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We consider electron spin-exchange collisions between an atom with an electron spin of 2
and a target atom with an arbitrary electron spin. The cross sections that describe the colli-
sion are expressed in terms of generalized direct and exchange amplitudes and are shown to
depend only on the electron spin, polarization, and alignment of the target atom. We include
the effects of an external magnetic field and the nuclear spin of the spin-~ atom on the colli-
sion. We calculate the cross sections connecting the initial and final states of the free Hamil-
tonian describing the spin-2 atom, with analytic results being displayed for the two limiting
cases of the external magnetic field. For the general case, graphical results are presented
for several common values of nuclear spin that allow the cross sections to be evaluated for
arbitrary magnetic fields. The results are applied to several situations of current interest.

I ~ INTRODUCTION

Spin exchange is an essentially elastic process
that can occur in any collision between partners
having nonzero electron spins. By measuring dif-
ferential cross sections in each of the available
spin states, one can obtain detailed information on
the spin dependence of i.nteratomic potentials.
Such experiments have been carried out by Pritchard
et al. ' and Beck et al. ~ and Hoh et al. ~ for the case
of alkah-alkali scattering at thermal energies.
The technique can be extended to more complicated
systems with total spin angular momentum greater
than unity. We present in this paper an analysis
of spin-exchange scattering for an incident atom of
spin —, on a target of arbitrary spin. Our analysis
also takes into account the effect of nuclear spin of
the incident atom. We allow for the effects of an
applied magnetic field since many experiments are
carried out in an intermediate-field region.

Although the effects of nuclear spin and magnetic
field are not fundamental, they must be taken into
aeeount accurately in analyzing experimental re-
sults. In this paper we attempt to treat these ef-
fects so as to permit their easy calculation in situa-
tions of current interest.

A number of workers have treated various as-
pects of the problems considered here. Glassgold3
first treated the effects of nuclear spin at zero mag-
netic field. These results were extended by Burn-
ham to include effects of a polarized spin--,' target
and were applied to experiments in which the scat-
tered atom is polarized and analyzed in a high mag-
netic field, but in which the collision occurs at
zero magnetic field. The effects of intermediate
magnetic field have been considered by Bubin5 and

Glassgold, ' and more recently by Glassgold and
Walker. All of these works dealt with targets with
electron spin of —,'. The present work generalizes
all these results by including them simultaneously,
and generalizing them to a case of a target with
arbitrary electron spin (in which case the alignment
of the target must also be considered).

Our presentation is divided into several sections.
In Secs. II and III we find the scattering matrix for
spin exchange between a spin- —,

' system and a target
of arbitrary spin. In Sec. IV we introduce the ad-
ditional formalism necessary to include nuclear spin
in an arbitrary magnetic field. In Sec. V these re-
sults are applied to find the full scattering matrix.
In Sec. VI we use these results to calculate cross
sections of current experimental interest.

We have also solved this problem using density-
matrix techniques. In this article we forgo this
formalism for a more "old-fashioned" approach in
which the effects of the collision on the electrons
of colliding atoms may be considered in some de-
tail before adding the complications of nuclear spin
and hyperfine coupling.

II. EXCHANGE AND DlRECT AMPLITUDES FOR TARGET
SPIN I.

Let us now consider the effects of a collision be-
tween an atom with an electron spin of —,

' and a tar-
get of electron spin L. We assume that both atom
and target are in 8 states so that all interactions
are spherically symmetric. If the target spin is
composed of several electrons coupled together
(e.g. , the ~Z ground state of 02 or the S ground
statee of N), then there must not be any nearby ex-
cited states that would permit the target to "come
apart" or to assume different spin during the colli-
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sion. If we assume, in addition, that the collision
is s]ow enough (KE less than a few eV) that no elec-
tronic excitation processes are possible, and fast
enough (KE & 0. 001 eV) that the spins couple insig-
nificantly to anything (the orbital motion, rotational
motion, nuclear moments, etc. ) but themselves,
then there is an interaction potential of the form

v„„=p v (ft)+ p, v.(ft),

where P is the projection operator for the coupled
state with spin L ——, and P, is the projection opera. —

tor for the coupled state with spin l. +-,' (R is the
internuclear separation).

These assumptions mean that the two coupled spin
states scatter independently during the collision,
and thus the scattering matrix for the collision may
be written in the form

F(8) =P f (8)+P,f,(8),
where f (8) and f,(8) are the scattering amplitudes
for the two states, and may be found from the
corresponding potentials by the usual methods.
This formulation reflects the fact that the nuclear
spin and the external magnetic field have no effect
on the collision process itself. They cause observ-
able effects only by coupling to the electron spin in
the time intervals before and after collision.

