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Inclusion of Nuclear Motion in Calculations of Optical Properties of Diatomic Molecules*
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An explicit expression is derived which permits the exact inclusion of nuclear motion in cal-
culations of second-order optical and magnetic molecular properties within the Born-Oppenhei-
mer approximation. Explicit calculations are carried out on the model problem of the hydro-

gen molecular ion for the exact gg component of the Rayleigh and vibrational Raman scattering
tensors and for several approximations to these tensors. The result is somewhat sensitive to
the approximate expression employed but the semiclassical approximation is accurate to within

a percent in both cases.

I. INTRODUCTION

Optical and magnetic second-order properties of
molecules are generally calculated either by taking
the value determined at precisely the equilibrium
internuclear separation, or, at best, by determining
the static value at a number of internuclear separa-
tions and integrating the curve obtained over the
appropriate vibrational wave functions. Such cal-
culations, obviously, do not include the motion of
the nuclei in any rigorous manner, although the
second procedure is the exact semiclassical equiv-
alent of the classical oscillating system.

The present paper describes a simple, but rig-
orous, procedure for including the effect of nuclear
motion in such calculations within the Born-Oppen-
heimer (BO) approximation. This procedure is
compared with several expansion procedures which
we have discussed previously in their historical
context for the Haman-intensity problem, and the
relative convergence of the expansions are esti-
mated. Calculations are carried out for the zz
component of the electric polarizability and the vi-
brational Haman-intensity tensors for the model
problem of the H2'-molecular ion with the electric
field along the internuclear axis. These results
are compared with those obtained from truncating
the various expansion procedures. The leading
term of what we call' the BO expansion, without the
Herzberg- Teller-like Taylor's-series expansion,
which is the semiclassical result, gives values
within 1/g of the exact in accord with the theoretica, l
expectation.

II. THEORY

The intensity of light scattered from the ground
state 4', (~, R) of a, homonuclear diatomic molecule
can be obtained from the tensor

,(&u)=Z[(w„" —wo +m) +(w„—8' ' —m) ]
n, k

x (m, a
~

r
~
n, k ) (n, k

~

r
~
0, 0), (1)

where 4' (x, R) is the final state of the molecule,
the two indices referring to the electron and nuclear
parts of the wave function which are introduced for
convenience here but which are only given explicit
meaning below. The 4'„" are the eigenvalues of the
total Hamiltonian H in a molecule-fixed coordinate
system, corresponding to eigenfunctions 4'"„(r, R),
and r symbolizes gr; measured from the center of
the molecule. When m =0 and a=0, 1, respective-
ly, Eq. (1) determines the Rayleigh and vibrational
Raman scattering intensities, respectively, which

we will consider, for convenience, in the limit of
(d =. 0.

While this expansion could, in principle, be used
in calculations, it is not within the range of present
computational techniques to do so. It is therefore
a practical necessity to introduce immediately the
BO approximation not only for the ground state but
for all the vibronic 4'„(r, R), i.e. , we write

where the q „(~, R) are eigenfunctions of

H„(x, R):H(y, R) —T—
with eigenvalues E„(R), parametric in R, where T~
is the kinetic-energy operator of the relative motion
of the nuclei and the small terms which couple the
BO states, and which couple the vibrational motion
to the rotational motion are neglected. (The neces-
sity for introducing the BO approximation for all
states, and not just for the ground state, is shown
in a, different way in Appendix A. ) The vibrational
function g~(R) is the kth eigenfunction satisfying

[T,+E„(R)—W„'] y'„(R) = 0,
where 8"„is now the approximate eigenvalue of H
corresponding to the approximation (2) for the 4"„,
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and where the two small "adiabatic" or "diagonal"
terms' are neglected.

The tensors uo, -=n o,(0), from which the static
polarizability and the zero-frequency Raman inten-
sity are obtained for the appropriate values of a,
can now be written as double integrals over a "po-
larizability kernel" n(R, R ) as

, a„=ff X', (R) n (R, B')X,(R')dRdR'

= & .ff Xo(B)f;(B)&,[(W'„- W'o) '+ (W„' - W, ') ']

&( X"„(B)X'„(R')f„(R')Xo(R')dRdR', (5)

which is the desired result.

III. APPROXIMATE EXPRESSIONS

It will be of interest to compare the exact result
(within the BO approximation) of (10) with two ap-
proximate procedures which, for convenience, are
described here only for Bayleigh scattering, with
the subscripts 0, 0 dropped.

