5

tive exponential dependence on n(w), identical in both
equations, produces an opposing effect which tends to nul-
lify the change arising from the factors of [n(w) g — 1711/2,
The result is an effective change in the force ratio F,/F,
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by a factor (2)!/? and a consequent 20% reduction in the
total deflection angle.

8see Ref. 10, p. 21.

1"3ee Ref. 10, p. 27.
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An algorithm is presented to calculate electronic levels and the equation of state of atoms
suitable for arbitrary matter density and temperature. The self-consistent-field treatment

starts with relativistic Thomas-Fermi-Dirac model in the iterative procedure.

The Fermi

statistics and the central-field approximation are maintained, giving an average atom repre-
sentation. The broadening of upper electronic levels into bands is taken into account in a
simple approximation. Calculations are presented for the Fe? and Rb% atoms at several tem-~

peratures and matter densities.

I. INTRODUCTION

The Thomas-Fermi (TF) and Thomas-Fermi-
Dirac (TFD) statistical models of atom were ex-
tended to finite temperatures by Feynman,
Metropolis, and Teller, ! and by Cowan and Ashkin, 2
respectively, some years ago. Since then these
models have been widely used to calculate atomic
properties at high temperature and pressure. It
is generally believed that in the region of high
temperature and/or pressure, the TFD model
gives a reasonably accurate electron potential.
This potential in turn can be used as a basis to
treat the atom in a more quantum-mechnical way
by solving the single-electron wave equation for
the bound states. The inclusion of shell effects in
the TF model in this matter was used by Carson,
Mayers, and Stibbs to calculate stellar opacities. ?
The same principle was applied by Zink*® to obtain
the energy of partially ionized matter using an
analytical potential in place of the exact TFD po-
tential. He appropriately labeled the model as the
Thomas-Fermi-shell (TFS) model. We can recog-
nize the TFS model as the first iteration in a
Hartree-Fock (HF) or Hartree-Fock-Slater (HFS)
self-consistent-field scheme in which the TFD
potential is used as the beginning. At low or mod-
erately high temperatures, the TFS model may or
may not be adequate, depending on the actual
physical properties that one wishes to calculate.

J

{[e=V(r)]2-mPc*—[rV'(r)]?}/?

The first purpose of this paper is to study this
uncertainty by a comprehensive self-consistent -
field program. Since no HFS calculations are
known to the author for temperatures when the
atomic electrons are partially degenerate, the
author believes that this paper fills a gap in an
area of considerable interest. The second purpose
is to formulate the self-consistent model for atoms
in a manner suitable for finite matter density
calculations. This is done by making allowance
for the splitting of upper electronic levels into
bands in a somewhat crude approximation. The
importance of band splitting at high matter density
is important in connection with the accurate treat-
ment of level broadenings. The exchange due to
the Pauli principle is taken into account in the
free-electron or plane-wave approximation as is
done in the TFD and HFS models. The Fermi
statistics and the central-field approximation are
maintained throughout the calculations. Since
relativistic effects may be important in the case
of heavy elements, the relativistic formulation is
maintained. It is assumed that the reader is
familiar with the HF and TF theories and, there-
fore, detailed derivations are avoided.

I1. REVIEW OF RELATIVISTIC TFD THEORY

The relativistic expression for the electron den-
sity in the TF approximation is given by®

8m °
p(7) =753 —[eo(n o G-I TRT, |

[e-V(r)]de, (1a)
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where ¢ is the velocity of light, # the Planck con-
stant, m the electron mass, 7T the temperature in
degrees Kelvin, k the Boltzmann constant, V(7)
the potential energy function for the electron,
assumed to be spherically symmetrical, and V'(7)
its derivative with respect to », which is the dis-
tance from the center of the atom. The chemical
potential or Fermi level p is determined by the
normalization condition

4m fORU p(7)r¥dr=N

where N is the number of electrons. R, is the
radius of a spherical volume containing the atom;
the magnitude of Ry is determined by the matter
density. The lower limit of the integral €, is de-
termined by the condition that the expression in
curly braces in (1a) must not be less than zero,
which yields

€(7)= V(r)+ q(R),
where

q(r) = {mPc*+ [»V'(r)]5}V/2, (1b)

Expression (1la) for the electron density can be
written in a more familiar form by making the sub-
stitutions € - €+ €5 and - u —mc? and by assuming
that 2T < mc? In this case we can expand the radi-
cal in (1a) in a power series, and after some
straightforward manipulation we obtain

o1 = it [2Tat 7 [1te) + 3 2L 1y e
2m2 3
. 3_72 qT—k (TT) Is ja(2) + 0 <;(TT) ) } . (o)
where
ZZZ(T):M—V(V)ercz—q(V) 14)

kT

and the I’s represent the Fermi-Dirac integrals
given by

-
Iu(2)=f o, 9

0

In formula (1c) the function g(7) plays the role of
a relativistic mass correction. Neglecting the
term 7V’ and retaining only the I;,, term, one ob-
tains from (1c) the usual nonrelativistic TF electron
density. It is noteworthy that the relativistic effect
is manifested in two ways, first through the term
7V’, which is important near the center and exists
at any temperature, and second through the series
expansion which is temperature dependent.

