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The problem of the evolution in time of a system of two-level atoms that are coupled through
their electromagnetic fields, is studied and solved in the framework of semiclassical radiation
theory. The atoms may be in any initial states and the radiation reaction is fully taken into
account. Both superradiance and time-dependent frequency shift or chirping effects are found.
The assumption that all the atoms see the same field is shown to place severe constraints on
the evolution of the system, in the form of constants of the motion. These constraints are
most easily pictured in terms of the Bloch-vector representation of the atomic system, and

they lead to explicit solutions for the time development of each atom. It is shown that the evo-
lution of the complex system is describable by means of a collective super Bloch vector, whose
behavior is similar to the behavior of the Bloch vector for a single isolated atom. The con-
straints on the motion also imply that the system cannot radiate all its energy coherently;
some of it remains trapped, to be dissipated ultimately by incoherent processes. Somecurves
are presented to illustrate the behavior of the system in special cases.

I. INTRODUCTION

Cooperative effects in the radiative decay of
assemblies of excited atoms or molecules have been
studied extensively, and a wide variety of theoreti-
cal treatments is now available. All of these stud-
ies have been concerned with one or another of the
effects arising from the interatom coherence in-
duced by the electromagnetic fields of the atoms
themselves.

Two principal themes have characterized most
previous work, and we attempt here to combine
them in a unified way. The first of these themes
is primarily concerned with the radiation emitted
by a v.ry large collection of identical excited
atoms. Such radiation can be anomalously intense,
in the sense that the radiated intensity can be pro-
portional to the square of the number of atoms par-
ticipating. The coherent or cooperating quantum
states of a large number N of emitting atoms were
called "superradiant" by Dicke, ' and the coopera-
tive emission phenomenon itself is now generally
termed superradiance. '

The second theme which has received repeated
attention centers on the reactive (or dispersive)
forces acting on an atom due to its own field or
the field of another identical atom. 4' Studies of
such effects have been confined to only one or two
atoms at a time.

It seems clear, however, tliat these two themes
are not really distinct. For the superradiant
aspects of the emission from N atoms are due
precisely to the ability of each atom's field to act
on all the other atoms. 'Ne will show that, under

certain plausible assumptions, it is possible to
take careful account of these individual reaction
fields and their action on the assembly of emitters.
Furthermore, by doing so we are freed from two
important restrictive assumptions made in previous
work on superradiance.

Our principal assumptions are two: First of
all, we assume that all of the atoms in the assem-
bly react to the same electromagnetic field, and
second, that semiclassical radiation theory is ade-
quate to describe the motion of the coupled system
of atoms. The first assumption requires that the
atoms be at least within a wavelength of each other,
and implies a restriction to samples smaller than
a wavelength. We shall give son1e justification for
the assumption when the number of atoms is very
large. The validity of the second assumption is
not easy to assess, and we rely upon certain
aspects of our results to justify it indirectly. In
particular, we will show that, again for sufficiently
large numbers of atoms, it leads to the same
radiated intensity as comparable calculations ' s by
quantum electrodynamics. As usual we take the
atoms to have only two levels of interest, and we
work in the dipole approximation.

The assumptions from which our work is free,
which have usually been made heretofore in inves-
tigations of supperradiant damping, are these:
(i) that there is no atomic dipole frequency modula-
tion during the emission process, and (ii) that the
basic dynamics of the total system of N atoms plus
emitted radiation is adequately derived from energy-
balance arguments.

As a result of the absence of the first restric-
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tion, our theory allows the possibility of frequency
modulation (or chirping) of the emitted electric
field. We find such chirping to be present, and we
are able to describe it in detail.

