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tive exponential dependence on n(co), identical in both
equations, produces an opposing effect which tends to nul-
lify the change arising from the factors of [n(u) P —1]
The result is an effective change in the force ratio F„/F

by a factor (& )~ and a consequent 20% reduction in the
total deflection angle.

See Ref. 10, p. 21.
~~See Ref. 10, p. 27.
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An algorithm is presented to calculate electronic levels and the equation of state of atoms

suitable for arbitrary matter density and temperature. The self-consistent-field treatment
starts with relativistic Thomas-Fermi-Dirac model in the iterative procedure. The Fermi
statistics and the central-field approximation are maintained, giving an average atom repre-
sentation. The broadening of upper electronic levels into bands is taken into account in a
simple approximation. Calculations are present d for the Fe 6 and Rb atoms at several tem-
peratures and matter densities.

I. INTRODUCTION

'The Thomas-Fermi (TF) and Thomas-Fermi-
Dirac (TFD) statistical models of atom were ex-
tended to f inite temperatures by Feynman,
Metropolis, and Teller, and by Cowan and Ashkin,
respectively, some years ago. Since then these
models have been widely used to calculate atomic
properties at high temperature and pressure. It
is generally believed that in the region of high
temperature and/or pressure, the TFD model
gives a reasonably accurate electron potential.
This potential in turn can be used as a basis to
treat the atom in a more quantum-mechnical way

by solving the single-electron wave equation for
the bound states. The inclusion of shell effects in

the TF model in this matter was used by Carson,
Mayers, and Stibbs to calculate stellar opacities. '
The same principle was applied by Zink ' to obtain
the energy of partially ionized matter using an

analytical potential in place of the exact TFD po-
tential. He appropriately labeled the model as the
Thomas-Fermi-shell (TFS) model. We can recog-
nize the TFS model as the first iteration in a
Hartree-Fock (HF) or Hartree-Fock-Slater (HFS)
self-consistent-field scheme in which the TFD
potential is used as the beginning. At low or mod-
erately high temperatures, the TFS model may or
may not be adequate, depending on the actual
physical properties that one wishes to calculate.

The first purpose of this paper is to study this
uncertainty by a comprehensive self-consistent—
field program. Since no HFS calculations are
known to the author for temperatures when the
atomic electrons are partially degenerate, the
author believes that this paper fills a gap in an
area of considerable interest. The second purpose
is to formulate the self-consistent model for atoms
in a manner suitable for finite matter density
calculations. This is done by making allowance
for the splitting of upper electronic levels into
bands in a somewhat crude approximation. The
importance of band splitting at high matter density
is important in connection with the accurate treat-
ment of level broadenings. The exchange due to
the Pauli principle is taken into account in the
free-electron or plane-wave approximation as is
done in the TFD and HFS models. The Fermi
statistics and the central-field approximation are
maintained throughout the calculations. Since
relativistic effects may be important in the case
of heavy elements, the relativistic formulation is
maintained. It is assumed that the reader is
familiar with the HF and TF theories and, there-
fore, detailed derivations are avoided.

II. REVIEW OF RELATIVISTIC TFD THEORY

The relativistic expression for the electron den-
sity in the TF approximation is given by

8m [[e—V(r) ] —m c —[rV'(x)] ]'~
p(X) 3 3 ( -g)/&T [6 V(F) ]dbc, („)0

+1 (la)
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where c is the velocity of light, h. the Planck con-
stant, m the electron mass, T the temperature in
degrees Kelvin, k the Boltzmann constant, V(r)
the potential energy function for the electron,
assumed to be spherically symmetrical, and V'(r)
its derivative with respect to r, which is the dis-
tance from the center of the atom. The chemical
potential or Fermi level p is determined by the
normalization condition

4v j"0 p(r)r dr=/V

where N is the number of electrons. R0 is the
radius of a spherical volume containing the atom;
the magnitude of R0 is determined by the matter
density. The lower limit of the integral &0 is de-
termined by the condition that the expression in

curly braces in (la) must not be less than zero,
which yields

Z; the second is the classical electron-electron
interaction, which must satisfy the Poisson equa-
tion with the proper boundary conditions,