The potential energy V can be written as

V(r)= “Zez/V + V(7)) + Ver(7) + Veore(7) . (2)

The first term in (2) is due to the nucleus of charge
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]
Z; the second is the classical electron-electron
interaction, which must satisfy the Poisson equa-
tion with the proper boundary conditions,
V2V (7)= - 4mpe? | (3)

where e is the elementary charge. The third and
fourth terms in (2) correspond to the exchange and
correlation, respectively,” and both of them are
approximated as local potentials in the free-electron
approximation. At zero temperature the exchange
potential in terms of the electron density is given
by® (in atomic units)

Vex(7) == 3 (3/m)!% p3(r) , (4a)

where the superscript 0 indicates the zero-temper-
ature case. For temperatures sufficiently high
so that the electron gas can be considered as

Maxwellian, we have (see Appendix A)
Ve(7) = = mp(7)/RT , (4b)

where the superscript M indicates the Maxwellian
distribution. For intermediate temperatures, we
interpolate between the zero- and high-temperature
limits and use®

Vex(7) = [1= ()] V3(7r) + Xo(r) V() ,

Vex(7)= Vgx(y),
where
Nr) = 26 T/(37%)2/3 p2/3(y) |

The correlation potential is taken into account in
the zero-temperature limit as follows:

Veoer = 0. 0622107, — 0. 096 + 0. 0049, In7,,

rs <1 (5a)
B 0.11294 4
Vcorr - p + 0.1216 p ’ Vs> 1 (5b)

where 7, = (3/4m!/% p7t/3 Equation (5a) is the
high-density approximation of the correlation po-
tential with the first two terms due to Gell-Mann
and Brueckner!® and the last term due to Dubois. !
Equation (5b) is the low-density approximation
of the correlation potential given by Wigner, 12
Equations (1a)-(5b) represent the formulas of
the relativistic TFD model in which the correlation
is also included. These equations can be solved
by fast digital computers, and the TFD potential
can be used as a suitable beginning in an HFS
interative procedure.

III. REVIEW OF HFS MODEL

It is assumed that the reader is familiar with
the HF and HFS models applied to the ground state
of an isolated atom or ion. It is well known that



5 RELATIVISTIC HARTREE-FOCK-SLATER CALCULATIONS. ..

the low excited states and different angular-momen-
tum states for open-shell configurations can be
calculated with sufficient accuracy from the data of
a ground-state HFS calculation by the perturbation
method. For higher excited states, the perturba-
tion treatment using ground-state energy levels
and wave functions is no longer feasible, and one
must apply the HF method for the excited configu-
rations. In the high-temperature case, the number
of possible configurations is enormous, and there-
fore one must resort to some sort of averaging
treatment. A plausible way to do this is based on
the assumption that the atomic electrons occupy
the single-particle levels according to Fermi
statistics. This leads to a fictitious atom with
noninteger occupational numbers, and this average
atom is assumed to represent a close approxima-
tion to the canonical average.!® This is the basic
assumption in Refs. 3-5 and also in this paper.

In the average-atom approximation, the radial
density of bound electrons is given by

2(21+1) R, (7)

2
e(enl-u)/kT+1 v ’ (63-)

po(7) = 35 D

nl

where the summation is over all the bound levels
and €,, is the single-particle energy with principal
and angular-momentum quantum numbers »n and

1, respectively. If spin-orbit splitting is taken
into account, then the factor 2(27+1) is replaced
by 27+1, where j=1+3 and the index j is added
everywhere ton and I. R, is the radial part of
the single-particle wave function given by

Sn(r, 00) = 2 v (69)

fop 2yar =1
R,,,(V)’V—- ’

0

where Y, represents the spherical harmonics.