The Franck-Condon principle would suggest that
the expansion

(w„" —w, ')-'= [E„(R,) —w, ']-'

where the (vector) electric dipole matrix element
f„(R) is defined by

f„(R)= &p o(r, R )
l
r

l
q& „(r, B))„,

the integration being taken over the electron coor-
dinates only, and f„(R) is for convenience assumed
to be real with the appropriate linear combination
of ar.j degenerate functions assumed to have been
taken.

The principal difficulty in dealing with (5) lies in
the sum over the vibrational states k which requires
that the nuclear motion must be treated explicitly
during the excitation process, even in the BO ap-
proximation, which thus prevents n p, from being
written as a single integral over an effective 8-
dependent polarizability n (R). Equivalently, the k
dependence of the energy denominators prevents the
use of the closure identity

5, x"„(B)x'.(B') = &(R -B')
to eliminate the sum over k. The sum can, how-
ever, be eliminated by substituting for the W'„" using
(4) to give the expression'

~„=~&„&X'o(R) f„(B)([T,+E„(R)—Woo]
'

+ [T +E.«) —Wo'] ']f.(R)
I Xo(R) & «)

This result is just the usual perturbation-theory
expression for the nuclear part of the perturbation-
theory problem within the BO approximation as de-
rived in Appendix A where the closure (7) is not
necessary as the complete set of vibrational func-
tions with index k is never introduced. This can be
solved by inverting the operator (analogous to the
sum-rule technique of Dalgarno and Lewis for
electronic problems) and solving for the vector
functions G„'(R) defined by

[T +E„(R)—W', ]G'„(R)= f„(R)x',(R),
there being no solution to the homogeneous equation.
The tensors n p, can thus be written as

a ..= ' .[&xl(B)lf.(R) lG'. (B) )

+ &G'.(B)
l f.(B)

l
xl(R))]

x 1+ p+

u = 2 & „&Xo l
f„(R)[E„(Ro)—W, ]

'

x[1+x„(R)+ ]f„(R)
l xo)

~p
Q Fg+ Q FC+''

where X„(R) is the operator

(12)

Xn(R) = IEn(Ro) En(R) TR]~[En(Ro) Wo ] (13)

and where the device of Van Vleck' and Musher is
used to transform the k-dependent terms in the
numerator (W„"x„")into operator terms so that the
summation over 0 can be eliminated using (7).4

A second expansion which turns out to be most
useful is

(W„' —Wo ) = [E„(R)-Eo(R)]

E„(R) —W„"+W,
' —E,(R) (14)

E„(R)-E,(R)

with Bo the minimum of Eo(R) should converge rapid-
ly for the set of states k which give sizable contri-
butions to (5) although it is not convergent for all k.
Such an expansion about a physically derived effec-
tive "average energy" was probably first used by
Van Vleck, who chose the minima of the respective
potential energy curves, i. e. , min[E„(R)], for cal-
culating Raman intensities. Similar expressions
have proven convenient for calculating van der
Waals energies' where the divergent behavior has
been shown explicitly, and for showing the near
equal magnitudes of "second-order" Coulomb and
exchange interactions between two hydrogen atoms.
This expansion has also been used with an arbitrary
average energy to give a formal expression for the
Raman intensity by Tang and Albrecht in their
"ground-state approach" whose leading term is
generally referred to as the Unsold approximation.
In their calculations these authors choose the aver-
age energy to correspond with that obtained from a
particular variational procedure.

When (11) is substituted into (5) the tensor n can
be written as the series
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This at first seems rather unusual as it is an ex-
pansion of a number in a series each of whose terms
is a function of R; although, in fact, the sum over
k itself implicitly introduces an R dependence, the
most simple example being the closure relation (7).
The convergence of this series depends not only on
k but also on R, but it should be reasonably rapid
for the dominant set of states k and the dominant
region of R.