The absence of the second restriction means
that we account for the evolution of each atom in
the assembly of emitters and, in particular, for
the way the electric field emitted by any one of
them affects each of the others. In a sense, we
have solved a new N-body problem. We have done
so in the traditional way, by reducing it to a known
one-body problem, already solved by one of us. '

The remainder of the paper is organized into six
sections and an Appendix. In Sec. II we review
the equations of motion appropriate to our N atoms
and radiation field, and cast them into the familiar
Bloch-vector form. We point out the existence of
certain constants of motion. We find that the mo-
tion of a "super Bloch vector, " defined for all N
atoms at once, provides the clue to the evolution
of the individual atomic state. In Sec. III we obtain
the solutions for the motion of the super Bloch
vector, with full account taken of radiation reaction.
From the super Bloch-vector solution we find im-
mediately the intensity of the superradiant emission
and the time dependence of the frequency modula-
tion of the electric field. Graphs are given to illus-
trate the principal features of the super Bloch-
vector evolution.

In Sec. IV we return to the problem of an individ-
ual atom in the assembly and derive explicit but
rather complicated analytic expressions for the mo-
tion of the individual Bloch vector. We show that,
in the coordinate frame in which the rapidly moving
super Bloch vector is constant, a clear understand-
ing of the time development of an individual atom
is possible. We then exploit these individual atom
solutions in Sec. V. We discuss the superradiance
to be expected from groups of atoms, when each
group is prepared differently. We find energy
trapping in most cases, and sometimes nearly com-
plete trapping. Section VI is devoted to a brief dis-
cussion of the consequences of our analysis when
there is pumping of an assembly of emitters by an
external field. Finally, in Sec. VII, we summarize
our findings. The paper concludes with an Appen-
dix in which certain aspects of the calculation are
clarified.

II. EQUATIONS OF MOTION

We take the interaction energy of the set of two-
level atoms to be given by

where p, , is the dipole-moment operator of the Lth
atom and E, is the total electric field seen by this
atom. ~ We shall treat this field as a c number, and

make the assumption that the atoms are all identi-
cal, have energy level separations her, and are
close together within a region of linear dimensions
much smaller than a wavelength. Since the dipole
moments associated with different atoms commute,
it follows from the form (I) of the interaction that
the time evolution operator for the entire system
factorizes into a product of time evolution opera. —

tors for the separate atoms. If the state of the
collective atomic system starts as a product state
over separate atoms at some time t = 0, it will
therefore remain a product state indefinitely.

We may therefore write an equation of motion in
the interaction picture governing the evolution of
the state I g, (t) ) of the I th atom in the form

—g). Erlyr(t)&=iaq] ly, (t)) . (2)

For atoms having only one transition of interest,
it is customary to write the state of any atom as a
time-dependent superposition of upper and lower
states

where l a, I + lb&l =1 expresses the constant
normalization of I'g, (f) ) for the atom. It is well
known that for electric as well as magnetic dipole
transitions one can incorporate both Schrodinger's
equation and the normalization condition into one
vector relation~:

(4)

in which r,, is the so-called Bloch vector charac-
terizing the state of the atom on the unit sphere.
The Cartesian components x, (t), y, (t), and z, (f) of
the vector r, (t) are related to the expectation val-
ues in state l P, (t) & of the dipole-moment operator,
of its time derivative, and of the unperturbed atom
energy. In the interaction picture these relations
take the form

1 d
sS~ (s) ( s~ ) sistss ———()), )) sostst

z, (t) = (2/re) ) (H,'"' ) .

0,' ' is the unperturbed energy of the Lth atom.
The constants &u and p, are the atomic transition
frequency and dipole matrix element, respectively,
and the vector frequency Q, (t) is given by

0, = —2(p/8) n E, (e„cosset —e, sin&et), (8)

where q, and &, are unit vectors in the x and Y di-
rections on the Bloch sphere, and n is a unit vec-
tor in the direction of the dipole moment.
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Equations (4)-(8) describe the manner in which
the l th atom responds to the total electric field
E, (t) seen by it. Our self-consistent approach to
the problem of mutually interacting and radiating
atoms, or dipoles, now requires that we determine
the field E, (t) in terms of the dipole moments pres-
ent in the assembly of atoms. This field E, (t) seen
by the l th atom will be composed of two parts: the
field due to all N-1 other atoms at atom l, which
we denote by E, (t), and the radiation reaction field
E, (t) of the 1th atom itself. In a series of papers
with several collaborators, Jaynes has considered
the effect of this radiation reaction field on a single
atomic dipole. "%e shall make use of some of the
results in these papers, particularly in the form
given by Stroud and Jaynes. '

