi[ given in Eq.
(3. 12). From the relationship

(4. 8)

background scattering small.
We apply the stabilization method to the model

problem in a manner analogous to the elastic case
treated in Paper II. Referring the reader to
Sec. III of Paper II for the details, we briefly re-
mark that the basis functions are of the form

P, (y)u (x) (t=1, 2, 3 and m=1, .. ., M, ), where the
functions u„(x) are the odd harmonic-os" illator
functions with a frequency of 30." The Hamilto-
nian matrix consists now of nine blocks, each of
dimension M, x M, (s, t = 1, 2, 3) and is of total di-
mension Mo= M1+ M2+ M3. The diagonalization of
H yields Mo roots c, and Mo orthonormal eigen-
functions @;, each of which has the form

one finds, after straightforward algebra, that p
satisfies

tanM =
n cos2p —psin2p+ (n'+ p')'~'

4. 9
n sin2p —pcos2p

TABLE I. Strengths of the couplings between channels
used in the model calculations.

Model
calculation

A

C
D

0. 1
0. 1
0. 1
0, 1

A.13

1.0
10.0
10.0
10.0

0. 1
0. 1
1.0
5.0

where n = (E —E„)sin(b, , —A~) + —,'(I'2 —I",) cos (b, , —~~)
and P= (I', I'~)'~2. The sign of the root in Eqs. (4. 8)
and (4. 9) is chosen to be consistent with the order-
ing of & already discussed. From this point on,
we shall let 4 and p denote their respective values
at E=E„.

Often the physical widths I', defined in Eq.
(3.3), are of greater interest than the partial
widths I' . Once the resonance parameters I',
6, and %( are known, (I' ) may be determined
from Eq. (3. 26). In this work, we shall calculate
both sets of partial widths.

In order to examine both narrow and broad reso-
nances, we varied the strength of the coupling be-
tween the closed and open channels, i. e. , &„ for
t=1, 2, while holding the other parameters fixed.
Specifically, with E1=0 E2 75, E3=100,
+2 ——2, &as= —16, and a=1, four sets of coupling
were treated in detail. Table I lists the values of

&„, set, used in the four calculations which we
shall call A, B, C, and D. We note that the well
V„(x) has a bound state located at E„=—9.8765
which is responsible for the occurrence of a com-
pound-state resonance in this model. Throughout
the calculations we used a small value for the
coupling &,2 in order to keep the contribution from

The functions Z, (x) are just linear combinations
of the basis elements u, m=1, ..., M„as given
in Eq. (2. 5).

Before making a detailed comparison between
the exact results and those obtained with the sta-
bilization method, we discuss briefly the stabiliza-
tion property of certain roots observed in the model

calculations. Because G, (x) is itself a square-
integrable function for E & E„ the roots e& below

E~ (and corresponding eigenfunctions 4 ~) are not

sensitive to changes in Ms, provided the basis

Q&~u„), m= 1, . . . , M, is sufficiently large to span

the range of the potential. For example, for model

calculation B a change of M, from 30 to 35 affected
the stable root by only 10 '%. As a result, M3 was

held fixed at 35 throughout the calculations. Fig-
ure 1 shows the intersections of two perpendicular
planes with the two-dimensional surfaces repre-
senting the roots as functions of M, and M2 for
model calculation B. The behavior shown is typ-.
ical for all sets of couplings considered. The

reader is reminded that stability of a root occurs
when the corresponding surface has a plateau.
With M2 held fixed, several roots —in particular,
those with large expansion coefficients c"2'—were
stable with respect to changing M„similarly, the

roots with large c'~,' were stable as only M2 was

varied. But only one root below, E, was stable
with respect to variation of both M, and M2; this is
the stable root which represents the resonance.
From the corresponding eigenfunction @', we hope
to extract resonance information.