We now consider the simple case of a ~S atom
with I= 0 colliding with a target whose electron
spin is L. (The only effect of the magnetic field is
to fix the axis of quantization. ) This discussion
will illustrate how the scattering amplitude in Eq.
(2) causes spin exchange, and it will result in a.

simple expression for the collision matrix.
We consider the scattering of an atom with a

spin-up electron and a target whose z component
of angular momentum is rn~. It is more convenient
to express the Clebsch-Gordan coefficients (see
Table I) in terms of m~ rather than m~, and there-
fore we have the identities

L+ +) '"

(L —mL,
'

IL --„m, +-,'),
I, L+

= (-';;; ) i.(~) (;„;)y.(~) l-. , ~)

(r+I, ~ (1'".(r—I,)"').
2L+1

x[f,(e) f (e)] Im~+—I, 4) . (5)

In the last step we have used Eq. (3) to express the
result in the independent-spin representation. The
amplitudes for scattering with and without spin
exchange are obvious. If the initial electron spin
is down, rather than up, we can find the amplitudes
for scattering with and without exchange by a simi-
lar procedure with the result

I q, ) = F(e)lm„& )

( 2~ ( ) f.(e)
(2 (') f((t) ~m„))

TABLE I. Notation and convention.

Name

Electron
Target
Nuclear
Electron plus target
Electron plus nuclear

Convention in kets:

Spin

s (=-,')
L
I

F

g projection

)or)
mL,

mi
m J
mp

where the last step follows from Eq. (3). Ex-
pressed in this form, it is easy to find the scattered
state since the two coupled spin sta.tes are explicit-
ly displayed.

L+~ +l »2
~)=F(~)ly;)=( ' — f(e) +I-'„m, —,')

L-m '~'

+ mL+1, ~

Independent representation
for collision
for atom

Coupled representation
for collision
for atom

Imp, &)

[t, mi)

)J, mJ)
IF, m~)

1/2
(I. i, m, +-'. )=-(~

l. +m +I'("'
+

I
Imr+I~ ~) ~,2L+1 ]

which express the states with coupled spin in terms
of states with independent spin. The incident spin
state prior to the collision may now be written

L+m +1 '~

C lebsch-Gordan C oefficients:

I +mJ+1/2lL.—,, m, ) =
2L+1 Im, --, , ~~

L-mJ+1/2 'I'
~mJ

6+m J+1/2 '~2
+ ImJ+2, ))
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(I.-m, +1)"2(L+m )'"&
2L+1 )

x[f,(8) —f (8)] Im —1, 0) . (6)

It is convenient to represent the effects of the
collision on the electron spin by defining a 2&&2

matrix that operates on the incident electron state
(im~, t ) or 1 m~, 0 )) and produces the scattered
state. This matrix depends on the scattering angle
and the initial z projection of the target spin. The
first column is obtained from Eq. (5), while the
second may be obtained by finding the corresponding
amplitudes for initial electron spin down:

L+1 L mz,

2L+1 f +2L+1 f-+2L'+1 f -f-'
c(mi, 8)=

2L+1

The off-diagonal elements of c(m~, 8) are re-
sponsible for spin exchange, and since they are
so similar it is convenient to define the exchange
amplitude as

This differs by a factor of 2 from Glassgold's
definition, 3 which was chosen for special conve-
nience with L =-,'. Vfe also define

(L.1)f.(8)+Lf (8)

f,(8) -f (8)
2L+ 1 (6) so that the collision matrix becomes

( Fq+ mgF„
( j 1 )

([(L 1)2 (
1 )R]1/2 F

[(I.+ —,')' —(m~ ——,')']'~' F,)
Fq —mL E„

(10)

III. CROSS SECTIONS WTH NO NUCLEAR SPIN

The cross sections for scattering with and without
spin exchange may be obtained simply by squaring
the magnitudes of the appropriate amplitudes:

o(~m. —tm. ) =
I
F.I'+ m. (FgF. + F.*F.)+m' IF.I',

o (t m~ - 0 m~ + 1)= [(I.+ —,')' —(m~ + —,')']
I F„I

',
l7(k m - t m —1)= [(I.+ —,

'
) —(m ——,') ] I F„ I

o (4m~ - 0 m~ ) =
I F~ I

—m~ (FfF„+F„*Fg)+ mg
I
F„ I

Note that the amplitudes for unphysical processes
are zero, so that

Thus we call the cross sections in Eq. (11) the
"high-field limit. "

In general the target will not be in a pure state
of specified mL, and we will have to average the
cross sections in Eq. (11) over the distribution of
target mL. The cross sections that result are
sensitive to only two features of the distribution of
target m~: the polarization and the alignment (for
spin--,'- targets the alignment is always zero).

When we sum the cross sections in Eq. (11)we
will get weighted averages of mL and mL2, but no
higher moments. If p is the probability that the
z component of the target atom's angular momen-
tum is m~, then we define the excess probability
p as

o(t, L- 0, L+1)=(r(4, —L- 0, —L —1)=0 . p„=p —1/(2L+1) . (12)

High-Field Limit

Effects of the nuclear spin of the primary atom have
been neglected so far, and thus the results [Eq.
(11)] apply only for atoms with I=0. However,
cross sections for atoms with I40 will approach
these cross sections [Eq. (11)]when the external
magnetic field in the collision region is large enough
that the nuclear and electron spins of the primary
atom are decoupled [but still small enough that the
assumptions underlying Eq. (1) are not violated].