When (14) is substituted into (5), the tensor n
can be written as the series

—koo] smaller that the first term on the right-hand
side of (19), where ~ is the effective vibrational
energy, and since f„(R) is usually a, smoothly vary-
ing function of R, both of these terms can be ne-
glected in an approximate calculation, so that the
first-order terms of (12) and (15) become

n '„=2) „( o,
~

f„'(R)[E„(R,) —W,o]-'

&& [E„(Ro) E.(-R) + Eo«& —Ii'0 ] i Xt& (2»)

n =2& „(X.o'~f„(R) [E„(R)-E,(R)] ' 1
BO (21b)

~p+ BO+ BO+

x [1+Y„(R)+ Jf„(R)iq,'&

averaged over the vibrational function

n ~so = J Zoo(R) o' Ho(R)Xo(R) dR, (18)

it is called the BO expansion, and is not to be con-
fused with the BO approximation (2) itself. This
leading term, Q», which can be considered as the
semiclassical result, has been used in the most
sophisticated molecular calculations to date, such
as that of Kgos and Wolniewicz, although it has
not been generally recognized to be only an approxi-
mate result, rather than an exact (BO) one. For
Haman intensities the semiclassical argument was
first developed by Placzek and was interpreted
further by Shor ygin" and %olkenstein. '

In order to calculate the first-order terms, which
are the first difficult terms of the series (12) and
(15), it is convenient to use the identities

[E„(R,) —~,']Xg„q,'= [E„(R,) E„(R)+E,(R) —W—,']
8"f&t ( & fn Xo™fn —Xt (19)

where Y„(R) is the operator

Y„(R)= [W,' E„(R)——T ]/[E„(R) —E,(R)], (16)

and the higher terms [Y„(R)]~for j & 1 in (15) are
defined with T~ not operating on the denominators
of the successive Y„(R)'s. Since the leading term
of this series gives the BO polarizability, i.e. , the
polarizability calculated at each value of R,

(R) = 2Z. [E.(R) -E,(R)] '1&~of. V.& «) I', (»&

By repeated application of the operators X„and
F„ the higher orders of the respective series are
generated. Since the same type of terms appear in
all powers of X„'f„yo and Y„~f„xo as in the j = 1 term
just discussed, we find the remarkable result that

1other than terms which are small relative to QFc,
all the n a'o are zero (for j &0). Thus

1 ~
pQ —QFC+ Q FC+'''- (V (22)

a theoretical result which will be confirmed quanti-
tatively in the example given below. " The error is
not entirely negligible circa I/p in the example, so
that the exact result should be used wherever pos-
sible, although it appears to be of the magnitude
that one would estimate for the error in the BO ex-
presion [Eq. (2)] itself. It is interesting to note

that not only is the semiclassical result Q», highly
accurate, but that a fortiori this result is indepen-
dent of whether the vector potential or scalar po-
tential is used in the Hamiltonian, as the appropriate
approximate formulas using the dipole-velocity and
dipole-length matrix elements are exactly equal to
each other.

It has long been assumed that the matrix elements
f„(R) are sufficiently smoothly varying functions of
R and that nuclear oscillations are over such short
distances that Taylor's-series expansion of the f„(R)
with the subsequent assumption of harmonic behav-
ior for the vibrational functions should be rapidly
convergent. Such an expansion, usually referred
to as a Herzberg- Teller expansion'4 has, to our
knowledge, never been investigated quantitatively,
so it will be of some interest to consider those
terms of (12) and (15)whichpossess such expansions
and their rates of convergence.

The n (R, R ) of (5) can be written as

n (R, R ) = n '(R)5(R R) + n (R, R ) +—~ ~ ~

[E„(R)—Eo(R)] Y„f„Xo——(2M) f„yt+M f„'—
(20)

which are readily derived from (4), where primes
indicate derivatives with respect to R and the re-
duced mass M appears due to T„=—(2M) '(s /sR )
up to the neglected rotational-mixing terms. The
term in f„can be seen to be approximately &@/[E„(Ro)

for both the FC and BO expansions, so that both~o ~
pn Fc and Q» can be expanded as

0 0,0 0, 1
FC + FC+ + FC+

0 00 01+ BO B~O + Q BO +

(23)

(24)
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by taking the Taylor's series of the appropriate
n (R) and where the explicit expressions for the
expansion terms are given in Appendix B. As a
result of the TR dependence of Ã„(R) and 1'„(R), there
is eo single Taylor's-series expansion for the inte-
grands of e ~c, ~ Bo, etc. , but if the small vibra-
tionlike terms are neglected, as in the discussion
following (19) and (20) above, then n rc can be ex-
panded approximately as

1 1,p 1,1+ zc= z'c+ & z'c+' ) (25)

with again the explicit expressions given in Appendix
B.