R,, satisfies the usual relativistic or nonrelativistic
radial equation with the potential V(7). The usual
boundary conditions that R, must satisfy, and
which in turn determine €,,, are

R, (0)=0 (7a)
and

R.(Ro)=0 (7o)
or

Zl% {—R’:(ﬂ] =0 at7=R,, (Tc)

where Rg, as in Sec. II, is the radius of the sphere
containing the atom. Inthe case of afinite matterden-
sity, R, isfinite; one can satisfy either (7b)or (7c),
yielding two different values for €,, , with the one cor-
respondingto (7b)being the larger. Inthe case of homo-
nuclear diatomic molecules this type of splitting corre-
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sponds to the “gerade” and “ungerade” or bonding
and antibonding type of molecular electronic levels.
In the case of bulk matter, when an atom is sur-
rounded by many neighbors, one can assume that
the two energies corresponding to boundary con-
ditions (7b) and (7c) are the upper and lower edges,
respectively, of a band. This assumption can be
justified by the following considerations: Let us
assume that the matter is of finite density, in
which case the wave functions extend over the
whole region occupied by the matter, and let us
assume that the central-field approximation is still
valid within the radius R, of each atom. In this
case the radial part of the lowest-energy wave
function with principal and angular-momentum
quantum numbers # and ! can have no more nodes
thann -7 -1 at each center. This wave function
must be symmetric with respect to an elementary
translation so condition (7c) must hold.'* By simi-
lar arguments the highest possible energy €,, be-
longs to a wave function with R,; having an addition-
al node between each two centers, in which case
the condition (7b) is satisfied. It should be noted
that, for an isolated atom, when R is infinitely
large the bandwidths reduce to zero because the
boundary conditions (7b) and (7c) for the bound
states are satisfied simultaneously, giving a dis-
crete level €, . 15

In the absence of any detailed knowledge about
the structure of the matter, the distribution of
states within a band is taken to be equal to that of
free electrons, which is a frequent approximation
in solid-state physics. Accordingly, the density
of states in the nl band, denoted by g,;(€), has to
be proportional to 61/2, where € is the energy mea-
sured from the lower limit of the band. Also, the
normalization condition

L @) de = 2(2141)

has to be satisfied, where A€, = €!f — €} €&l and
€!, being the upper and lower limits of the n! band,
respectively. These requirements can be satisfied
by

3(21+1)

&m(€) = (ae, V72 ez
n

(8a)

When spin-orbit splitting is taken into account,
Eq. (8a) must be replaced by
2+1

3
gmji(€) = 2 (e, )77

1/2
€
2 .
€n15)

(8b)
Taking into account the band-splitting as described
above, the radial density of bound electrons is

given by

Ps(7)



1140 BALAZS F. ROZSNYAI 5
1 Aeny &ni(€) Ry (7) |2 - 1 a1 gni(€) €
_41T§(f0 e(erxll+e'u)/kT+1 7 dE) ? N"IG"’:NIE"Z+£ e(e’lll+e-u)/k7‘+1 de.
(6b) (61)

where 6= €}, and R,;; is now a radial function with
the energy parameter between €., and €, and 7o
boundary conditions are imposed at R,. Since

the wave function R,;s is calculated only at the band
limits with boundary condition (7b) or (7c), formula
(6b) can be approximated by

1 NL OV RYL(v) |2+ N} RIY(7) |2
pb(y)z4_1.r 2,. 1 l( 3,2L nl i ( ) ]
nli

’

The density of free electrons p,(7) can be cal-
culated in the TF or TFD approximation using
formula (1a) with €,, the lower limit of the integral,
properly changed. The condition that determines
€, now is that the single-particle energy (including
the rest energy) € = ¢(R). This leads to a formula
completely analogous to (1c¢) with the Fermi-Dirac
integrals I, being replaced by the incomplete Fermi-
Dirac integrals I}9(z) , where

(6c)
where R}, and R} are the radial wave function with
boundary conditions (7c) and (7b), respectively,
and the numbers N., and NI are determined by the
equations

Xo= Xo(7) = = V(7)/kT , (9)

z is given by (1d), and

b

oz - [ e
v 5, € R | ’

The free- and bound-electron densities together,
(6d) ; -

ND el L NII_ N g when integrated over the volume containing the

nbEnl T A Eat Ponts atom, must yield the total number of electrons.

Since the bound electrons are treated by wave

mechanics, the normalization condition for the
total electron density yields a different chemical
potential p than the TF or TFD method. Naturally,
this difference is significant at low temperatures
when there are many bound electrons. Having de-

I II
Ny + Ny = Ny ’

where N, is the band population and €, is the band
energy average given by

By gm(€) de , (6e)
Ny = o e(e£1+s-u)/kT+1

TABLE I. Energy levels and populations in Fe® at kT =0 at different matter densities. Dy=7.85 g/cm?,

D=0.1D, D=D, D=20D,
€y @.ul) Npj €my (@u.) Ny €y (a.u.) Npuj
1sy/;  —261.79 2.0000 1syy; ~ —260.51 2.0000 1sy,  —253.75 2.0000
25172 —30.915 2.0000 25173 —30.578 2.0000 2519 —24.862 2,0000
2172 —26.907 2.0000 2019 —26.602 2.0000 2p1/3 —-20.727 2.0000
20379 — 26,450 4.0000 2p3/3 —26.141 4.0000 2039 —20. 277 4,0000
3s1/2 ~-3.3751 2.0000 38172 —3.2487 2.0000 3sl/q -2.3688 0.24009
3p1/2 -2.1614 2.0000 3pyys —-2.0517 2.0000 3sf, >0
3p3/2 -2.,1049 4,0000 3p3/2 ~-1.9963 4,0000 N 8.6583
4si/, —0.17406 0.529 29 451y, —0.18244 0.15643
3ds /g —-0.15991 4,0000 3d5,, -0.12085 3.13743
3ds;; —0.15472 3.22191 3di/, -0.11630 4.70614
45y, -0.13925 0.24879 3d3), +0.004 35
4517 +0,075814 0