A given diagonalization of H yields, for each root
an approximation to a particular solution of

(e~ —H)4, =0, in accordance with Eqs. (4. 1) and

(4. 3). To evaluate how accurately Z, (x) approxi-
mates G, (x), we must first determine the coeffi-
cients b, (n=1, 2) which define G, in terms of the

exact solutions F«(x). In actuality, only the ratio

ba/b, is required since C'; approximates +, . only

within an over-all normalization factor. In a
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&g = 80,4917 (I'i"')' ' = cosp[S,'"'cosA, + C', "' sin&, ]

+ sinp[Sz'"' cos&, + C2'"' sink, ], (4. 13a)

(I'3"') = -sin p[S',"' cos&z+ C," »»2]

+ cosp[S~ cos&~+ Cz sin&2] . (4. 13b)

An approximate value of E„may be calculated from
Eq. (3.22) for each root. For a given set of three
stable roots (n = 1, 2, 3), h„b„and p may be de-
termined from Eqs. (3. 19). Elimination of p gives
&, and &z, from them two values of p, viz. , p,
and pa, respectively, result. If the results were
exact, one would obtain

p =p+ /2,
in accordance with the orthogonality of the matrix

The extent to which Eq. (4. 14) is satisfied
provides some measure of the accuracy of the ap-
proximations being made. In line with our conven-
tion for small background scattering, 6 will be
so ordered that p, is nearer zero than v/2.

If Eq. (4. 14) is satisfied only approximately,
two possible approaches to the calculation of I'
emerge. If one requires that both partial widths

be independent of n, i. e. , that Eqs. (3. 19) hold
rigorously for n= 1, 2, 3, then I', must be computed
from ~ and p„, &=1,2. In this case, one obtains
a nonorthogonal matrix &:

cos pg cospg

p s p
(4. 15)

0 1.0 2.0 3.0

FIG. 3. Comparison of approximate functions Z&

(dashed line) with exact functions G& (solid line) for an
off-resonant root, &&, resulting from the same diagonal-
ization as is described for Fig. 2. Arrows indicate
channel radii z~& (see Eq. (3.4) in Paper II].

I

calculations reported here, we have used the fol-
lowing form' for y, :

x[sink, xcos& +f(x) cosk, xsin&, ]'lt„, (4. 12)

where e = 0, + E„ t.= 1, 2. To be consistent with Eq.
(4. 12), we have set f= 1 in the expression for S,

2
[Eq. (3.24)], while we have used f(x) = 1 —e ~"

with 0= 5 in C, [Eq. (3.25)].
Equation (3.21) gives the partial. widths I'"' cal-

culated from the eigenvector C'"' associated with a
stable root e "'. (Here we reintroduce the super-
script n to distinguish the stable roots obtained
from different diagonalizations. ) In terms of b,

and p, we have, for the two-channel case,

and the total width l" is not preserved as one trans-
forms froni the partial widths (I'g to the physical
widths (f',).

Alternatively, one may choose to ensure the
orthogonality of %, i.e. , the unitarity of 8~. In
this case, p= p„or p= pz —v/2 must be consistently
used in Eqs. (4. 13) and also in Eq. (3.26) in the
computation of (1 ]. Thus, with unitarity pre-
served, one obtains two sets of results for (I
For p= p„F',"' is independent of n because p& is con-
sistent with b,„while three different I'2"' result.
On the other hand, for p = pz —v/2, three different
F',"' result while I'2'"' is independent of n In this.
work, whenever a given p is used, we take 1 z,
Pen, to be the average of I'~"' over the three values
of n, and compute the standard deviation o of I'~~"'

from the average value. We remark that o, and o2
would be identically zero if Eq. (4. 14) were rig-
orously satisfied.

In all of these approaches, dependence on n
persists in the calculation of E„[Eq. (3.22)], and

E„ is taken to be the average of the three values
obtained from the triplet of roots.

For each of the model calculations, we have
taken four stable roots (denoted by n= 1, 2, 3, 4) and
computed the resonance parameters from the four
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TABLE II. Dependence of the computed widths on the method employed to determine the background parameters and,
for each, dependence on the triplet of stable roots used for model calculation C. Method (i): unitary& with p= p&,

.
method (ii): unitary with p= p2 —7t/2; method (iii): nonunitary & [Eq. (4. 15)j.