IV. EXAMPLE

Calculations were carried out for the zz compo-
nent of the polarizability tensor u pp and the vibra-
tional Ha.man tensor a p1 for the one-electron prob-
lem of the hydrogen molecular ion H2' with the field
direction along the internuclear axis. A set of 16
0, and 16 O„orbitals were generated at appropriate
values of R from a basis set of 10 s- and 5 p-Gaus-
sian-type functions on each center. Such a basis
has been previously shown to be essentially com-
plete and thus gives a highly accurate finite ap-
proximation to the electronic continuum. Initial
calculations using the approximate expressions for
a Fc and &» showed that the 10-„state, i.e. , the
lowest-lying excited state of odd symmetry, con-
tributes over 98%%uo of the quantity

over the entire range of R = 1.5-2. 5ap where Qp is
the Bohr radius for which g, is significant (the
classical turning points are 1.7ao and 2. 3ao) for the
denominators both R dependent and evaluated at
R=Rp = 2. 00ap. Since absolute errors of the order
of a few percent were of no concern in what is, after
all, only a model problem, the entire calculation
was simplified to the extent that only this one excited
state was included, and the summations over n in
the various expansions were dropped.

The exact polarizability and Haman contributions
were obtained from

~= 2&xol foal G~'&

and 3ap as well as several points further out. The
resulting values of f) and the e's were then fit with
a linear combination of Slater functions of the form

Rn -nR/RP

with g a positive integer, according to the method
of Lee. o From these analytic expressions, values
of the functions were generated on a grid of 0.005ap
from 0 to 15ap on which the differential equations
were solved and the integrals for n evaluated.

The vibrational functions g'p and yp were obtained
as the solutions to

d2 )

—(2~)-', +~...(R) go=-Wo'Xo', a=o, 1 (28)

according to the method of Cooley ' and the values
of W'p and 8"p obtained were 0.005 25 and 0. 015 26

a.u. , respectively, referred to the bottom of the
potential well, in good agreement with the values of
Beckel et al. , of 0.00526 and 0. 01523 a. u.

To obtain G1' and G1 the inhomogeneous equations
were converted to algebraic band matrix equations
using a three-point finite difference approximation
and solved by successive forward and backward
substitution. The boundary condition forcing each
G to vanish at 15gp was used rather than a continuum
asymptote and the solution was shown to be insensi-
tive to the exact location of the boundary. All re-
quired integrals were obtained using Simpson's rules
and the final values are believed good to within l%%uo.

The exact values for the electric polarizability
(Rayleigh scattering intensity) and the vibrational-
Haman-intensity tensor components, both at zero
frequency, are presented in Tables I and II along
with their approximate values determined from the
FC and BO expansions, and the further Herzberg-
Teller expansions. The explicit expressions for
all these approximations are taken from Appendix
B where the sum over states n is reduced to the
single yg=1 term as indicated above.

The following observations can be made:
(i) The n oeo are indeed very close to the exact

values, the error being 0. 2%%uo for the two examples.
(ii) The FC expansion converges reasonably well,

the first two terms leaving errors of 4 and 9% for
the polarizability and Haman intensity, respective-
ly.

~=

&adolf&

I
G& &+ &Gx

I f& I &o&

respectively, where

(28b)
TABLE I, Exact and approximate values of 0.~,

~
for H) (Ip &0)

(
—(2M) g +Ei,„(A) —WD') Gi'(A) =f, (A)xp(R),

a=o, 1, G, '(O)=G, '( )=0, (27)

and M =918.048. Values of fi(R), ci,, (R), and &i,„(R)
on a grid were generated by performing the molec-
ular orbital calculations at 30 points between 1ap

n=0
n=l

5. 078 0. 222 5, 300
0. 062 0.213 0.275

Q =0) + Q =1) 5. 140 0.485 5.575

5. 071 0.448 5, 519

5. 372
0.241

5,781

5, 791

n& m"' n"' +n"' 0." exact
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TABLE II. Exact and approximate values of Q~~
~

for H2'(in ap3).

n=0
n=1

{ =0)+( =1)

0. 832
0. 891

1.723

1.661

+exaf:t

0. 870
0. 888 II

1 796 1.980

1.984

+pc (WP)

n=0
n —1

( =0)+{n=1)

0. 411
0. 430

0. 841

0.430
0.457 0. 974

0. 887

@aman
From Eq. (8) n~ can be written as e~ (Wp )

+a~ ~(Wp ) whereas m~ is the sum of two equal terms.