4pi/, —0.03749 3dt), +0.1083
4p% /4 —0.03589 0 © —~0.10059
4pl)s
4p¥, >0

.165472
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TABLE II. Energy levels and populations in Rb¥ at 2T =0 at different matter densities. D,=1.532 g/cm?.
D=0.5D, D=D, D=20D,
€y (@.u.) Ny €ny (aiu.) Ny €y (aiu.) Npj

1sy,  —562.24 2.0000 1sy;  —561.39 2.0000 1sy;y  —556.56 2.0000
25173 ~76.405 2.0000 25173 —176.263 2.0000 25175 —74.165 2.0000
2019 —69.561 2.0000 20175 —69.482 2.0000 20172 —67.561 2.0000
2039 - 67,392 4.0000 203/ - 67.307 4.0000 2p3/9 — 65,346 4.0000
3s1/2 -11.801 2.0000 3512 ~11.779 2.0000 3s1/3 —-10.352 2,0000
3p1/2 -9.2376 2.0000 3p1/2 -9.2897 2.0000 3p1/2 ~7.9108 2.0000
3p3/s —~8.9554 4.0000 3p3/a —8.9476 4,0000 3p3/2 -7.5759 4.0000
3ds ), —4.5729 4,000 0 3dy/, —4.5685 4,0000 3dy/, -3.2209 4.0000
3ds/q —-4.5155 6.0000 3ds/; ~-4.5108 6.0000 3ds/y -3.1637 6.0000
4s1/3 -1.3845 2,000 0 4s1/y -1.3859 2,0000 451/, -1.0229 1.7241
4p1/9 —0.784 27 2.0000 4p1/s -0.78753 2.0000 4p}/, —0.436 93 0.32169
4p3/9 ~0.748 62 4.0000 4ps/s -0.75188 4.0000 4pk/, —-0.40331 0.64339
5s51/3 -0.15734 0.62155 55/, -0.17105 0.62160 4sth,
5p1/2 —0.06696 0 4d3;, -0.06531 4p1y, >0
5% /2 —~0.06350 0 4d}/, —-0.069 17 0 4p¥,
5515, —0.05747 0.37845 5p1/9 -0.06333 b 0.879 25
4di;, —0.05747 5p5%, -0.05846 0
4dly, —0.05742 5s1%, -0.003 29 0.37640
4d%y, —-0.0096 0 4d%y, +0,00778
4diy, -0.0077 44t +0.01005
5p1)2 >0 5p179
5pths >0 5p3) } 7

p ~0.094482 n -0.06545

termined the total electron density, we can calcu-
late the electron potential including exchange and
correlation as described in Sec. II, and the itera-
tive procedure can be carried forward until the
desired accuracy is achieved.

IV. CALCULATIONS

A computer program was written to solve the
relativistic TFD problem for atoms as described
in Sec. II, and the TFD potential was used as the
input of an HFS program. The relativistic single-
particle equations for the bound states were solved
by using the two-component Dirac equation in the
central field and eliminating the small component.
The bound- and free-electron densities were cal-
culated as described in Sec. III, and the iterative
procedure was carried out until the maximum de-
viation in the potential in two successive iteration
was less than 1%. In addition to the quantities in-
dicated in Secs. II and III, total electronic energy,
electron entropy, and electron pressure at the

boundary were also calculated. The formulas for
the latter quantities are summarized in Appendix
B.

The calculations were performed for the Fe?®
and Rb%" atoms at several temperatures up to #T
=5x10* eV and at several matter densities. The
data are given in atomic units where the unit ener-
gy is 27.204 eV and the unit distance is 0. 5292
x10® cm. Only those data are presented that the
author thinks reflect the main features of the cal-
culations, and even so they seem rather abundant.
For this reason, the results of the TFD calculation
that are the starting points of the program are not
presented. For the Fe?® atom the TFD data agree
with those of Ref. 2 in the nonrelativistic limit.
Tables I-IV summarize the data concerning the
relativistic single-electron levels in the self-con-
sistent potentials of the Fe®® and Rb®" atoms at 2T
=0 and 100 eV with some of the matter densities.
In the tables D is the matter density (g/cm?®), D,
is the normal density and €,;; and N,;; are the single-
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TABLE III. Energy levels and populations in Fe® at 2T =100 eV at different matter densities.