Method

Exact

Triplet

0. 0076 0. 1477 0. 1044 0. 1459 0. 1062 0.2521

123
1, 2, 4
1, 3, 4
2, 3, 4

0. 0832
0. 0841
0. 0566
0. 0572

0. 1620
0. 1627
0. 1555
0. 1558

0. 0827
0. 0826
0. 0893
0. 0890

0. 1428
0. 1433
0. 1424
0. 1425

0, 1019
0. 1020
0. 1024
0, 1023

0.2447
0.2453
0.2448
0.2448

0. 010
0. 012
0. 009
0. 010

1, 2, 3
1, 2, 4
1, 3, 4
2, 3, 4

0. 0040
—0. 0074
—0. 0080
—0. 0222

0. 1408
0. 1378
0. 1384
0. 1344

0. 1030
0. 1062
0. 1055
0. 1090

0. 1398
0. 1395
0. 1403
0. 1396

0. 1040
0. 1045
0. 1036
0. 1038

0.2438
0.2440
0.2439
0.2434

0. 007
0. 005
0. 003
0.007

0.2848
0.2923
0.2770
0.2849

1, 23 ~ ~ ~ 0. 1620 0. 1030 0. 1598 0. 1250
1, 2, 4 ~ ~ ~ 0. 1627 0. 1062 0. 1635 0. 1288
1, 3, 4 ~ ~ ~ 0. 1555 0. 1055 0. 1570 0. 1200
2, 3, 4 0. 1558 0. 1090 0. 1610 0. 1239

The four stable roots were obtained from the diagonalization H with the following basis sets: Mf 36 M2 31 foI
=1; M& ——36, M& ——32 for n =2; M&

——37, M2 ——30 for n =3; M~=37, M~=31 for n=4. For all n, M3 =35.
"In method (iii) we take I I f+I'2+ r, +r, .

triplets availahle in this set nf roots. For each
triplet we have various results from the unitary and
nonunitary prescriptions. Table II shows a detailed
comparison of the resulting widths for model cal-
culation C. In general. , the variation of E„with n
or p, was very slight (less than 0. 02/~) and there-
fore is not shown. From Table II several trends
are apparent, and we comment in advance that the
same trends carried over to the other three model
calculations.

First, when unitarity is preserved, the dependence
on which p (p, or p~) is used is much less for the
total width I" and the physical widths I' than for the
partial widths I' . In addition, as we carry out the
calculation for a different triplet of roots, still
keeping unita, rity, we see that I' and I" are only
weakly sensitive to the triplet of roots used. In
general, the p for which a is smaller yields more
accurate values for I', and I"2, apparently because
p itself is more accurate. On the other hand, when
the ~.matrix in Eq. (4. 15) is nonorthogonal, i. e. ,
when ~ is nonunitary, the total, as well as the
partial, widths are sensitive to which triplet is
used —an undesirable outcome for a method which
expects equally valid results from any roots, pro-
vided that they are stable and obtained from a suf-
ficiently large basis.

With the conclusion that an orthogonal 8, matrix
is essential, we have adopted the following proce-
dure for approximating the resonance parameters.
After choosing a set of (four) stable roots, cal-

culations are made from every available triplet of
roots. For a given triplet, we compute the reso-
nance parameters twice using two values for p,
and choose the results obtained with the p for
which 0. is smaller. From the resonance param-
eters calculated from all of the (four) triplets, we
take those for which o is smallest to be our final
results. " In Table III, we show a comparison of
the exact and approximate resonance parameters
for model calculations A, I3, C, and D. In addition,
to give an indication of the relative insensitivity of
the results to roots, we show the average of the
four sets of resonance parameters computed from
the different triplets of roots.

As was seen in the elastic-model problem, the
results are excellent for small couplings and de-
crease in accuracy as the couplings are increased.
Even for large couplings it appears that this method
is capable of predicting good values for the reso-
nance energy and potential eigenphases, while pro-
viding reasonable estimates of the decay widths.