V'V, (r) = —47/pe

where the superscript 0 indicates the zero-temper-
ature case. For temperatures sufficiently high
so that the electron gas can be considered as
Maxwellian, we have (see Appendix A)

V,„(r) = —7/p ( r)/k T, (4b)

where e is the elementary charge. The third and
fourth terms in (2) correspond to the exchange and

correlation, respectively, and both of them are
approximated as local potentials in the free-electron
approximation. At zero temperature the exchange
potential in terms of the electron density is given
by' (in atomic units)

eo(r) = V(r) + q(R),

q(r) = (m c + [rV'(r) ] }'/ (1b)

where the superscript M indicates the Maxwellian
distribution. For intermediate temperatures, we
interpolate between the zero- and high-temperature
limits and use

Expression (la) for the electron density can be
written in a more familiar form by making the sub-
stitutions & - &+ &0 and JU, - p —mc and by assuming
that kT «mc . In this case we can expand the radi-
cal in (la) in a power series, and after some
straightforward manipulation we obtain

p( ) =
3 3 [ 2kTq(r)] f»2(z) + — l3/a(z)

4m 3/2 5 kT
hc 4qr

7 k T kT
+

32 a( )
fs/a(z)+ P

( )
( c)

where

V,„(r) = [1—X (r)] V,„(r)+ X (r) V,„(r),

V.„(r)= V.„(r),
where

X(r) = 2k T/( m3')' ~ p'/'(r) .

p«x«1 (4c)

X~1

The correlation potential is taken into account in
the zero-temperature limit as follows:

V„„=0. 0622 lnx, —0. 096 + 0. 004&v, lnr, ,

r, - 1 (5a)

z =z(r)= p —V(r) + mc —q(r)
kT (ld) 0. 112 94

+ 0. 1216 r, & 1 (5b)

and the I's represent the Fermi-Dirae integrals
given by

tV
I (z) =

&g & I dt
0

In formula (1c) the function q(r) plays the role of
a relativistic mass correction. Neglecting the
term ~V' and retaining only the I& ~2 term, one ob-
tains from (1c) the usual nonrelativistic TF electron
density. It is noteworthy that the relativistic effect
is manifested in two ways, first through the term
xV, which is important near the center and exists
at any temperature, and second through the series
expansion which is temperature dependent.

The potential energy V can be written as

V(r ) = —Ze /r + V,(r) + V,„(r) + V„„(r) . (2)

The first term in (2) is due to the nucleus of charge

where r, = (3/47/)'/ p
'/ . Equation (5a) is the

high-density approximation of the correlation po-
tential with the first two terms due to Gell-Mann
and Brueckner' and the last term due to Dubois.
Equation (5b) is the low-density approximation
of the correlation potential given by signer.

Equations (la)—(5b) represent the formulas of
the relativistic TFD model in which the correlation
is also included. These equations can be solved
by fast digital computers, and the TFD potential
can be used as a suitable beginning in an HFS
interative procedure.

III. REVIEW OF HFS MODEL

It is assumed that the reader is familiar with
the HF and HFS models applied to the ground state
of an isolated atom or ion. It is well known that
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the low excited states and different angular-momen-
tum states for open- shell conf igurations can be
calculated with sufficient accuracy from the data of
a ground-state HFS calculation by the perturbation
method. For higher excited states, the perturba-
tion treatment using ground-state energy levels
and wave functions is no longer feasible, and one
must apply the HF method for the excited configu-
rations. In the high-temperature case, the number
of possible configurations is enormous, and there-
fore one must resort to some sort of averaging
treatment. A plausible way to do this is based on

the assumption that the atomic electrons occupy
the single-particle levels according to Fermi
statistics. This leads to a fictitious atom with

noninteger occupational numbers, and this average
atom is assumed to represent a close approxima-
tion to the canonical ave rage. ' This is the basic
assumption in Refs. 3-5 and also in this paper.