D=0.1D, D=D, D=20D,

€y (@.u.) Ny €y (acu.) Npy €y (a.00) Ny
1sy/y,  —273.43 2,000 0 1syy  —266.021 2.0000 1sy/,  —254.22 2.0000
25173 —42.0753 1.9985 25173 —35.746 1.9990 25172 - 25.272 1.9997
2p1/3 —38.197 1.9958 2p1/2 —31.831 1,9972 20179 —21.152 1,999 2
20373 —37.730 3.9904 20379 —31.363 3.9937 2p3/2 ~20.700 3.998 2
3s1/9 —-11.341 0.4813 3519 -6.5237 0.85061 3sl/y -1.5332 0.26118
3p1/2 -10.125 0.37089 3p1/2 -5.2831 0.69115 3pl/, ~0.09341 0.001818
3p3/s —-10.025 0.72557 3p3/2 ~5.1964 1,3611 3p5, -0.03522 0.003 629
3s3/2 —8.2429 0.480 27 3dy/, -3.2329 0.92858 3sily >0
3ds;, —8.2249 0,717 31 3ds,q ~3.2184 1.3886 3pThs >0
4s1/y ~3.6302 0.074900  4s]/, -0.53283 0.97087 3pil, >0
4p1/9 —3.1690 0.066357  4pl/, —-0.18600 0.044 176 n 7.53401
4p3/s -3.1394 0.13169 4p3/, -0.174 38 0.088104
4d3/, —2,4588 0.110 04 451y, -0.11153 0.14148
4dy;, —2.4535 0.164 83 4pT, >0
4fs/9 —-1.8424 0.14018 4p3, >0
4f7 /9 ~1.8409 0.186 83 @ —-7.6302
55172 -0.97639 0.037 100
5p1/2 —0.77688 0.035174
5p3/2 —0,76572 0.070139
5dy /4 —0.47341 0.064 865
5ds;; ~0.47147 0.097 246
5f5/2 -0.21211 0.090 721
5f1 /2 —-0.21155 0.120 94
6st/s —0.07869 0.00586
651y, >0

" —15.5645

particle energies and populations, respectively.

When band splitting occurs in the upper states,
superscripts I and II are used in the spectroscopic
notations for the lower and upper limits of the
bands, respectively. In the latter case the num-
bers in the column N,;; are understood to be N,f,,
or NII. as given by formulas (6d)-(6f), and their
sums are the band populations. The Fermi level
u is also given. The energy levels at zero tem-
perature and at low matter densities agree with
those of Herman and Skillman. '®* The bandwidths
calculated at zero temperature in the crude approx-
imation adopted in this paper cannot agree with
those of more detailed solid-state calculations.
However, the data obtained by this method are not
bad. In the case of the Fe® atom at #7= 0 and D
=D,, the calculated widths of the 4s, 3d;3,,, and

3ds,, bands are 0.26, 0.13, and 0.22 a.u., respec-
tively. These values compare rather favorably
with those obtained by Gandel’man'”: about 0. 3
a.u. for the 4s band and about 0.2, 0.1, and ~0
for the 3d M =2, M=1, and M =0 bands, respec-
tively. It is known from solid-state calculations
that the 4s band is completely filled, whereas
Table I at D=D, shows only 0.16 4s electrons.
This is an obvious shortcoming of the central-field
approximation. In the case of Rb* atom, the 5s
bandwidth at D=Dy and #T=0is 0.17 a.u., from
Table 1I, in reasonable agreement with the value
of about 0. 13 a.u., obtained by Ham, '® and the
band is half-filled. The single-electron levels for
the Fe?® and Rb®" atoms at #T'= 100 eV at different
matter densities are shown in Tables III and IV,
respectively. At higher temperatures, when the
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TABLE IV. Energy levels and populations in Rb?T at kT'=100 eV at different matter densities.