V. DISCUSSION

From the results presented in Sec. IV we may
draw the following conclusions concerning the
stabilization method as applied to inelastic scat-
tering, When the exact H is diagonalized in a, large
enough set of square-integrable basis functions,
the resulting eigenfunctions are good approxima-
tions, apart from a normalization constant, to
particular combinations of the exact linearly inde-
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TABLE III. Comparison of the exact and approximate resonance parameters for all four cases of couplings con-
sidered. For each model calculation, the first row gives the exact values, the second the final results obtained as de-
scribed in the text (i.e. , corresponding to the smallest 0~), and the third the values averaged over the four triplets of
roots used.

exact —0. 5655 —0.2362 —0. 004 17 0. 001 043 0. 001 529 0. 001 053 0. 001 519 0. 002 572 90. 1364
best 0 —0.5665 —0. 2356 —0. 004 19 0. 001 042 0. 001 529 0. 001 052 0. 001 519 0. 002 571 90.1366
av —0.5665 —0.2359 —0. 004 06 0. 001 043 0. 001 529 0. 001 053 0. 001 519 0. 002 572 90. 1366

exact —0.4688
best 0 —0.4697
av —0.4674

—0.2243 —0. 003 25 0. 1443
—0.2237 —0, 004 83 0. 1423
—0.2197 —0.005 53 0. 1423

0. 001 498 0. 1444
0. 001 522 0. 1424
0. 001 539 0. 1424

0. 001 406 0. 1458
0. 001387 0. 1438
0. 001 384 0. 1438

91.2694
91.2698
91.2700

exact —0.4683
best 0 —0.4623
av —0.4622

—0.2064
—0.2166
—0.2199

0. 0076
—0. 0080
—0. 0084

0. 1477
0. 1384
0. 1379

0. 1044
0. 1055
0. 1059

0, 1459
0. 1403
0. 1398

0. 1062
0. 1036
0. 1040

0. 2521
0.2439
0.2438

91.3794
91.3802
91.3802

exact —0.4580
best 0 —0.4559
av —0.4510

0. 0911
0. 0639
0. 0783

0.0570
0. 0736
0. 0509

0.2266
0.2002
0. 1862

0. 8857
0. 7276
0.7467

0. 1853
0. 1545
0. 1549

0. 9270
0. 7733
0.7780

1.1123
0. 9278
0. 9329

93.7033
93.6959
93.7037

'See Table I for the couplings used in each model calculation.

pendent solutions at energies equal to the corre-
sponding eigenvalues in both the resonant and non-
resonant regions. The eigenvalues and the coef-
ficients defining the particular solutions are de-
termined by the requirement that the open-channel
functions have nodes at the channel radii defined
by the one-particle basis sets in terms of which
the open-channel functions are expanded. The
eigenfunctions 4 associated with stable roots repre-
sent the resonance state. The decay widths of the
resonance are calculated as the off-diagonal ele-
ments of H between 4 and continuum functions rep-
resenting the background scattering. The potential
scattering parameters, i. e. , 6'~, which specify
these continuum functions, may be determined by
the requirement that several good 4 give the same
partial widths. It is necessary to use this criterion
in such a way tha, t a unitary background S matrix
results in order to obtain accurate values for the
widths.

We conclude with a few remarks about the ob-
served decrease in the accuracy of the computed
widths with increasing coupling, i. e. , for broader
resonances. We believe that, because we have
used adequate basis sets, this trend is due solely
to the approximation embodied in Eq. (3. 10). The
assumption that 4' is proportional to the exact solu-
tion in the region where the amplitude of C is not
negligible allows one to replace the background
scattering solution Pg z by its asymptotic form in
the expression for the width. As Figs. 2 and 3
show, this approximation is quite accurate, at

least for the basis sets employed in the present
calculations. As a result, we suspect that it is not
@ itself but rather the proportionality constant be-
tween @.and 4 ~~ given in Eq. (3. 10) which becomes
less accurate as I" becomes larger. This conclu-
sion is supported by the observation that the method
appears to give more accurate values for the ratio
I'2/I'~, which does not depend on the proportionality
constant, than the partial widths themselves. For
example, for model calculation D, the approximate
value of 1"2/I', is 5. 03, compared with the exact
value 5. 00. Clearly, this is a much better agree-
ment than that found for the physical widths in Ta-
ble III. It is encouraging that the proposed method
gives accurate estimates of I' /I'8 or the branching
ratios I', /I' even when it underestimates the partial
widths in case of broad resonances.