This quantity is zero for atoms which are in spin
equilibrium at some high temperature. If we define
polarization and alignment as

L
P= 2 mp„ for polarization,

Q= 2 m p„ for alignment,

respectively, then it may be shown that
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mp =P, m P„=Q+ ,'L(—L+1). (14)
e=-L

( )
p.(m~) n, (m~)
p (m~) n (m~)

Using these equations we can find all of the spin-
dependent cross sections for collisions (which occur
at high magnetic field) between S atoms and tar-
gets of arbitrary electron spin, polarization, and

alignment:
p (m)= n, (m),

p.(m)=- n (~) (18)

n, (mz) and p, (m~) are functions of magnetic field
and are calculated in the Appendix (see Fig. 1).
They obey the relationships

o(t-t)= Z p.n(~m- tm)

=
I F„l +P(FfF„+F„*F~)

+ [-',L(L+1)+q] I
F„l',

.(~-~)=OL -'. )'-[-.'L(L» Ql-P] IF.I'

= [-:L(L'1)- Q- P]IF.I',

o(c- t) = [-,'L(L+1) —q+P]l F„I',

o(& -&) =
I
F„l'- P(F„F++F„F'f).

+ [—,'L(L+1)+Q] I F„l

IV. MAGNETIC FIELD STATES

(15)

and

n', (m)+ p', (m) =1,
n, (m)n (~)+p.(~)p (~) =O .

mE+ 2

4, m ——,', m

(2o)

In Sec. V we will need to transform states that
are combinations of several If, mz) states, so we
need to define a larger matrix

m(f+-,') O

0 m(I ——,')

It is clear from these relationships that m is a uni-
tary matrix, so that

mg kg Vga' +

, m~ k, m~ ——'
(18)

where

Vfe have shown how the spin-dependent cross sec-
tions are determined if the primary atoms do not
possess any nuclear spin, or if the external mag-
netic field in the scattering region is large enough
to decouple the nuclear spins.

In general the magnetic field is not large, and
th". nuclear spin is not zero (especially for S
atoms); consequently the electron spin couples to
the combined external and nuclear magnetic field.
Under these circumstances it is not possible to
measure changes in m~; rather, changes in the
states of the atom in an intermediate magnetic field
are observed.

The intermediate field states for an isolated S
atom are I f, m~) with f=f'=I+ —', . The capital sub-
script (on m„) stresses that the z component of the
total angular momentum mF is a good quantum num-
ber at all magnetic fields. f has no physical sig-
nificance except at zero field (the low-field limit),
where f-F, the total spin of the atom, and then
we have the ordinary hyperfine states IF, m~) [see
Eq. (A8)]. Since there are only two intermediate
field states with a given rn~, the transformation be-
tween the I f, m„) states and the Im~, m, ) repre-
sentation may be represented by a unitary 2&&2

matrix m(mz), operating on the appropriate spinor:

l,O—

0.8

0.6
(I+it2)

Z 04

0.2

I I I I I I I I I

0.2 0.4 0.6 0.8 I.O
y= x/(1+x)

FIG. 1. G', + (M') vs magnetic field showing the fraction
of states with electron spin up in upper intermediate field
state for several values of alignment parameter M' =M/
E'J+-,').

1
~ m (-I ——,)

whose only nonzero elements are the 2&& 2 matrices
m(m„) on the diagonal.

The definition of m and M contain implicitly a
specific ordering of both I f, mz) and I mq, m z)
states, which is displayed in Table II. In order to

preserve the orderly arrangement of states neces-
sary to facilitate formal calculations, we have in-
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troduced two unphysical states in both sets of states.
The coefficients [&, or p, , Eq. (A6) and (AV)] that
mix these unphysical states with the real states
when changing representation a,re always zero [as
may be seen from the Appendix, Eq. (AV)], i.e. ,
for Inc&l =I+ &,

m(I+-,')=, m( —I -', ) =-.(22)
0 1 —,1 0
1 0 0 —1

Cons equently, the extra states never affect the
answer .

V. CROSS SECTION 0(f, m~ ~ f ', mF )

In this section we find the differential cross sec-
tions for all of the spin-dependent processes that
occur when an atom in an intermediate-field state
collides with a target of spin L, polarization P,
and alignment Q. The approach is straightforward,
if tedious, and follows the following prescription:
The initial intermediate-field state is expressed as
a linear combination of I m~, m, ) states by means
of the M~ matrix discussed in Sec. IV. Under the
assumption that m~ is unaffected by the collision,
the effect of the collision is simply to multiply the
electron spinor associated with each m, by
c (m~, 8) [see Eg. (10)]. Since the individua. l
If, m~ ) states evolve independently after the colli-
sion, we use the M matrix to express the final
1m~, m~) states in terms of tf, m~) states. This

procedure yields the amplitudes for all relevant
spin-dependent collision processes, and the asso-
ciated cross sections may be found by squaring the
amplitudes and averaging over target spin.