D=0.5D, D=D, D=20D,

€y (@ou.) Npyy €nty (a.u.) Ny €ny (a.u.) Ny
1s1y9 —-575.63 2.0000 1sqy9 —573.72 2.0000 1syy/9 —-561.01 2.0000
2519 —89.702 2.000 0 2s1/9 —88,497 2.0000 2813 —178.465 2.000
2p1/5 —-82.955 2,000 0 21/, —81.809 2.0000 2172 —71.907 2.000
2p3/9 —80.774 4.0000 2p3;9 —79.623 4.0000 2p3/9 —69.684 4,000
3s1/9 —22.732 1.7467 3s1/9 —21.766 1.767 64 3s1/2 —-13.375 1.867 2
3p1/2 —20.276 1.559 6 3p1/2 —19.323 1.58566 3p1/2 —10.946 1.7583
3p3/s —19.855 3.0371 3p3/a —18.905 3.0933 3ps/a —10.566 3.4703
3ds;y —-15.753 2.0326 3d3y —14.785 2.1059 3ds —-6.2977 2,6888
3ds5/9 —15.674 3.016 5 3dsy —14.707 3.1267 3ds/y —6.2260 4.0073
44,9 ~-7.0991 0.178 67 4sy/, -6.3856 0.203 27 4si/, —-1.0843 0.25182
4p1/9 -6.2026 0.14274 4p1/s -5.5004 0.16330 45ty —-0.41452 0.36437
4p3/q —-6.0864 0.277 25 4pg), -5.3878 0.31756 4pl/, —0.40919 0.15478
4dy;, —4.6612 0.19244 4dy, -3.9714 0.22165 4p1), —0.35941 0.30666
4ds/y —4.6401 0.28709 4ds;y -3.9510 0.33074 48, >0
4fs /4 -3.2601 0.200 22 4fs5 /o -2.5686 0.23106 4p8, >0
41/ —3.2554 0.266 64 4f1/9 —-2.5643 0.30774 [ 3.65798
551/ —-2.4023 0.053 22 5519 -1.8859 0.064 387
5p1/3 -2.0247 0.048150  5py, -1.5237 0.058520
5032 —1.98104 0.095191  5pyy, —1.4835 0.11581
5d3 ;9 —1.38749 0.081 287 5d3; -0.91241 0.099 558
5d5,q —1.,37940 0.12167 5ds, -0.90515 0.14905
5579 —0.84444 0.104 64 5fs5/2 -0.36317 0.12906
5f179 -0.81263 0.13945 5f1/2 -0.36169 0.17201
6519 ~0.55494 0.032540  6s]/, —-0.28534 0.01665
61/ —0.39942 0.012925  6pf, -0.14741 0.07447
5872 —-0.38801 0.12447 6sf, -0.17958 0.02478
5g9/9 —0.38760 0.15557 6p1/9 -0.15778 0.03733
63/ —-0.37875 0.024747  6pfY, >0
6pil, —0.36602 0.018603  6pl, >0
6p7, —~0.34784 0.037026 © —14.396
6d}/, —0.14445 0.023121
6d};; —-0.14209 0.034 660
6d3, —0.07007 0.034 489
6dl, —0.06657 0.051 686

1 ~15.634

atom becomes partially ionized, a number of new degeneracy is never reached. These upper states
levels appear which are partially or almost com- have large Bohr radii; consequently they are very
pletely vacant and very much resemble the levels sensitive to change in matter density. In Figs.
of the hydrogenic sequence. However, because of 1-4 the quantity 4m%p(7) is shown at D= D, and

the screening by the free electrons, hydrogenic 10D, and at #7T=0 and 100 eV. At high matter den-
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47rr2p(r)

FIG. 1. 4% (), where p(¥) is the self-consistent
electron density of the Fe® atom at normal matter density
(7.85 g/cm®) at 2T=0 () and 100 eV (II).

sity and/or high temperature, the tails of the curves
become nearly parabolic as a result of the free-
electron density.!® In Figs. 5-8 the quantity rV(7r)
=~ Z*(7) is shown. Z*(7) can be regarded as a
position-dependent effective nuclear charge. In
the case of rigorous exact calculations, Z* must
be equal to Z —~N+1 at the boundary R,. 2°

Some properties of the whole atom are summa-
rized in Fig. 9-17. Figures 9 and 10 show the
total electronic energy above the self-consistent
ground-state energy of the isolated atom at differ-

47rr2 olr)

10 —
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i
ul

TR T S " RN BN R
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0 0.2 0.4 0.6 0.8 1.0 1.2
r(a.u.)

FIG. 2. 477%0 () of the Fe% atom at ten times normal
matter density (78.5 g/cm?®) at 2T=0 (I) and 100 eV (ID).
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FIG. 3. 41%% () of the Rb®Tatom at normal matter density
(1.532 g/cm?®) at £T=0 (I) and 100 eV (1D).

ent matter densities and temperatures for the Fe?®
and Rb%" atoms, respectively. The dashed lines
indicate the results of the first iteration which can
be regarded as the TFS results. For the Rb®" atom,
the TFS energy curves at 27=0 and 10 eV show a
rather erratic behavior, which is smoothed out

for the self-consistent solution®; therefore they
are not shown. At higher temperatures and matter
densities, the TFS results are very close to the
self-consistent HFS results. Figures 11 and 12
show TS, where S is the entropy of the electron

60 T T T T T T T T T

4nr2 p(r)

I L
0 0.4 0.8 1.2 1

r(a.u.)