~&„f„'(R)[z„(R)-z, (R) j = —,', (29)

valid at all R which is easily derived from the
identity

(3o)

When the derivative of (29) is taken with respect to
8 we obtain

Q„{2f„'Iz„(R)-z, (R)+f„(R)z„'(R)j=0, (31)

which provides the equality

2' =(zo-zs) zs fs (32)

if the one-state approximation is assumed to be as
valid for (31) as it is for the o. 's. We thus have,
from (Bll) and (B13), that

p~l 1,1+F'c = ~~c ~ (33)

where the vibrational terms (-0.005 and —0.015
for Woo and Wo', respectively) of (B13) are ne-
glected. Notice that this is not an exact relation
but only holds in a, one-state (or effective one-state
problem). In the present example, the left-hand
side of (29) is 0.47, in error by 6%%uo in the one-state
approximation, which led to the corresponding
"error" in (33) of 4%%uq. A similar argument has

(iii) The Herzberg-Teller expansions for the
n~c's are rapidly convergent, the error in taking
the first nonvanishing term alone is 5-6%%ug. The
Herzberg-Teller expansions for the ~~c's are also
reasonably convergent being better for the Raman
whose error through n'Fc is only 4/& whereas the
corresponding error for the polarizability is 14%.
The nF'c does not vanish identically for the polariza-
bility as Rpp&0 although had R, been used rather
than Ap in the expansion, this term would have
vanished.

(iv) The leading Herzberg-Teller terms n~cand'
o.F'c for the Raman expansion are almost equal (or
equivalently n~c and ere are almost equal). This
is a manifestation of the sum rule

been given previously by Tang and Albrecht' (see
their Appendix A) and is used in their calculations.

(v) The Herzberg-Teller expansions for the o.o~o's

are not as rapidly convergent with the leading term
being in error by 14 and 20%%up for the polarizability
and Raman intensity, respectively. This implies
that even the most accurate calculation for the po-
larizability derivative can give the components of

off by as much as 20% with more drastic conse-
quences for the anisotropies which govern the de-
polarization ratios. The evaluation of the polariza-
bility at only Ro (or R, ) can also be relatively in-
accurate. The significance of these results have
been emphasized previously by Kofos and Wolnie-
W1c z ~

(vi) The Bell and Long calculation" for noe'oo gave
1.55ap and the Tang and Albrecht calculation '" gave
1.59ao (converted using our value of Roq = 0. 2289ao)
both of which are quite close to the accurate value
of 1.66ap even though they are far from n~o itself.
This can be attributed to the validity of the one-
state approximation and the accuracy to which this
state can be approximated by the simple function
zoo(z, R). It should be noted that there is no reason
to assume a dominant one-state behavior for more
complex systems merely by analogy with the present
example of Ha' in a finite basis. Thus the use of
single-term trial functions, just as the equality of
(33), cannot a priori be expected to give accurate
approximations in the general case.

(vii) The fact that a single excited state, in the
present discrete approximation to the (electronic)
continuum, gives 98% of the contribution to the n's
does not, of course, imply that such will be the
case in general.

(viii) While the present discussion has been limited
to problems involving the ground vibrational state,
similar analyses can be carried out for the higher
vibrational states where it is expected that the ap-
proximate expressions are less accurate.
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APPENDIX A

The fact that the BO approximation must be in-
troduced for the excited states as well as the ground
state can be seen from the following argument.
Taking the BO approximation for the ground state,
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the static polarizability can be written as

o. = 2&xov'olr (R —wo') 'r lop xo),
which equals

2&Xp Volr l
@)

for Q(y, R) the solution to

(11- W.')e(~, R) = rq, (~, R)X'.(R) .

(Al)

(A2)

(A3)

If Q(x, R) is expanded in a complete set of functions
of z with coefficients arbitrary functions of R, i.e. ,

q(~, R)=& „G„(R)q„(~, R), (A4)

with q„(r, R) eigenfunctions of (3), then (A3) re-
duces to

Q„[T +E„(R)—W ]G„(R)y„(r, R)=rq (~, R)X. (R) .
(A6)

The usual procedure which would give differential
equations for each of the G„(R) independently, i.e. ,

by multiplying on the left by y~(r, R) and integrating
over ~, cannot be applied directly because of the It,

dependence of these functions. Thus the BO ap-
proximation which neglects the mixing due to this
R dependence must be introduced in order that the
equations decouple and reduce to the set of equations
(9).