C(m„8)=

0 c(m~, 8)

c(mi, 8)

U

(23)
where there are 2I+ 1 2 && 2 matrices down the diag-
onal, and the two U' s designate single unphysical
states .

The arrangement of states in this collision ma-
trix is consistent with our ordering of the [mi, mz)
states (Table II), so we can easily write the final
If, m~ ) state in terms of the incident one,

(f) = M C M (i) . (24)

If the initial state is lf ', m~), then it is straight-
forward to show that [using relations among the n's
and P's, Eq. (23)]

The assumption that the nuclear spin state is
unaffected by the collision is justified when the
total collision time is much shorter than the hyper-
fine period. This situation obtains for thermal col-
lisions at temperatures down to a few degrees
kelvin. Formally the assumption means that the
collision matrix C for the whole atom is a direct
product of c and the identity matrix for the nuclear
spin; c(m~, 8)e Iz„,. Since we have added two un-
physical states to preserve the systematic arrange-
ment of the states, we have

(f) = MC Mt

[(L+ —,')~ —(m~ ——,')2]'~~ n, (m~+ 1)P,(m~)

[(L+ -,')' —(m~ ——,')']' ' o..(m~+ 1)P,(m„)F„

F, +m, (2o"..(m ) —1)F„

2m, [o' (m~) o', (mz)]F.

[(L+—
) —(mz+ —)2]'~2P„(m~ —1) o.,(m„) F„

[(L+ —,') —(m + —,') ]'~ P (m —1) n, (m ) F„

(25)
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TABLE II. Arrangement of states in matrix notation.

mg ml

U ) I+1
I

Transforms
Imgmg) to Ifm~)

m g+ —') I+21

I ——1
2

I+-,'
I——1

2

I+21
I+1 U

I-—1
2

I——1
2

m I,
'—I ——2')

Unphysical states labeled U

I+—1
2

I ——1
2

-I+—1
2

-I-—1
2

—I——U1
2

o(f', m~- f, m~) = 4I I'„I 2m~ [n, (m~)o..(m~)]2,

o(f, m p f, m~ + 1)'
o(f'm~-f', m~+ I)

=
I
s„l' [(I.+-', )' - (m, ——,')'] n,'(m, +I) p', (m, ),

o(f'm~ -f', m~ —1)

Although we have not chosen m~ close to +(I+ 2),
this result is valid even for lm&l =I+ 2, since the
&'s and p's involved in all unphysical processes will
always be zero [see Eq. (A7)]. The amplitudes for
the case with initial state If, m ~) may be obtained
by the same technique.

There are several significant features about this
result. The first is that E„appears in only one
amplitude-the amplitude for scattering with no
change of f, mz. This is reasonable, since no
change of the If, m„) state should result if the elec-
tron spin is unchanged by the collision. The ampli-
tude for no change of If, m„) also contains a term
in m ~ E„, reflecting the fact that E„, which causes
alt of the change in electron spin, also causessome
scattering with no spin change [cf. Eq. (7)]. All
other amplitudes, even the one for change in f with
no change in m I;, con'sin only F„.

We square these amplitudes to obtain the cross
sections for the processes o(fm~m~-f'm~m~).
These are for targets in a state with definite mz,
just like the cross sections in Eq. (11):

o(f', m~ -f', m~)

= Iy„l'+m, [rgb„+E,&„'][»,'(m~) —1]

= I+. I [(l.+-.) —(m +-.)~]P~(m —I) ~2(m ),
o(f'm~-f, m„-1)

=
I
F„I'[(l.+-,')'- (m, +-,')2] p,'(m~ —l)o.',(m~) .

(26)
It is clear from this equation that the effect of

nuclear spin is simply to multiply the various terms
in the cross sections found for no nuclear spin
[Eq. (11)]by different combinations of o., and p, .
Only one such function is required for each cross
section [except for the o(fm~-fm~), which requires
a different one for each distinct combination of E„
and I'„], and none of the functions depend on the
target spin. Since the effects of nuclear spin are
independent of m~, the averaging and summing over
possible m& values in the target is exactly the same
as in Sec. III. The cross sections obtained for
targets of spin I., polarization P, and alignment

Q a.re given in Table III.
We stress that the parameters L, P, and Q com-

pletely determine the results of the collision (as-
suming that no off-diagonal density-matrix ele-
ments exist in the target) even if more informa, tion
is known about the target (for instance, its precise
distribution P„ for —l. & m & 1.).

In the high-field limit we regain Eq. (15) if we
use the adiabatic correspondence [Eq. (A9)]. In
the low-field limit n, and P, become Clebsch-
Gordan coefficients, so that these equations con-
tain only integral powers of m~.