The radiation reaction field is given by

4(d K- - 2v d2 2

Ef(t) =
3 &

n ( ~, &
-

3 & ndt (t, &,
377c 3c

where n is a unit vector in the direction of the
atomic dipole. The constant frequency K depends
on the detailed nature of the atomic charge dis-
tribution. For any reasonable charge distribution
K ' is expected to be roughly equal to ao/c, the
time for a light signal to traverse an atomic radius
ao. Crisp and Jaynes have evaluated K in a partic-
ular case.

The field due to another atom, say atom k, acting
on atom l, depends on the distance d» and on the
position of atom k. Like E", (t), this field E,~(t)
contains contributions proportional to the expecta-
tion value of the dipole moment JL(.„and its deriva-
tive, and we have, from the general expression for
the near field of a dipole, '

3(n u)u —n —,'(n u)uu& +-,'n&u

dna C d)y

where u is a unit vector in the direction of the vec-
tor from atom 0 to atom l. On summing over all
atoms km I, we arrive at the total field E, (t) due to
all other atoms seen by atom l. It is convenient
to write this sum in the form

E, (t) = AZ (j,„&—Bn Z —(P„&,
0& l 04i d~

3(n. u)u —n —,'(n, ~ u)u ~ + —,'n~

kl l » C dgI

(p~ ) (1 la)

Coefficient I3 is a constant and identical with the
coefficient of the corresponding term in Eq. (9).
Coefficient A may be regarded as the average over
atoms, in a sense, of the corresponding coefficient
in Eq. (10). In the following we shall make the
simplifying assumption that A is substantially simi-
lar for all atoms l, and may also be regarded as
a, constant. By way of justification we first note
that, since the sample is much smaller than a
wavelength, the term proportional to I/d»~ in Eq.
(1 la) substantially exceeds the one proportional to
1/c d„. Now, because of the factor I/d»', the
principal contribution to the sum comes from atoms
in the neighborhood of atom l. When we are dealing
with a dense sample of randomly oriented atoms, it
therefore seems reasonable to suppose that the
sums in Eq. (11a) have similar values for all atoms,
except perhaps for those atoms lying close to the
boundary of the sample.

The total field E, (t) acting on atom I is of course
the sum of E, (t) and E, (t) given by Eqs. (9) and (11),
so that

4 'Z
E, (t)=- —, n(g, &+AX (P, &

—BnH —(g„& .
3%'C cN

The calculation would obviously be simplified if all
atoms, including atom l, contributed symmetrically
to E, (t), for we could then combine the first two
terms and write

E, (t) = A Z (p„& —Bn Z —(g„& ., dt

There may exist geometries and sample densities
for which A equals or is close to (4&v K/3vc )n, so
that Eq. (12) is justified directly. But it is not dif-
ficult to see that Eq. (12) must be approximately
valid irrespective of whether A equals (4~ K/
3vc~)n or not, when the field on atom I due to the
other atoms is much larger than its self-field. This
will be the case whenever the number of atoms is
large and the initial state of the system is prepared
by subjecting most of the atoms to the same ex-
ternal perturbation, e. g. , a laser pulse. Then the
atomic dipoles are not randomly oriented on the
Bloch sphere, and the system has a. net macro-
scopic dipole moment. This is just the condition
for cooperative superradiant decay to become more
important than independent incoherent decay.

In terms of the components of the r, vector we
then have from Eqs. (5), (6), and (12),

E, (t) = Ap, Z, [x,(t) cosset —y, (t) sin&et]

+B&u pnZ, [x„(t)sin~t+y, (t) cosset]

B= 2(d /3c (11b)
= p(AX+~By'n) cosset+ tL(&uB&n —AY) sin~t,

(13)
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whichis independent of l. X and 5' stand for the
sums g» x»(t) and g„y»(t), respectively.