APPENDIX B

~ ',o =2K. (, Xo (E. Eo) -'f„'IXo&

Bo 2R01 ~ (E Eo)

(B14)

E„and f„are evaluated at Rp in the Herzberg-
Teller expansions, but are functions of R in the
nonexpanded expressions, except as indicated other-
wise in (Bl) and (B4), and where Rpp= (X, lR -RolXp&
=0.06215. The second term on the right-hand side
(B6) is a vibration-type term which is included ex-
plicitly in the calculation as is consistent with keep-
ing the entire expression ~ F'c.

For the Raman intensity the explicit expressions
for the expansion terms are

o' vc = (1 + Poi) ~n [En(Ro) —Wo']

x(x~o lf.'I xo&

o, pro~ = 2Rp~(1+ Pp)) ~&„(E„—Wp ) f„f„', (Bll)

~ '„=(1+P») ~„[E„(Rp)—W,']-'

(x~ol [Eo(Ro) -E.+Eo- wtlf!l xpp& (»»
n ',,' = -R«(1+P„)& „(E„-W', )

'

x [f„'E,' —2(E,—W, )f„f„'], (B13)

For the polarizability the explicit expressions for
the expansion terms are with

x [2f„f„' —(E„-E ) f„~E„'], (B16)

',.= 2&=. IE.(R.) —w,'] '(x', lf.'l x', ),
n ',,'=2~ „(E.—W,')-'f„',
n pc =4Rpp~&„(E„—Wp ) f„f„
c. Fc = 27„[E„(Rp)—Wpo]

(Bl)

(B2)

(»)

x&x',
l
[E,(R,) -E, +E, — p']f.' xo) ( )

~ ', p = 2(E, - W,') & „(E.- Wo') f.
n 'F,' = —2Rop~&„(E„—Wo') '

x [f„oE, —2(Ep —Wp )f„f„],
'„=2& .&x'o (E.-Eo) 'f.' xo'),

o. '„' = »~„(E„Eo)'f.', -
n oa'o'=2Rpp~„(E„-Ep)

(B5)

(B6)

(BS)

x[2f fn (En Eo) fn En 1

where the functions E„E„,f„, and the derivatives

o, o i, o p, o
FC + BO (B16)

due to (Xp I Xp &
= 0, where Ro~ =

&Xo~ I R —Ro ) Xpp) = O. 2269
and where Poq operates on the vibrational index of
8'o such that Po&So= So

Various approximate relations between the ex-
pansion terms are easily noted. Thus, for example,

BO + FC+ FC ~

0,1 p, 1 1 1 (B17)

which is the semiclassical result for the Raman in-
tensity interpreted by Shorygin" and Wolgenstein'
and discussed in Ref. 1.

All equations are written, for simplicity, as if
only diagonal components of the n 's are to be cal-
culated. For off -diagonal components, the proper
dyadic form must be taken, e. g. , in (B3), 2f„f„ is
replaced by f„f„+f„f„. Also, to avoid confusion
it should be noted that relation (33) is obviously only
valid for the diagonal component discussed in that
section. It is also valid for the polarizability.

*Research supported in part by the Petroleum Research
Fund, administered by the American Chemical Society
(Grant No. PRF-3547-A5), by the National Science Foun-
dation (Grant No. GP-26430), and by the Research Cor-

porationn.

fAlfred P. Sloan Fellow 1971-3.

~J. I. Musher and J. M. Schulman, Intern. J. truant.
Chem. 55, 183 (1971). In this paper the FC expansion
was made about R~ rather than the slightly different Ro
used here. The computations were carried out at R
=2. 00ao which corresponds to Ro, and the literature values
used for comparison were also determined at Ro, even



INCLUSION OF NUCLEAR MOTION. . .

though referred to as 8, which is 0. 06ao larger.
R. T. Pack and J. O. Hirschfelder, J. Chem. Phys.

49, 4009 (1968).
3C. L. Beckel, B. D. Hansen, and J. M. Peek, J.