VI. CROSS SECTIONS OF CURRENT INTEREST

The preparation or detection of an atom in a par-
ticular I'f, m~ ) state is quite difficult, and the cross
sections which we have calculated thus far have
slight application. Studies of scattering, optical
pumping, or hyperfine radiation depend on various
sums and averages of the o(f, m~-f'm~) cross sec-
tions, rather than on the individual cross sections.
For this reason we have performed the sums and
averages appropriate to several situations of cur-
rent interest. These include scattering with high-
field state selectors (e. g. , Stern-Gerlach type
magnets), scattering with no state selection, colli-
sions which change the hyperfine level f, and colli-
sions which change m~ (and consequently the polar-
ization). Some of these cross sections depend on
the magnetic field, and we have calculated and
plotted several new field-dependent functions that
permit the easy calculation of these special cross
sections for arbitrary field and for several selected
values of I(,', 1, —,', —',, and 3 ). —

Magnetic State Selectors

There are several scattering experiments' ' '0

that measure the differential spin-exchange cross
sections using an alkali primary beam and a target
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TABLE III. Individual cross sections.

Initial state Final state

If'm & If'm~&

If'm~&

If'mp&

If'm~&

If'nz~&

If'm p&

If mF

lf', mF+1&

If m, -»
If m~+1&

If'mJ; -1

0.(r -F)
IFd I +P(FQ~*+F~Fr*)[2a, (m~) —1j

+ I F I2[3L(L+1)+ Qj[2~,'(m~) 1]

IF„I [3L(L+1)+Qj4Q+2(m~)& (m~)

I'F„I 'Q K +1) +P —Qj&~(my+1)P,'(zzzp)

IF„I gL(L+1) —P —Q]P~(mp —1)o,'~(mp)

IF„I [3La +1)+P- Qj&~(my+1)P~(»p)

r I [gL (L+ 1) —P —QIP+(mp —1)&g(»p)

atom with spin. These experiments use high mag-
netic field [r- ~, Eq. (A4)] polarizers and analyzers
that create and select the states according to m~
in the high-field limit [see Eq. (A9)]. Great care
is taken in these experiments to assume that the

transitions between the selectors and analyzers and
the scattering region are adiabatic (and correc-
tions are made to the data when they are not).
Since the selectors are insensitive to m„an equal
statistical mixture of the tf, m~) states that cor-
respond to the selected m, [via. Eq. (A9)] appear
in the scattering region. The analyzers are equal-
ly sensitive to the lf, m~) states corresponding to
the analyzed m~, and insensitive to those that cor-
respond to the opposite m ~ state. Thus the measured
cross section is found by averaging the cross sections
in Table III over the initial If, m~ ) values connected
to the initial m~ value and summing over the final

If, m~ ) values connected to the final m~ value.
VYe label these cross sections by the initial m& val-
ue and the final mz value, [o(i, f), i is initial, f is
final), noting that there are 2I+ 1 initial (and final)
states in each category. There are four cross sec-
tions that can be measured:

r+ 1/2
o(+-,', +-,') =

2I+1 ~~~-I+1/2

I~+/2
o(f'm~, f'm~), (2'z)

o(-2, -2)=
2I+ 1

r- /2

my=-I+ 1/2

I- 1/2

m& =- I + 1/2

r-1/2
o(f m~, f m~)+ 5 o(f'-I ,',f m~)--

2I+ 1 ~ =-I.1/2

(28)
r-1/2

+ Z o'(f mf„ f' —I —,')+ o-(f' —I- ,',f' —I —,'), —-
2I+1 ~

I'+ 1/2 I~/2 I+ 1/2
tf(+-,', —-', ) = ) 2

'

v(f 'm, f )+ m2 a(f'm, f' —I- —,')),2I+ 1 mz=- r+1/2 m' =- r+ 1/2 mz=- r+1/2
(29)

z
I-1/2 I+ 1/2 I+ 1/2

F(—-'„+-,')= ) ) a(f m, f'm') ~ ) v(f' —I—-'„f'm')) .2I+ 1 F=- I 1/2 ' =- I 1/2 p=-I+1/2
(30)

At arbitrary magnetic field these cross sections
contain sums of n2 and P~ that can not be evaluated
analytically because of the square roots in Eq.
(A4). Fortunately, the relationships among the o.'s
and P's is such that there are only three distinctly
different sums of the n's and p's in Eqs. (2Z)-(30).
These have been calculated by computer for many
values of magnetic field with I=-,', 1, —,', —„and +2.

Table IV shows which coefficient applies to each
important function of the scattering amplitudes
and target variables. Thus, for example,

o(~-,*, ~-,', r, I)=R(r, I)o(+-,', --.*, ~- ), (32)

approach the cross sections in Eq. (15) for the
"high-field limit. " A decrease in magnetic field
affects the terms A, Ar„and Az quite differently.
A, for example, never changes by more than 50/o

(see Fig. 2), so that the cross sections o(+ —,', ——,')
and o(- —,', + —,') for unpolarized, unaligned targets
do not depend strongly on magnetic fields. We can
write for /=@=0

o(--'„——,')=
l ~, l'-(F„sf+F„Z„*)IX (x) R =-,'[3 —fl(x)], (33)

+ IF. I2[-.L(I, +1)a(x)+qW, (g],
(31)

where A, A~, and Az may be determined graphically
from Figs. 2-4.