Having now determined the field at the l th atom,
we may insert it into the Schrodinger equation via
Q, given by Eq. (8). We see immediately that Q,
is actually independent of the index l and may be
denoted by 0, so that there is no longer any differ-
ence in the dynamical laws obeyed by the different
atoms, and we may write

d- = Qxr
N (14)

Several constants of the motion follow directly
from the nondependence of Q on l. By definition,
each of the Bloch vectors has unit length. More-
over, the angle between any two of them is a con-
stant fixed by initial conditions. A proof is trivially
constructed by taking the inner product of Eq. (14)
with r~ and adding the corresponding equation with
l and k interchanged. Then we find

or

N
—(r, r, ) = (Qxr») r, + (Qx r, ) r„

= Q (r, xr, )+Q (r, xr, )

=0

r, r, = cosP„=const, (15)

III. SUPER BLOCH VECTOR

As a consequence of the fact that each atomic
Bloch vector obeys the same equation of motion
we may define a super Bloch vector

with components X(t), Y(t), and Z(t), which obeys
a, dynamical law of the same form as the law for
an individual Bloch vector;

CV

—R=gxB . (18)

where g» is the (constant) angle between the Bloch
vectors r~ and r, . The constancy of the angle be-
tween the vectors, together with their fixed unit
length, implies that the evolution of the N-atom
system can be viewed as a rigid rotation of the cor-
responding set of Bloch vectors. " This conclusion
is already obvious by inspection of Eq. (14), which
describes the motion of a point r, of a rigid body
that is rotating with angular velocity Q.

We should emphasize that this conclusion follows
from the assumption that all the atoms see the same
field and is independent of the assumed form of the
field. In Sec. VI we shall consider the effect of
including an external field also.

R»(t)=E'„Z, r, (t) r, (t)=R'(O) . (2o)

The length R(O), which we denote simply by R, can
have any value from 0 to N, depending on the initial
alignments of the N individual Bloch vectors. If
the vectors are initially aligned, or nearly so, then
8- N and the system will be superradiant.

We m3y point out an analogy that goes deeper
than notation, between the length of the super Bloch
vector R and the eigenvalue of the "cooperation
number" operator A introduced by Dicke. ' The
cooperation number operator satisfies

R =Ri+R»+R3, (21)

and the component operators are closely related
to the components of our super Bloch vector R by
the equations

proximation. We then obtain

Q= - e„(yX+PY)+ c,(PX- yY),

where the frequencies P and p are defined by

2P =4p, e /3hc = (natural atomic lifetime) ',
(18a)

3(n u)' —1,(n. u)'+1
— —+M

dlk 2~ ~lk average over atoms

(18b)
It is important to note that the super Bloch vec-

tor B precesses about a time-dependent vector Q

[cf. Eq. (16)], which is a linear homogeneous func-
tion of the components of 8 itself [cf. Eq. (17)].
In fact, 0 is the same function of R as Q, would be
of r„ if we were dealing with a single isolated
atom. It follows that the solution of the radiative
decay problem for a single isola, ted atom in the
presence of its own reaction field is also the solution
of the problem of the motion of the N-atom super
Bloch vector. But the problem of the single-atom
decay has already been investigated and solved in
detail. '

A second consequence of the fact that Q, given
by Eq. (17), is a linear, homogeneous function of
the super Bloch vector B is that the rate of change
of the super Bloch vector is A times as rapid as the
rate of change of the vector r, describing an iso-
lated single atom. This implies that the N-atom
system described by the super Bloch vector will
be superradiant, if the length of the super Bloch
vector is of order ¹ The length of the super Bloch
vector is easily determined from the initial condi-
tions, because we have shown already that

r, (t) r, (t)=r, (O) r, (O),

so that

We now insert the expression (13) for the field into
Eq. (8) for Q, and introduce the rotating wave ap- X= (R,), Y= (R, ), Z= (R, ) . (22)
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(23)

The solution of the equation of motion for the
super Bloch vector can be found exactly. On sub-
stituting Eq. (17) in Eq. (16) and equating compo-
nents, we obtain

x = (px- yl )z,

& =(yx+ pI )z,
z= —p(x'+ v") = —p(R' —z') .