In the average-atom approximation, the radial
density of bound electrons is given by

1 g 2(2l+ 1) R„/ (r)
P~(~) = « nl

where the summation is over all the bound levels
and &„, is the single-particle energy with principal
and angular-momentum quantum numbers n and

l, respectively. If spin-orbit splitting is taken
into account, then the factor 2(2l+ 1) is replaced
by 2j+ 1, where j = l + & and the index j is added

everywhere to n and l. R „, is the radial part of
the single-particle wave function given by

RO

R„,2(x) Ch = 1,

sponds to the "gerade" and "ungerade" or bonding
and antibonding type of molecular electronic levels.
In the case of bulk matter, when an atom is sur-
rounded by many neighbors, one can assume that
the two energies corresponding to boundary con-
ditions (7b) and (7c) are the upper and lower edges,
respectively, of a band. This assumption can be
justified by the following considerations: Let us
assume that the matter is of finite density, in
which case the wave functions extend over the
whole region occupied by the matter, and let us
assume that the central-field approximation is still
valid within the radius Ro of each atom. In this
case the radial part of the lowest-energy wave
function with principal and angular-momentum
quantum numbers n and l can have no more nodes
than n —l —1 at each center. This wave function
must be symmetric with respect to an elementary
translation so condition (7c) must hold. ' By simi-
lar arguments the highest possible energy &„, be-
longs to a wave function with R„, having an addition-
al node between each two centers, in which case
the condition (7b) is satisfied. It should be noted
that, for an isolated atom, when Ro is infinitely
large the bandwidths reduce to zero because the
boundary conditions (7b) and (7c) for the bound

states are satisfied simultaneously, giving a dis-
crete level &„, ."

In the absence of any detailed knowledge about
the structure of the matter, the distribution of
states within a band is taken to be equal to that of
free electrons, which is a frequent approximation
in solid-state physics. Accordingly, the density
of states in the nl band, denoted by g „,(&), has to
be proportional to &', where & is the energy mea-
sured from the lower limit of the band. Also, the
nor malization condition

R„,(0) = 0 (7a)

where F~ represents the spherical harmonics.
R„, satisfies the usual relativistic or nonrelativistic
radial equation with the potential V(x). The usual
boundary conditions that R„& must satisfy, and

which in turn determine &„, , are

has to be satisfied, where ~&„, = &„', —&„, &„, and

&„& being the upper and lower limits of the nl band,
respectively. These requirements can be satisf ied
by

and

or

R./(Ro) = 0

c R„,(~) = 0 at x=Ro,

(7b)

(7c)

8(2l+ 1)
gnl( ) (~ )3/2

%hen spin-orbit splitting is taken into account,
Eq. (8a) must be replaced by

(8a)

where Ro, as in Sec. II, is the radius of the sphere
containing the atom. In the case of a finite matter den-
sity, Ro is finite; one can satisfy either (7b) or (7c),
yielding two different values for &„, , with the one cor-
responding to (7b) being the larger. In the case of homo-
nuclear diatomic molecules this type of splitting corre-

3 2j+1
gnl/( ) 2 ( ge )3/2

Taking into account the band-splitting as described
above, the radial density of bound electrons is
given by
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g.i(')
(eIl+ e - p, )/kTnl ~ L

R.ro(&) 'd,
war

I II&nl+ &.l = &.l,
I II II

&nl 'nl + &nl ~nl = &l &nl,

where N„, is the band population and &„, is the band

energy average given by

N„=f (eIl + e -g)/kT
(Ge)

(Gb)

where 5 = &„', and A „„is now a radial function with
the energy parameter between &„, and g, , and no
boundary conditions are imposed at A0. Since
the wave function R„„ is calculated only at the band
limits with boundary condition (7b) or (7c), formula
(Gb) can be approximated by

1 g N„',
i
R„',(x) i

+ N„',
i

R'„'(r)
I

nli

(Gc)

where R„', and R'„', are the radial wave function with
boundary conditions (7c) and (7b), respectively,
and the numbers N„, and N„", are determined by the
equations

i '&' Wni(&) e
nl nl l nl + (eI + e o) /kT d6.