1 | |
-6

FIG. 4. 47v% () of the Rb% atom at ten times normal
matter density (15.32 g/cm® at 27=0 (1) and 100 eV (II).
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FIG. 5. #V()==~2Z*(@) of the Fe?® atom at normal mat-
ter density (7.85 g/cm®) at 2T=0 (I) and 100 eV (II).
V(¥) is the self-consistent potential including exchange
and correlation.

gas, and Figs. 13 and 14 show the logarithm of

the electron pressure at the boundary R, as a func-
tion of matter density at different temperatures.
Figure 15 shows the electron pressure at the bound-
ary R, of the Rb®" atom in the low-temperature
region close to the ground state at different mat-
ter densities. The self-consistent-field pressures
at low matter density show some unexpected minima
with respect to the temperature between 2T=0.5
and 1 eV. This is due to the fact that electrons

are lifted from the 5s band into the 4d band and

=Z*(r)

0.2 0.4 0.6 0.8 1.0 1.2

r(a.v.)

FIG. 6. —Z*(») of the Fe?® atom at ten times normal
matter density at 27=0 () and 100 eV (II).
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-38 1
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FIG. 7. —Z*() of the Rb?" atom at normal matter density
at RT=0 () and 100 eV (II).

the 4d wave functions extend outward less than the
5s wave functions. This feature does not appear
in the results of the first TFS iteration, because
there the 5s and 4d bands are farther apart.
Figures 16 and 17 show the number of free elec-
trons as a function of matter density at different
temperatures.

APPENDIX A: EXCHANGE INTERACTION IN
FREE-ELECTRON GAS

The Coulomb exchange between two plane waves
confined in a volume Q is given by

0 0.4 0.8 1.2 1.6 2.0 2.4

r(a.u.)

FIG. 8. =—Z*() of the Rb*" atom at ten times normal
matter density at £7=0 (I) and 100 eV (II).
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FIG. 9. Electronic energy of the Fe® atom above the
ground-state self-consistent energy of the isolated atom
(Eq=—3.3970x 10 eV) as a function of matter density at

different temperatures. Solid lines, HFS results; dashed

lines, TFS results.

€= - h¥%?/Qn| B, - B, |2, (A1)

where 2 is the Planck constant, e the elementary
charge, and E and P, the two momentum vectors.
The number of ! electrons with spin parallel to

j in the solid cone 2mp,2dp,sinf dé is given by

270 p.2dp,sin6d6
dn; = THE gtwiflam-w) /T g

3

]O7E T T ‘IIIII[ T T l[lllll T T T T TTT1=
E kT =5 x10% ev
L n
108 3 5
E kT=5%10° eV E
F X 7
100 kT =10° eV _
E \j
E E
3 0tk 3
I ; — =
W2 C kT =100 eV
T
F kT=10eV
102L
]0‘5—
]QO“ L Ll Ll
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b/D,

FIG. 10. Electronic energy of the Rb®’ atom above the
ground-state self-consistent energy of the isolated atom
(Eg=—"7.96356x 10? eV) as a function of matter density
at different temperatures. Dashed line, TFS results at
100 eV.
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FIG. 11. TS of the Fe? atom as a function of matter
density at different temperatures. Solid lines, HFS re-
sults; dashed lines TFS results.

so we have

2¢? ©

2
Z}sjlz____ p2dp,
1

2/ om -
R Jy  ePlam-wier

x[” sinf d6
o P+bf-2b;p,sinb "

The integral with respect to 6 yields a factor

1 In Pj*'Pz

Dby [py=pi 1’

]05 T T T T ITTT] T T T T T T
; KT=5x10%ev 3
10 S T

Ty

L

kT = 103 eV
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Ll /
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FIG. 12. TS of the Rb?" atom as a function of matter
density at different temperatures. Solid lines, HFS re-
sults; dashed lines, TFS results.
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FIG. 13. Logarithm of the electron pressure P (in
megabars) of the Fe? atom at the boundary as a function
of matter density at different temperatures. Solid lines,
HF'S results; dashed lines, TFS results.

and we have

f f pipsW(py+p1)/ 1Py =0, 11dp,dp,

(e PiP/amew) [RT | 1) (P 12m=w) /KT 1y

(A2)

where the #4 indicates the summation over paral-
lel spins only, so that the total exchange energy
is twice (A2). In the zero-temperature limit, the
double integral in (A2) yields zp;*, where pp
= (2mu)'’? is the Fermi momentum; hence the
total exchange energy is given by

47e?
EY, = - W P Q

15 T T T T T T T T T T
KT =5% 10% ev
_ 3
1o|kT=5%10 eﬁl/w

kT =100 eV

KT=10° eV
o

S oL kT=10ev ]

T=0
5 —

7
7/

-0 s /\‘T:O —
1 1 Illl{ll 1 1 l|||l|| 1 1 A1 11l
0.1 1 10 100

FIG. 14. Logarithm of the electron pressure P (in
megabars) of the Rb¥’atom at the boundary as a function
of matter density at different temperatures. Solid lines,
TFS results.
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kT — eV

FIG. 15. Logarithm of the electron pressure P (in
megabars) of the Rb37 atom at the boundary in the low-
temperature region at different densities. Solid lines,
HFS results; dashed lines, TFS results.