(24)

(26)

The solutions are most easily expressed in terms
of the polar and azimuthal angles Q and 4 of the
vector B in spherical coordinates. If we define

X=8 sinOcos4, F= 8 sinQsinC, Z= R cosQ,
(26)

then Eq. (25) reduces to

(27)

and the combination of Eq. (23) with Eq. (27) yields

4 = By cosQN (28)

Equations (23)-(25) are the same as those given
and solved by Bloom' in an earlier discussion of
radiation damping, except for the appearance here
of the frequency-shift parameter y. The relation
(27) has of course long been known. " In Eq. (28)
we see clearly the importance of y for radiation
reaction damping. Its presence implies a frequency
modulation of the atomic dipole oscillation. The
same phenomenon is also well known in the decay
of coupled classical oscillators. "

Equations (27) and (28) can be integrated immedi-
ately, ' to give

FIG. 1. Trajectory of the super Bloch vector 8 on the
sphere, with &/P =10„

W(t) =-,'Aa&R cosO(t)

= —&kruR tanh[Rp(t —to)],
which decays in time as a hyperbolic tangent. This
behavior is illustrated in Fig. 2.

The coherent radiation rate is readily calculated.
The radiant power I(t) is given by the rate at which
the atomic system loses energy, i. e. ,

f(t) = (- —,'@~)Z(t) = -.'e~R'p sech'[Rp(t - t,)],

or

or

O(t) = 2tan-' e""-'o'

cos O(t) =- —tanh[Rp(t —t,)],
y coshlRp(t —t, )])
P cosh(RPto)

(29)

(so)

(31)

(36)
which can range from 0 to N times the single-
atom rate. This result is familiar from other
treatments of superradiance. Behler and Eberly2
have shown, for example, that for the special case
in which all the Bloch vectors are initially aligned,
N»1, and the linear dimensions of the sample are
much smaller than a wavelength,

C (t) = —Rytanh[RP(t —to)] .

The parameter to is defined by

tan-,'O(O) = 8- "o,

(32)

(33)

sinO = sinO(0) 8 ""' (s4)

This trajectory on the Bloch sphere is illustrated
in Fig. 1 for the case y/P = 10.

The total energy W(t) of the atomic system is
given by —,'A&uZ(t) and we see from Eq. (30) that

and depends only on the initial energy of the sys-
tem.

If we eliminate the time t between Eqs. (29) and
(31), we obtain the equation of the orbit of the super
Bloch vector;

f(t) = ,h&uN psech [Np(—t—to)] .

In the sense that we may have B&N, the present
solution (36) is more general. The time dependence
of f(t) is also illustrated in Fig. 2.

Several features of the solution given by Eqs.
(29)-(32) are worth noting. There is a, metastable
point at QH= 0, so that, in this theory, a system of
atoms prepared exactly in its upper state never
radiates. The reason is that, in a semiclassical
theory, radiation is possible only when the system
has a nonzero dipole moment. However, once per-
turbed away from the excited state, however slight-
ly, the system does radiate and does so with the
same characteristic lifetime (RP) ' predicted by
quantum electrodynamics. '
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general, only a portion of the various curves is
traced out as t runs from 0 to ~. For example, if
O(0) = 222, then only half of each curve is traced out,
and if 0(0) & 2m even less of the curve is traced out,
perhaps only the exponential tail.

IV. MOTION OF THE BLOCH VECTOR OF AN INDIVIDUAL
ATOM

It is possible to determine the motion, not only
of the super Bloch vector, but also of the Bloch
vectors of the individual atoms. The simplest way
to understand this motion is to return to the equa-
tions of motion (14) and (16) for r, and R, respec-
tively. Both R and the individual r, precess about
the vector 0, which is itself moving in the x-y
plane. The motion can be broken up into a sum of
simpler motions if we note that the vector 0, given
by Eq. (17), can be written in the form

0 = —yR+ yZ&, + P(c,x R) . (36)

From Eqs. (16) and (38), the equation of motion for
R can then be expressed as

RPt

FIG. 2. Time dependence of the total energy W(t) of
the atomic system, the power of electromagnetic radia-
tion J(t), and the chirp frequency @(t) of the super Bloch
vector. The initial conditions are such that 8(0) =0.14,
which makes RPt0=1. 32.