In high magnetic field all the field-dependent
functions approach unity. Hence, the cross sections

and R(x, I) will always be between 0. Z5 (for I= —,',
@=0) and 1.0. When x=0, this R function is the
same as m(I) in Ref. 1.

The polarization-dependent terms in the cross
section contain A~ (see Fig. 3), which decreases
markedly as x decreases, approaching 1/(2I+1)
as x-0. The field dependence of the functions
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TABLE IV. Field-dependent coefficients of various terms in average cross sections.

Cross section

0(+2, +2)

0(+2, -2)
1 +1)

0.(sf=+1)

VQy=- 1)

IFg I

1.0
1.0

IF„ I2gL (2+1)

A()

3-A()
3 —A (x)

2I
2I+2'~)

P(Fg$ +F„*Fg)

Ap(~)

—Ap(pg)

A„()

—2I
2I+2 "~'

Q IF„I

A@/)
A@/)

—Aq(g)

-A@/)
—&q(X)

—2I

A~(I) closely resembles that of the function n.(I)
(see Fig. 1) because both are related to the expec-
tation value for m~.

The alignment-dependent term has the most com-
plicated dependence on magnetic field. For I= 0,
A~= 1 for all x, as discussed earlier. For I= —,',
A-0 as x-0, and for I& 2, A@ is negative at
small values of magnetic field.

In the limit of zero magnetic field, n, and P~2 be-
come simple functions of mF and I that may be
summed algebraically. This has been done before
for A, and Ap, but not for A. ' The cross sections
at zero field are presented in Table V in a similar
manner to Table IV, except that A(I, x) has been
replaced by its limiting value as x-0, which is an
analytic function of I. Note that these expressions
reproduce the high-field limit for I= 0 [cf. Eq.
(»)j.

The computer program was checked against both
the low- and high-field limits.

o(sf=+1)=-
2I mF ~- I + 1/2 m . ,~- I -1/ 2I

p'

o(f m, f'm'),

1+1/2
cr(af = —1) = )~

2I+ 2
(r(f'mp, f m~),

mF ~- I+ 1/ 2

(»)
where nf =+ 1 means that the initial state is If,
m~) and the final state If 'm~ ), and nf = —1 transi-
tions mean that the initial state is If', m~) and the

state atom to the upper hyperfine level, from which
it may radiate spontaneously. This process is im-
portant in astronomy, " and we calculate its depen-
dence on magnetic field.

We find the cross sections for collisions that
change f by averaging the individual f, m~ cross
sections (Table III) over all initial m~ states and
summing over all final m~. states. We have (ne-
glecting identity effects)

Af Collisions

Spin-exchange collisions can excite a ground-
1,0

0.9

1.5 0.8

1.4

0.7

0.6

0.5
P

0.4

1.2
0.3

0.2

0.1

I, O
0 0.2 0.4 0.6

y = x/(I+ x)

0.8 1.0 0
0 0.2 0.4 0.6

y= x/(I+ x)
0.8 1.0

FIG. 2. The function A(g), which determines the
amount of spin exchange seen as no exchange for various
values of I using high-field selectors.

FIG. 3. The function A~(g), which equals the fraction
of polarization-dependent terms observed with high-field
selectors for different I.
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Ag

1.0

0.8

0.6

04

0.2

final state is Ifm'I, ).
The magnetic field dependence of the af cross

sections may be parametrized like the cross sec-
tions for high-field selectors. Tables IV and V in-
clude parameters for the hf cross sections in in-
termediate fields and zero field, respectively.
B(I, x) is shown in Fig. 5 (B~ and Bo may be found
in Ref. 8). Note that the magnetic field dependence
of B(I, x) is quadratic at low fields.

Am Collisions

- 0.2
0 0.2

y=x/(I + x)

0.6 0.8 I.O

FIG. 4. The function A@(x), which is the coefficient of
alignment for various values of I (using high-field selec-
tors).

One technique for measuring the total spin-ex-
change cross section is to pump a sample of gas
into the I'f', m~ =f ') state with circularly polarized
resonance radiation and then measure the rate of
depolarization due to collisions with a second
species (the target). '2 Under suitable conditions
the measurement is sensitive only to changes in
m~, and one measures o(f ', f', hm = —l), where

o(f', m, am=-1)

TABLE V. High- and low-magnetic-field limits of coefficients in the average cross section.

Cross section ) Z„l '-,'I. (I, +1) P( +~ +E~E„")

(+ 1 +1)

x=0 1.0

1.0

4I
(2I+1)'

1.0

(2I- 1)
(2I+ 1)'

1.0

1
(2I+ 1)

1.0

x=0 1.0

1.0

4I
(2I+ 1)'

1.0

(2I- 1)
(2I+ 1)'

1.0 —1.0
0 (+-' —-')

x=0

0. (-2, +~)

0 {~=+1)

x=0

0 {Af=—1)

x=0

4I
(2I+1)'

4I
(2I+ 1)2

2(2I+ 2)
2I+1

2I
(2I+ 1)

2I
2

(2I+ 2)

(2I-1)
(2I+1)'
—1.0

2I —1
{2I+1)~

—1.0

—1.0

—2I
2I+ 2

1
2I+ 1

—1.0

1.0

1.0

—2I
2I+ 2
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= 1 dQ~ F„(8) [~L(L+1)—P —Q] n~(m) .