We note that both in the elastic case treated in
Paper III and the inelastic case studied here, the
computed total widths, as well as the physical par-
tial widths, are always smaller than the corre-
sponding exact values. This trend, which may be
a special property of the model considered, is
presently under investigation.
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APPENDIX A

In order to derive Eq. (3. 16), one needs to eval-
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of(

~e l 8+8
0 6l g~ Xe l 8~ (Al)

where +„and X„are the lth partial waves of +,~

uate (4,~(H —e) g, ) in terms of the resonance param-
eters. We integrate by parts twice to find that

(~.&(H - e) X.) = (X.(H- e)~.&&*

and p„respectively. The first ter m on the r ight-
hand side of Eq. (Al) is of course zero. If the
point R is beyond the range of interactions, one
can evaluate the surface term using the asymptotic
forms in Eqs. (3. 11) and (3. 13) to obtain

(@,ii(H —&)g) =z(2m) 'Z, 'U, Z, d,*(&,—8,* e"') .
(A2)

Substituting Eq. (3. 12) for 6'„and then rearranging Eq. (A2), one gets

(4'~(H —e)X,) = (2ii) '(e —E„-iI'/2) '

x (i (e —E„—iI'/2) [Q, d„* '0 „-Q„(p,d*Z, „)(Q, u, 'n, „)e""-' ' ]

+e"'(g+ V,'u, e-" r'") @5", d*V e-" I''/')1 (A3)

Because is a real orthogonal matrix, the following identity holds:

4)

Using Eq. (A4) one can simplify the first term in the curly brackets of Eq. (A3) to obtain

(@„(H-e)X, ) = (2w)-'(e —E„-iI'/2)-'

x (2(e —E„—iI'/2) g„(P d~'ll, „)(Q, 'U, 'll, „)e'" ~' sin(T —S„)

+ e2i~(g P IO cit e-ia„ I 1/2)(g P d++ ia„ I-si/)}

Finally, substitution of Eq. (A5) into Eq. (3. 15) yields Eq. (3. 16).

(A6)

APPENDIX B

Su) stitution of the explicit expression for y, [Eq.
(3. 13) multiplied by f(r)] into Eq. (3. 14) gives

I'(e, 7, '0)'/ =Q, '0, (S, cosr+ C, sins), (Bl)

where the integrals 8, and C, are defined in Eqs.
(3. 24) and (3. 25). To obtain Eq. (3. 21) for I'„, one
simply lets 7'=~, and 'U, =%,,„, t=1, . . ., N, and
then substitutes Eq. (3. 18) for the left-hand side
of Eq. (Bl).

The derivation of Eq. (3.22) for E„and Eq. (3. 23)
for d, /d~ requires that the expressions for S, and

C, be in terms of the resonance parameters. These
may be obtained by setting equal the right-hand
side of Eq. (Bl) and the right-hand side of Eq. (3. 16).
Using the fact that sine and cosa are linearly inde-
pendent and that the equality must hold for any 'U,

subject to / ~i., '0~i= 1, one obtains

ctt e-ik~

x [I' '„—2D(e —E„—il /2) si«Q„d~(&)&~~]

(B2)

C, = Q„u,„e-"

x [fr '„"+2D(e —E„iI'/2) cos &„g-d,"(e)'h,„]
(B3)

where D is defined with Eq. (3. 16). If one sub-
stitutes Eqs. (B2) and (B3) into the right-hand side
of Eqs. (3. 22) and (3.23), then the repeated use of
the relationship

verifies the expressions for E„and d, /d~.
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As in Refs. 4 and 5, rydberg units are used through-

out the calculation and the mass of the projectile is taken
to be the mass of the electron, i.e. , p= 2.