0

(Gf)

The density of free electrons p&(r) can be cal-
culated in the TF or TFD approximation using
formula (1a) with eo, the lower limit of the integral,
properly changed. The condition that determines
&o now is that the single-particle energy (including
the rest energy) & - q(R). This leads to a formula
completely analogous to (1c) with the Fermi-Dirac
integrals I„being replaced by the incomplete Fermi-
Dirac integrals I o(z), where

xo = xo(~) = —~(~)!ur,
z is given by (1d), and

oo tp
I o(z) = ~, dt .

e + 1
0

The free- and bound-electron densities together,
when integrated over the volume containing the
atom, must yield the total number of electrons.
Since the bound electrons are treated by wave
;mechanics, the normalization condition for the
total electron density yields a different chemical
potential p, than the TF or TFD method. Naturally,
this difference is significant at low temperatures
when there are many bound electrons. Having de-

TABLE I. Energy levels and populations in Fe at kT=O at different matter densities. +=7.85 g/cm .

1si/2

2si/2

2P i/2

2P3/2

3si/2

3P3/2

4si/2I

3d3/2

3d5/2

4si/II

4Pi/2

4P3/2

4p II

4p II

D =0.1Dp

~„„(a.u. )

—261.79

—30.915

—26. 907

—26.450

—3.375 1

—2. 1614
—2. 104 9

—0.174 06

—0.15991
—0.15472
—0.13925

—0.03749

—0.035 89

&0

—0.15472

&nip

2.000 0

2.000 0

2.000 0

4.000 0

2.000 0

2.000 0

4.000 0

0.529 29

4.000 0

3.221 91

0.248 79

1s1/2

2si/2

2P i/2

2P3/2

3si/2

3P i/2

3P 3/2

4si/2II

I

3d5/2

3d3/2

4si/2II

5/2

D=Dp

e„„(a.u. )

—260. 51

—30.578

—26. 602

—26. 141

—3.248 7

—2. 051 7

—l. 996 3

—0.182 44

—0.120 85

—0.11630

+0.004 35

+ 0.075 814

+0.108 3

—0. 100 59

&nip

2. 000 0

2. 000 0

2.0000

4.0000

2. 0000

2.000 0

4.000 0

0.15643

3.13743

4.706 14

si/2

2si/2

Pi/2

P3/2

3s 1/2

3si/II

D = 20Dp

e„,&
(a.u. )

-253.75

—24. 862

—20. 727

—20. 277

—2.3688

&0

8.6583

&nl y

2. 000 0

2. 000 0

2.000 0

4. 0000

0.24009
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TABLE II. Energy levels and populations in Hb3' at kT =0 at different matter densities. Dp =1.532 g/cm .
D=0. 5Dp D = 20Dp

1Si/2

2si/2

2p 1 /2

2p3/2

3Si/2

3P 1 / 2

3P3/2

3d3 /2

3d5/2

4si/2

4Pi/2

4P3/2

5si/2I

5Pi/2

5P3/2
I

5si/2

4d,'/,

4dg/2

4dI I

4d5/2

5Pi/2

5pI I

~nag (a.u. )

—562. 24

—76.405

—69.561

—67.392

—11.801

—9.2376

—8.9554

—4.5729

—4.515 5

—1.3845

—0.784 27

—0.748 62

—0.157 34

—0.066 96

—0.063 50

—0.05747

—0.05747

—0.05742

—0.0096

—0.0077

&0

&0

—0.094482

2.000 0

2.000 0

2.000 0

4.000 0

2.000 0

2.000 0

4.000 0

4.000 0

6.000 0

2.000 0

2.000 0

4.000 0

0.621 55

0.378 45

1si/2

2S1/2

P 1/2

P3/2

3S1/2

3P 1/2

3P3/2

3d3/2

3d5/2

4s 1/2

4Pi/2

4P3/2

5s 1/2
I

4d3/2

4dI~/2

5P 1/2

5P3/2
II

5s 1/2
II

4dII

4dg/2

5Pi/2

5P3'/2

~nag (a.u. )