(36)

If P and Q are both zero, then o(f;f', Am = —1)
reduces to - the usual expression for the total spin-
exchange cross section for spin- —, targets. This is
because 0,„ is usually defined as the cross section
for scattering with spin exchange when the incident
spins are known to be oppositely aligned, in which
case [—',L(L+1)—P —Q]= ,L(L+-I)+L —L~+ ,'L(L+-1)
=2L, rather than ', L(L+-1) (for P= Q=O). For
L= —,', 2L=1 and ', L(L+—1)=-,', so the ra.tio is 2: 1.
This factor of —, has caused some difficulty in com-
paring values of the total spin-exchange cross sec-
tion. ' Note that for L & 2, less exchange occurs for
an oppositely polarized, completely aligned target
than for one with P= @=0. This may be understood
by noting that a large target spin behaves like a
magnetic field (with interaction S L instead of
S ~ H), which is less effective in changing m~ if it
is along the axis of quantization rather than per-
pendicular to it.

Sum Cross Section

Several experiments' have been performed on
atom-atom systems where incident and target
beams both had spin —,', but where no attempt was
made to measure the spin dependence of the cross
section. These experiments measure the cross
sections in Table III averaged over all initial f,
rn~ values and summed over all final ones. This
cross section may be found most easily by combin-
ing terms in Table IV, where most of the summing
has been done:

osum 2 [o(+ 2) + 2)+o( 2y 2)+o( 2y + 2)

+o(+-,', —,')]= ~F, ~'+L(L+1)~F„~'. (37)

Using the definition of F, and F„[Eqs. (8) and (9)],
we find

(38)

The authors would like to thank David Burnham
for several helpful discussions in the initial phase
of this work and for reading the manuscript. One
of us (D. E. P. ) is grateful for National Science
Foundation predoctorial fellowship support during
the early phases of the research.

which shows that the sum cross section contains no

interference terms between the scattering with

J=L+-,' and J=L ——,-. The cross section is simply
a statistical average of the cross sections for scat-
tering from the two potentials in Eq. (1). This is
a generalization of Glassgold's result to the case
with arbitrary target spin, and it is true for all
magnetic fields, as one would expect.

If the incident beam is selected by high-field
analyzers the sum cross section may be obtained

simply by summing over final spins if the polariza-
tion of the target is zero, as may be seen from
Table IV. In an experiment which measures
o'(+ —,', +-,') and o (+—', , ——,'), it may be easier to ana-

lyze o,„, rather than a (+-'„+—,') [in addition to

o(+-,', ——,')], because it contains sums of single-
channel cross sections which have been analyzed
extensively. "
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APPENMX

In this appendix we discuss the problem of a ~S

atom with nuclear spin I in a magnetic field, giving
the eigenvectors for intermediate magnetic field.
To begin, the Hamiltonian is written in standard
for m)

&= [AW/(I+-,')]I J+ p~ g, I,H+ p, e g +,P . (Al)

ATV is the separation of the hyperfine components
in the absence of an external magnetic field, p.~ is
the Bohr magneton, and g, and g~ are the Lande
g factors for the nuclear and electronic configura-
tions, respectively. The z(3) axis is along the ex-
ternal magnetic field H. Torrey' has evaluated the
diagonal states If, M) of (Al) in terms of the hyper-
fine states I F, M). He obtains

y= x/(I+x) ~f', m) =W„'~ F', m)+a,'~ F-, m), (A2)

FIG. 5. The function B(g), which determines the
effectiveness of spin exchange as a mechanism to raise
F from I—2 to I+ 2.

where I' '=I+ —,
' and I' =I ——,

' The coefficients A
and B are
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Atoms
(abundance)

H

D
Li' (7/o)
Li' (93/p)
Na23

Rb" (72/)
Rb" {28%)
Cs133

3
2
3
2
3
2
5
2
3
2
7
2

Bo
[magnetic field in gauss
for which x=1 in Eq. (A4)J

507
117

82
288
634
164

1080
2420
3260

TABLE VI. Nuclear spin and characteristic field for
some common 2$ atoms.

The o, s and p's depend on x and I as well as on
M, but we make explicit only the M dependence be-
cause it alone is critical to the manipulations in
Secs. IV and V.