Recalculation of Er, 1, and ~& with Eq. (4. 12) for the
elastic case gave improved results for the two smaller
couplings. The following values should be compared
with the average values found in Table I of Ref. 5:
= 1: E„=90, 1347, I' = 0. 001472, Bp =- 0.2719; A, = 10:
@r 91.2162, I = 0, 1692, 6& = —0. 1856; X~~

= 20: @r
= 94. 3809, I' = 0. 7377, 6p ——0. 0469.

Two rem. arks of caution are in order. First, when
one partial width is significantly larger than the other
(and if the background scattering is small), it turns out
that severe cancellation may result in the calculation of
either p~ or pq, so that p&

—
p~ may be far from ~/2.

This effect was seen in model calculation 8; however,
as Table III partially indicates, the results obtained
from the p~ with smaller 0~ are not affected by this dif-
ficulty. Second, extreme cancellation was seen when the
three roots used were so similar that S&" and C~"'

(t = 1, 2) were close for all three values of n. This oc-
curred when one of the open-channel M& (M& or M~) was
the same for all three roots used. In this work, the
triplets were chosen to avoid this difficulty.
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Si Kn X-Ray Spectrum Produced by 30-Mev Oxygen Bombardment*
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E& x-rays of Si were produced by 30-MeV oxygen bombardment on a Si wafer. ¹ineE&
lines are observed with an energy resolution of 2. 5 eV at energies of 1739.78 (Ko.'( 2), 1750.8

+0.5 (K&3), 1753.1+0.6 (KG.'4), 1762.6+0.5 (K&5}, 1766.4+0.6 (KG.'6), 1775.3+0.6, 1778. 8

+0.5, 1794.2 +0.6, and 1809.7+0. 8 eV. The intensity pattern is very nearly symmetric and

the envelope approximately Gaussian. The energies of these lines are found to agree with
Hartree-Fock-Slater calculated energies for Ka transitions from Si atoms with initial con-
figurations (1s) (2p) "for n=0, 1, 2, 3, 4, and 5.

I. INTRODUCTION

Characteristic x rays produced by bombarding
targets with heavy ions at MeV energies have pro-
duced x-ray spectra unlike any previously seen
with other means of excitation. The K and I.
x-ray lines obtained with high-resolution Si (Li)
detectors are shifted to energies higher than those
excited by other than high-energy heavy-ion bom-
bardment. These energy shifts are attributed to a
high probability of multiple inner-shell ionization
created by atom-ion collisions. Two recent ex-
periments~'8 using high-resolution crystal spec-
trometers have resolved some of the structure in
the uncharacteristic Kn spectra. In the case of
Al plus 5-MeV N' beams, ' six Kn lines are ob-
served. One of these lines is the normal Kn, 2

line whereas the other lines agree with Hartree-
Fock-Slater (HFS) calculated (1s-2p) transition

energies for the five possibl. e initial configurations
(1s) '(2P), where n=1, 2, 3, 4, and 5. The produc-
tion of (2s) holes is not manifested in the spectra
as distinct peaks due to large Coster-Kronig widths
which transfer (2s) holes to the (2p) shell~ before a
En event can occur. The observed intensity pattern
is nearly symmetric and the envelope nearly Gaus-
sian. In the case of Fe plus 3Q-MeV 0' beams'
only three lines were observed corresponding to
1s-2p transitions from initial configurations (ls)
(2P) ", where n= 0, 1, 2. Additional m-shell va-
cancies are deduced in the latter work.

In the present experiment 3Q-MeV O" bombard-
ments on Si are used to observe the Si Ke spectrum
with an over-all resolution full width at half-maxi-
mum (FWHM) of -2. 5 eV. At this bombarding en-
ergy the observed spectrum is very similar to that
given in Ref. 7. Multiplet structure is observed
for three of the Ke peaks so that a total of nine