Chem. Phys. 53, 3681 (1970).
A. Dalgarno and J. T. Lewis, Proc. Roy. Soc. (Lon-

don) A233, 70 (1955).
J. H. Van Vleck, Proc. Natl. Acad. Sci. U. S. 15 754

(1929).
J. I. lVIusher, J. Chem. Phys. 41, 2671 (1964).
J. I. Musher and A. T. Amos, Phys. Rev. 164, 31

(1967).
(a) J. Tang and A. C. Albrecht, J. Chem. Phys. 49

1144(1968); and(b) J. Tang and A. C. Albrecht, in Ram'
SPectroscopy, edited by H. A. Szymanski (Plenum, New
York, 1970), Vol. II. Notice that this expansion notwith-
standing, the assumption made by these authors and in
the Placzek treatment that & can be written in terms of
an & I) as in their Eq. (4) [Ref. 8(a)] which has a Tay-
lor's series as in their Eq. 5 [Ref. 8 (a)] is clearly only
approximately valid. It is only when all the terms in T&
are neglected in a particular manner which can be justif-
ied, such as in the semiclassical BO expansion discussed
below, that this assumption can be said to be correct. In
general, G,'(R) is an operator function of 8 which does
not possess a simple Taylor's series, although it can,
of course, be written as an effective pseudopolarizability. .

after the calculations have been carried out as

~ "'$)=Zf $)/G'$) [x',$)l-'+& '$) Ix,'$)l ').

9W. Kofos and L. Wolniewicz, J. Chem. Phys. 46 1426
(1967).

G. Placzek, IIandbuch dew Radiologic (Akademie Ver-
lagsgesellschaft, Leipzig, 1934), Vol. 6, Pt. 2, p. 205.

"P. P. Shorygin, Zh. Fiz. Khim. 21, 1125 (1947).
M. W. Wolkenstein, Zh. Eksperim. i Teor. Fiz. 18,

44 (1948).
~3A. C. Albrecht'has reached the same conclusion via

a qualitative argument in a letter to one of us (J. I. M).
We are grateful to Dr. Albrecht for his correspondence.

~4Actually, the Herzberg-Teller description generally
expresses the derivatives of the f„l) as linear combina-
tions of the complete set of functions fp~(r, Rp)], but as
the Taylor's series is unique, the particular representa-
tion of these derivatives makes little difference. In the
present work they are obtained explicitly so that the usual
expansion is unnecessary.

~5J. M. Schulman and D. N. Kaufman, J. Chem. Phys„
53, 477 (1970).

'6W. S. Lee, Ph. D. thesis (Polytechnic Institute of
Brooklyn, 1971) (unpublished).

"J. W. Cooley, Math. Computations 15, 363 (1961).
R. P. Bell and D. N. Long, Proc. Roy. Soc. (Lon-

don) A203, 364 (1950).

PHYSIC AL R EVIEW A VOLUM E 5, NUMB ER 3 MAR C H 1972
V

Cerenkov Radiation near a Dielectric Boundary
R. B. Thomas, Jr.

Lockheed Research Laboratory, Palo alto, California 94304
(Received 20 August 1970; revised manuscript received 6 August 1971)

The influence of Cerenkov-radiation loss on the emission spectrum and motion of an electron
passing near the surface of a semi-infinite plane dielectric is treated on the basis of several
simplifying assumptions. Equations of motion are obtained and solved for electron velocities
just above radiation threshold in a region of anomalous dispersion. Expressions are found for
the spatial and temporal dependence of the emission spectrum. A determination is made of
the electron's total angular deflection which may exceed 10 deg; this result is shown to be in
reasonable agreement with an estimate based on measured emission levels. Possible correc-
tions resulting from induced bremsstrahlung and inelastic interactions with the dielectric are
discussed.

I. INTRODUCTION

After Frank and Tamm's original investigation
V'

of Cerenkov radiation in an infinite dielectric medi-
um, it was some time before there appeared a
treatment of a related problem involving a bounded
medium; this was the work of Qinsburg and Frank
in which they studied the radiation generated by an
electron moving in the proximity of a dielectric
medium. This work was motivated by an earlier
proposal of Ginsburg to generate microwave radia-
tion by means of the Cerenkov effect. To elimi-

nate the dominant ionization energy loss, which al-
ways occurs when an energetic charged particle
traverses matter, Ginsburg and Frank considered
the radiation emitted by electrons traveling within
a hollow cylindrical channel contained in an infinite
dielectric. Later the problem of radiation from
electrons moving uniformly parallel to the surface
of a semi-infinite plane dielectric was treated by
several authors. In all of these investigations
it was assumed that the radiating electron moved
with constant velocity and remained unaffected by
the loss of energy and momentum resulting from