—561.39

—76.263

—69.482

—67.307

—11.779

—9.2897

—8.947 6

—4.568 5

—4.510 8

—1.385 9

—0.787 53

—0.751 88

—0.17105

—0.065 31

-0.069 17

—0.063 33

—0.058 46

—0.003 29

+ 0.007 78

+0.010 05

&0

—0.065 45

&nip

2.000 0

2.000 0

2.000 0

4.000 0

2.000 0

2.0000

4.000 0

4.000 0

6.000 0

2.0000

2.000 0

4.000 0

0.621 60

0.37640

1Si/2

2s 1/ 2

Pf/2

P3/2

3Si/2

3P 1 /2

3P3/2

3d3/2

3d5/2

4si/2I

4Pi/2

4P3/2

4si/2II

4P 1/ 2

4P3/2

e„)) (a.u. )

—556. 56

—74. 165

—67.561

—65.346

—10.352

—7.910 8

—7.575 9

—3.220 9

—3.163 7

—1.022 9

—0.436 93

—0.403 31

&0

0.879 25

&nt, g

2.000 0

2. 0000

2. 0000

4.000 0

2.0000

2. 0000

4.0000

4.0000

6.000 0

1.7241

0.321 69

0. 64339

termined the total electron density, we can calcu-
late the electron potential including exchange and
correlation as described in Sec. II, and the itera-
tive procedure can be carried forward until the
desired accuracy is achieved.

IV. CALCULATIONS

A computer program was written to solve the
relativistic TFD problem for atoms as described
in Sec. II, and the TFD potential was used as the
input of an HFS program. The relativistic single-
particle equations for the bound states were solved
by using the two-component Dirac equation in the
central field and eliminating the small component.
The bound- and free-electron densities were cal-
culated as described in Sec. III, and the iterative
procedure was carried oui until the maximum de-
viation in the potential in two successive iteration
was less than 1%. In addition to the quantities in-
dicated in Secs. II and III, total electronic energy,
electron entropy, and electron pressure at the

boundary were also calculated. The formulas for
the latter quantities are summarized in Appendix
B.

The calculations were performed for the Fe~'
and Rb atoms at several temperatures up to kT
= 5 &10 eV and at several matter densities. The
data are given in atomic units where the unit ener-
gy is 27. 204 eV and the unit distance is 0. 5292
&&10 ' cm. Only those data are presented that the
author thinks reflect the main features of the cal-
culations, and even so they seem rather abundant.
For this reason, the results of the TFD calculation
that are the starting points of the program are not
presented. For the Fe atom the TFD data agree
with those of Ref. 2 in the nonrelativistic limit.
Tables I-IV summarize the data concerning the
relativistic single-electron levels in the self-con-
sistent potentials of the Fe and Rb atoms at kT
= 0 and 100 eV with some of the matter densities.
In the tables D is the matter density (g/cm ), Do
is the normal density and &„» and N„» are the single-
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TABLE III. Energy levels and populations in Fe26 at kT = 100 eV at different matter densities.

1S«2

2Si/2

Pi/2

Si/2

3Pi/2

3P3/2

3S3/2

3dr/2

4Pi/2

4P3/2

4d3/2

4dS/2

4'/2

4f7/2

5si/2

5Pi/2

5d3/2

5d5/2

5f5/2

5f7/2

6si/2I

6si/2II

D =0.1Dp

(ao uo )

—273. 43

—42. 075 3

—38.197

—37.730

-11.341

—10.125

-10.025

—8.2429

—8.2249

—3.6302

—3.169 0

—3.1394
—2.458 8

—2.453 5

—l.8424

—1.840 9

—0.976 39

—0.776 88

—0.765 72

—0.473 41

—0.47147

—0.212 11
—0.21155
—0.078 69

&0

—15.564 5

Nnr y

2.000 0

1.998 5

1.995 8

3.990 4

0.481 3

0.370 89

0.725 57

0.480 27

0.717 31

P. 074 900

0.066 357

0.13169

0.11004

0.164 83

0.140 18

0.186 83

0.037 100

0.035 174

0.070 139

0.064 865

0.097 246

0.090 721

0.120 94

0.005 86

1si/2

2si/2

2P i/2

P3/2

3Si/2

3P i/2

3P 3/2

3d3/2

3dg/2

I4si/

4P i/2

4P3/2

4si/II

4P i/2

4P3/2
II

D=Dp

&,~q 4'u )