The coefficients in Eq. (A6) do not depend funda-
mentally on I, but only on the fra,ctional projection
M'=M/(I+ ,'). T-he function n, (x) is shown in Fig.
1 for several values of M'. In the low-field limit,
defined by x- 0 [Eq. (A4)], the coefficients in Eq.
(A6) become Clebsch-Gordan coefficients, so that

If', M )- II", M ) (As)
x 0

In the high-field limit, defined by g- ~, we find
that

If", m p )- I m, =+ —,
'-

), m~ = I+ —,', . . . , —I+ —,',
~~2 21+ y

M If' -I-~2&- Ims=-z&, (A9)

II~ ——+ ~ 1+ 1+ - Rg, M4+ (I+2)
v 2 2I+1

If ~ms& Ims= 2»ms=I 2~ ~ ~ ~ ~ I+2 ~

~(I+ 1/2) ~- g+ 1/2)"-1 &

+(I+ 1/2) +-(I + 1/2)

(As) (It is understood that the states Im~) are really
[m„m, ), where m, = m„—m ~. )

Negative Hyperfine Interaction

where

4Mx + (g~ g)p~H-
21+i ' ~W

Using Clebsch-Gordan coefficients (Table I) to ex-
press (A2) in the 1m~, m, ) basis we obtain

If we use the —sign in the square root in R„when
M= —(I+—,), then we find that

n.(I+-,') =P,(- I- -', ) =1,
n,(-I- ,') =P,(+I+ .') =0.—-(AV)

If' M&=~, (M) 2, M-2&+P, (M)I —2, M+2&,
(A5)

with

o.~(M) = ~(l a [x+ 2M/(2I+ 1)]R~ ] I

(A6)

p (M)=n, (M), p, (M)= —o. (M), M~~(I+-,')

The discussion so far has assumed that the hy-
perfine separation is positive [EW& 0 in Eq. (A1)] .
If b, W is negative, x, the magnetic field param-
eter, will also be negative (if the magnetic field
points along the positive z direction). In order to
apply the results of this paper, it is necessary to
choose the z axis oppositely, so that x will still be
positive. This procedure reverses the signs of all
quantities that depend on the direction of the z axis.
This includes mz, m~ [Eq. (15)], the + —', in the cross
sections for high-field selectors [Eqs. (34)-(37)],
the target spin m~, and the target polarization P.

In Table VI we list the magnetic fields at which
g= 1 for some common 2S atoms, along with their
nuclear spin. VYhen a mixture of isotopes with dif-
ferent I and 80 is present, the functions n, in Eq.
(A6), as well as the field-dependent functions in
Table V, must be replaced by the appropriate
weighted averages.
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Calculation of Energies and Widths of Resonances in Inelastic Scattering:
Stabilization Method*
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In previous work, the stabilization method of calculating resonance parameters was applied
to potential scattering and to elastic scattering from a target. The method is here extended to
compound-state resonances in inelastic scattering and its appIication to a model problem for
a target with three bound states is examined. The eigenfunctions associated with eigenvalues
&; obtained from the diagonalization of the exact Hamiltonian in appropriately chosen sets of
square-integrable basis functions are good approximations, in the inner region, to particular
linear combinations of the degenerate exact scattering solutions at E =

&& (above inelastic thresh-
old). The partial widths are calculated from a Fermi's-"Golden-Rule"-like formula involving
the matrix elements of the exact Hamiltonian between the square-integrable eigenfunctions rep-
resenting the resonance state and potential-scattering solutions at the same energy. The slowly
varying (as a function of E) potential-scattering 8 matrix, knowledge of which is required in the
calculation of the decay widths, is determined using the criterion that several good approxima-
tions to the resonance state yield exactly the same widths. For the exactly soluble model prob-
lem studied here, the resonance parameters obtained with the stabilization method compare
well with the exact values, especially for narrow resonances. The theoretical limitations of
the method are discussed.

I. INTR ODUCTIOX

For collision processes which involve the forma-
tion and decay of a quasidiscrete resonance state,
the energy dependence of the cross section can be
expressed in terms of a few physically meaningful
parameters, such as the resonance energy E„, the
width I' (or the decay lifetime k/1 ), and the slowly
varying potential-scattering S matrix. In recent
years, several methods'3 have been proposed for
the direct calculation of these parameters from
approximations to the exact resonance wave func-
tion, without recourse to solution of the complete
energy-dependent cross section. One example is
the stabilization method ' which, until now, has
been applied only to resonances occurring in elastic
scattering. Since many processes of interest in-
volve excitation of the target, we investigate here
the extension of the method to inelastic scattering.

In Paper I, the stabilization method was applied
to scattering from a one-dimensional model po-
tential whose barrier gave rise to so-called single-
particle resonances. Later in II, we extended the
method to elastic scattering from a target and
studied its application to a model problem in which

compound resonances occurred. In III, ' we pro-
posed a new method for the calculation of all the
resonance parameters including the potential-
scattering or background phase shift. This method
utilizes approximate resonance wave functions ob-
tained from the stabilization procedure, together
with a Fermi's-"Golden-Rule"-like formula orig-
inally proposed by Miller. s In this paper, we
shall extend the stabilization method to inelastic
scattering and study its application to a model
problem in which compound resonances decay into
two open channels. Also, we shall generalize the
method proposed in III for the calculation of the
resonance parameters, so that, in principle, the
stabilization method may be applied to problems
with an arbitrary number of open channels.

In order to establish the framework for the dis-
cussion that follows, we summarize briefly the
stabilization method as applied to elastic scatter-
ing. 4'~ For scattering from a target, the complete
(no-exchange) wave function may be written in the
form