3 3 1/2
=—Z <_) 629p4/3’ (A3)

where the superscript 0 stands for the zero tem-
perature. In (A3) the relation p p= 3h(3/m)!/3pt/3
was used, where p is the electron density. In the
case of very high temperature, when the electron
gas can be considered Maxwellian, the double in-
tegral in (A2) can be written as

ezu. /kT( kaT)z I ,

where

I=f xy e"‘z'len< )ddy T
o Jo lx—9y

The normalization condition requires that

e /*T = 202 (h%/2mRTT)? |

and after collecting all the terms we get for the
total exchange energy

28 T T T T T

T |

20 Lir=10®ev ] .
6 — -
Y B KT = 5% 10% eV

8 4

kT=5%10% eV

4 |

ol— o vved o hid il

0.1 1 10 100 500

FIG. 16, Number of free electrons in the Fe2® atom as
a function of matter density at different temperatures.
Solid lines, HFS results; dashed lines, TFS results.
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7 tkT = 5% 103 ov or formulas (4a) and (4b), respectively, if 27 and
o ] p are given in atomic units. For intermediate tem-
kT=5%10%ev peratures one has to somehow interpolate between
> 20l kT=10" eV the two limits in a reasonable manner. A possible
kT =100 eV

/—kT =10eV

orlvll b =T I

77
F=—LT=0

! L

[ )

0.5 1 10

FIG. 17.

100

Number of free electrons in the Rb3" atom
as a function of matter density at different temperatures.

Solid lines, HFS results; dashed lines, TFS results.

choice for the parameter of the interpolation is the
ratio of the thermal energy to the zero-point Fermi
energy given by

A= 2kT/(3172)2/3p2/3 .
If an interpolation formula,
Vex= [1">‘"] Vg"”hnvaﬂcl’

is used, » must be larger than 1 because of the
dependence of V¥ on 1/kT. In this paper a simple
quadratic interpolation was used as given by for-
mula (4c).

2 n? ) APPENDIX B: FORMULAS
EM _ _ e _h pz
. 4  2mkTn In this section the formulas used to calculate
ne?  mp? the total electronic energy, electron pressure at
ST Tm 2T the boundary, and electron entropy are summarized.
5 The total electronic energy is given by
0
= —eta, ST Q, (A4)

where aq is the Bohr radius, and the superscript

M stands for the Maxwellian case.

exchange potential by
Ew= 7z [Val(r) p(r)dr,
which yields
Vh= - 3@/ () &

and

We define the

(A5)

8

pd7) =133 szzf
xo(r)

[R2T2%2 + 2xkTq(r) /2 [RTx + q(7)][x - Xo(7)]

R
0
E=2) Ny '6‘,,,+4Tff o0 (7)7r?dr
nl 0

R

..217/ P Vo) rar,  (Bl)

0
where the summation is over all the bound states,
and the band populations N,, and band-energy
averages €,; are given by (6e) and (6f), respectively.
The p (7) stands for the single-particle energy
density of the free electrons and is given by

ex-z(r)+ 1 dx ) (BZ)

where X,(r), ¢(r), and z(r) are given by formulas (9), (1b), and (1d), respectively. The electron pressure
at the boundary is given by

kT 3 k1%
m I5/e [Z(Ro)] + 'ﬁ qz(Ro) Inye [Z(Ro)]) .

Formula (B3) is the relativistic Thomas-Fermi formula for the electron pressure. The quantum effect of
the bound states is taken into account by inserting the HFS self-consistent values of the chemical potential

u and V(R,) into the expression for z. For the quantity TS, where S is the electron entropy, the following
formula was used:

8
P = g (2Ta(ROP T (1yya [2(Ro)]+ (83)

_ Ay e(a{,,+e-u)/kT Ro
TS =2 NHIEnZ—ka gm(€)In TRy d€ ) = Ny o+ 47 ps(7) 2ar | (B4)
nl 0 e "ni +1 0
where the function p,(7) is given by
ps(7) = k2T I;%—gyf (R2T%%+ 2 Tq(7) ]2 [ kTx+q(r){In [ + 1] = x+ 2(7) }dx . (B5)
Xo(r)
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Equations (B4) and (B5) result from a straightfor-
ward derivation from the basic formula for the
entropy,

S=—k [ [n;lm;+ (1=n;)In(1 =n;) ],

1149

where the integral stands for summation of discrete
levels and integration over continuum levels and

n; = (e(ei -u)/kT+ 1)-1 )

*Work performed under the auspices of the U. S. Atomic
Energy Commission.
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