—266. 021

—35.746

-31.831

—31.363

—6.523 7

—5. 283 1

—5.1964
—3.2329

—3.2184

—0.532 83

—0.186 00

-0.174 38

—0.11153

&p

&p

—7.630 2

N„)g

2. 0000

l.9990

1.997 2

3.993 7

0.850 61

0.691 15

1.361 1

0.928 58

1.3886

0.970 87

0.044 176

P. 088 104

0.14148

1Si/2

2si/2

Pi/2

P3/2

3Si/2I

3P i/2

3P 3/2

3Si/2II

3P i/2

3P 3/2

D = 20Dp

~„„(a.u. )

—254. 22

—25. 272

—21.152

—20. 700

—1.533 2

—0.093 41

—0.035 22

&0

&p

&0

7.534 01

N„)g

2.0000

1.9997

l.9992

3.9982

0.26118

0.001818

0.003 629

particle energies and populations, respectively.
When band splitting occurs in the upper states,
superscripts I and II are used in the spectroscopic
notations for the lower and upper limits of the
bands, respectively. In the latter case the num-
bers in the column N„» are understood to be N„',

&

or N„'» as given by formulas (Gd)-(6f), and their
sums are the band populations. The Fermi level
p. is also given. The energy levels at zero tem-
perature and at low matter densities agree with

those of Herman and Skillman. The bandwidths
calculated at zero temperature in the crude approx-
imation adopted in this paper cannot agree with
those of more detailed solid-state calculations.
However, the data obtained by this method are not
bad. In the case of the Fe atom at 4'T=0 and D

=Do, the calculated widths of the 4s, 3d3/~, and

3d5/~ bands are 0. 26, 0. 13, and 0. 22 a. u. , respec-
tively. These values compare rather favorably
with those obtained by Gandel'man: about 0. 3
a. u. for the 4s band and about 0. 2, 0. 1, and -0
for the 3d M = 2, M = 1, and M = 0 bands, respec-
tively. It is known from solid-state calculations
that the 4s band is completely filled, whereas
Table I at D=Do shows only 0. 16 4s electrons.
This is an obvious shortcoming of the central-field
approximation. In the case of Rb atom, the 5s
bandwidth at D=DO and AT=0 is 0. 17 a. u. , from
Table II, in reasonable agreement with the value
of about 0. 13 a. u. , obtained by Ham, and the
band is half-filled. The single-electron levels for
the Fe and Rb atoms at kT= 100 eV at different
matter densities are shown in Tables III and IV,
respectively. At higher temperatures, when the



RE LATIVISTIC HARTREE- POCK-SLATER CALCULATIONS ~ ~ ~ 1143

TABLE 1V. Energy levels and populations in Rbs at kT = 100 eV at different matter densities.

1s

2Sf/2

2Pf/2

Ps/2

3Sf/2

3Pf/2

3P3/2

3d3/ 2

3d5/2

4sf) 2

4P f/2

4Ps/2

4ds/2

4dg/2

4f5/2

4fv/2

5sf/2

5Pf/2

5Ps/2

5ds/2

5dg/2

5f5/2

5fv/2

6sf/2

6P f/2

5gs/2

6P3/2

6pf/2

6p3/2

6ds/2

6dg/2

6dII

6d~/2

D=0. 5Dp

c„I& (a.u. )

—575.63

—89.702

—82. 955

—80.774

22 ~ 732

—20. 276

-19.855

—15.753

—15.674

—7.099 1

—6.2026

—6.0864

—4. 6612

—4. 640 1

—3.260 1

—3.2554

—2.4023

—2. 0247

—1.98104

—1.38749

—1.379 40

—0.84444

—0.812 63

—0.554 94

—0.39942

—0.388 01
—0.387 60

—0.378 75

—0.366 02

—0.347 84

—0.14445

—0. 14209

—0.070 07

—0.066 57

—15.634

2.000 0

2.000 0

2.000 0

4.000 0

1.746 7

l.559 6

3.037 1

2.032 6

3.016 5

0.178 67

0.142 74

0.277 25

0.192 44

0.287 09

0.200 22

0.266 64

0.053 22

0.048 150

0.095 191

0.081 287

0.12167

0.104 64

0.13945

0.032 540

0.012 925

0.024 747

0.018 603

0.12447

0.155 57

0.037 026

0.023 121

0.034 660

0.034 489

0.051686

1sf/

2sf/

2P f/2

Ps/2

3Sf/2

3Pf/2

3P 3/2

3d3/ 2

3d5/2

4sf/2

4Pf/2

4Ps/2

4ds/2

4dg/2

4f5/2

4f7/2

5Pf/2

5P3/2

5ds/2

5dg/2

5f5/2

5f7/2

6sf/2I

6ps/2

6sf/2II

6P f/2

6P II

6Ps/2
II

D=Dp

e„)) (a.u. )

—573.72

—88.497

-81.809

—79.623

—21.766

—19.323

—18.905

—14.785

—14.707

—6.385 6

—5.500 4

—5.387 8

—3.9714
—3.9510
—2.568 6

—2. 5643

—1.885 9

—1.523 7
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—0.157 78

&0

&0
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2.0000

2.000 0

4.000 0
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0. 16330

0.317 56

0.22165

0.330 74

0.23106
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0.064 387

0.058 520

0.11581

0.099 558

0. 149 05

0.12906

0.17201

0.016 65

0.07447

0.02478

0.03733

lsf/2

2sf/2

Pf/2

2P 3/

3Sf/2

3Pf/2

3P3/2

3ds /2

3d5/ 2

4sf/2I

4sf/2II

4P f/2

4Ps/2

4P f/2

4Ps/2

D =20Dp

E„Iy (B.Q. )

—561.01
—78.465

—71.907

—69.684

—13.375

—10.946

—10.566

—6.297 7

—6.226 0

—1.084 3

—0.414 52

—0.409 19

—0.359 41

&0

&0

3.657 98

+nl j
2.0000

2.000

2.000

4.000

1.867 2

1.758 3

3.4703

2. 6888

4.0073

0.25182

0.36437

0.15478

0.306 66

atom becomes partially ionized, a number of new

levels appear which are partially or almost com-
pletely vacant and very much resemble the levels
of the hydrogenic sequence. However, because of
the screening by the free electrons, hydrogenic

degeneracy is never reached. These upper states
have large Bohr radii; consequently they are very
sensitive to change in matter density. In Figs.
1-4 the quantity 4m' p(r) is shown at D = Do and

10DO and at kT= 0 and 100 eV. At high matter den-
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FIG. 5. ~V(~) =-Z*(~) of the Fe26 atom at normal mat-
ter density (7. 85 g/cm ) at kT=0 (I) and 100 eV (II).
V(y) is the self-consistent potential including exchange
and correlation.

FIG. 7. —Z (y) of the Hbs' atom at normal matter density
at kT=O (I) and 100 eV (II).

gas, and Pigs. 13 and 14 show the logarithm of
the electron pressure at the boundary Ro as a func-
tion of matter density at different temperatures.
Figure 15 shows the electron pressure at the bound-
ary Ro of the Rb atom in the low-temperature
region close to the ground state at different mat-
ter densities. The self-consistent-field pressures
at low matter density show some unexpected minima
with respect to the temperature between kT= 0. 5

and 1 eV. This is due to the fact that electrons
are lifted from the 5s band into the 4d band and

the 4d wave functions extend outward less than the
5s wave functions. This feature does not appear
in the results of the first TFS iteration, because
there the 5s and 4d bands are farther apart.
Figures 16 and 17 show the number of free elec-
trons as a function of matter density at different
temperatures.

APPENDIX A: EXCHANGE INTERACTION IN
FREE-ELECTRON GAS

The Coulomb exchange between two plane waves
confined in a volume 0 is given by

0 &
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FIG. 6. —Z*(r) of the Fe~e atom at ten times normal
matter density at k T = 0 (I) and 100 eV (II).

FIG. 8. -Z*(x) of the Rb atom at ten times normal
matter density at kT=O (I) and 100 eV (II).
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V."„=—[ ~p(r )/k T]e'a, (A6)
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Z 20
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kT = 100 eV

kT=5&&10 eV3

kT= 10 eV3

or formulas (4a) and (4b), respectively, if kT and

p are given in atomic units. For intermediate tem-
peratures one has to somehow interpolate between
the two limits in a reasonable manner. A possible
choice for the parameter of the interpolation is the
ratio of the thermal energy to the zero-point Fermi
energy given by

kT = 10eV

p I I I IL I «W T~ I I I IT
0.5 1 10

D /DO

100

2kT/(3&2)2/3 p2/3

If an interpolation formula,

V,„= [1—)&"] V„+ I&" V„,

M

@2e2

SZ

Il.

2mk Tm

1Tp

2kT

7Tp
2

—cap 0, (A4)

where ap is the Bohr radius, and the superscript
M stands for the Maxwellian case. We define the
exchange potential by

E,„= 2 f V,„(r)p(r) d r,
which yields

V'. = ——. (3/&)'" p"'(r) e'

and

(A5)

FIG. 17. Number of free electrons in the Rb3~ atom
as a function of matter density at different temperatures.
Solid lines, HFS results; dashed lines, TFS results.

is used, n must be larger than 1 because of the
dependence of V„on 1/kT In thi.s paper a simple
quadratic interpolation was used as given by for-
mula (4c).

APPENDIX B: FORMULAS

In this section the formulas used to calculate
the total electronic energy, electron pressure at
the boundary, and electron entropy are summarized.

The total electronic energy is given by

~o
E = E N„, e„& + 47& o,(r)r' dr

nl 0

Ro
—2II V,(r) p(r) r2dr,

0

where the summation is over all the bound states,
and the band populations X„, and band-energy
averages e„& are given by (6e) and (I), respectively.
The p, (r) stands for the single-particle energy
density of the free electrons and is given by

8~p(r)= 33 kThc
xp&~ &

[k'T'x'+ 2xkTq(r)]'/' [kTx + q(r)] [x —K&)(r)]
e + 1x-8(r ) dx,

whe~e X,(r), q(r), and 2(r) are given by formulas (9), (lb), and (ld), respectively. The electron pressure
at the boundary is given by

8m
3 3 ( R+v())0))» I3/ (i (&o)) + — 'si (~ (&0)) + —

a ivy (i () 0)l)
3/2 3 kT k2T2

3h. c 4 qRp 32 q (R3)
(B3)

Formula (B3) is the relativistic Thomas-Fermi formula. for the electron pressure The quan. tum effect of
the bound states is taken into account by inserting the HFS self-consistent values of the chemical potential
Ir and V(R()) into the expression for 2. For the quantity TS, where S is the electron entropy, the following
formula was used:

TS = E N„, e„) —kT
nl

~'nl e(,I«+ 6 Rp
g«(e) ln

& r, , »/3 r de —NIr + 4II p (r) r dr,e 'nl' '
0

(B4)

where the function p, (r) is given by

p, (r) = k2T2, , [k T 2+2x22kTq(r)]'/'[kTx+ q(r)] [In [e" ' "'+ 1]—x+2(r) jdx .
h. 'c' x („)

0

(B5)
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Equations (B4) and (B5) result from a straightfor-
ward derivation from the basic formula for the
entropy,

S = —k J [n; jnn, + (1 —n, ) ln(1 —n;) ],

where the integral stands for summation of discrete
levels and integration over continuum levels and
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