Another remarkable feature of the solution is
that, after the system decays to its steady state in
which O = g, i. e. , Z = —R, there is in general still
energy left trapped in the system. The final state
is therefore not the state in which all N of the atoms
are in their respective ground states (Z= —N). Be-
cause of our conservation laws, all of the atoms
cannot decay to the ground state. They can only
decay to a state such that the total energy is a
minimum subject to Eq. (15), i. e. , to a state such
that their super Bloch vector points straight down,
when the total dipole moment vanishes. The system
of atoms can then no longer radiate coherently,
and the remaining energy will be dissipated by what-
ever incoherent processes are available to the
atoms.

Another interesting feature of the solution con-
cerns the rate of change of the phase angle 4 of the
dipole moment, which follows a hyperbolic tangent
curve according to Eq. (32). This means that the
emitted radiation is chirped. The frequency of the
emitted radiation starts at ~+Ry near 0~=0 and

decreases monotonically to (d-Ry near 0= m. This
behavior is also illustrated in Fig. 2.

It should be pointed out that the system is not
normally prepared in a metastable state. In fact
it would be very difficult to do so in practice. In

R=yZ(q, xR)+P(&,XR)xR . (39)

The motion of R can therefore be pictured as a
combination of two motions, a precession about the
s axis at a rate yZ, and a precession at a rate
Ap sinQ» about the vector e,x R. These same con-
clusions can of course be drawn more directly
from Eqs. (27) and (28). However, this method of
decomposing the motion of the vector R is also
applicable to the motion of the individual r, . Thus,
the equation of motion for r, may be written in the
form

r& ——yZ(E, xr&)+p(&, xR)xr, —y(Rxr, ) . (40)

Q, (t) —p, (0) = (y/p) ln[sechRp(t —to)/sechRpto)

+ sin ~ [cosec8, (t) sing, sinRy(t —to, )],

where

The first two terms describe exactly the same mo-
tion as Eq. (39) for R, but the last term describes
an additional precession about the super Bloch vec-
tor at a constant rate —yR. The individual Bloch
vectors simply precess about the super Bloch vec-
tor at a constant rate —yR, while maintaining their
original angular separations. This result allows us
to obtain closed form solutions for the individual
angular coordinates 8, (t) and Q, (t) (see Appendix).
In the rotating frame these solutions may be writ-
ten

cos8, (t) = —cosg, tanhRp(t —to)

+ sing, sechRp(t —to) cosRy(t —to, ) (41)
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ome energy is trapped in the system. This ener-

gy will ultimately be dissipated bipa e y incoherent pro-

Figures 4 and 66 show the phase angles 4, . We
note that, in each case th e relative phase evolves
o 71. This is a na necessary condition for th e system

p a ia ing. Moreover, we note that after a
long time, 4, =0, which means that the frequenc

od1tio ofth i di id al t (
atoms) ha, s ende

' i u a oms or groups of
ded. On the other hand E . (3 '

shows that foror the super Bloch vector of the com-
owever, there is no

contradiction, for the sup Bl h
zero g and c

er oc vector R has

are no lo
y omponents at t-~ so th t 4a and 4

longer meaningful quantities.
~ ~

An interesting application of these ideas 's t tha is o e
p of incoherent excitation. If

a oms is pumped incoherently, one would e ect
that most of the atoms wo ld
state while some might be

s wou remain in the roundg
e pumped to a state repre-

As has been showshown, it is only when most of the
atoms in the medium are excited th ta a significant
amount of energy is expect d t be o e released in a

des
superradiant pulse. We are th fe ere ore t.ed to try to

o e medium by theescribe coherent pumping of the me
same formalism. The equations are easil
eralized to in

e easi y gen-

sim l
o include an external applied f' l .

p y add to the field seen by the d' l
ie ie d. If we

b E . 1
e ipo es, given

y q. ~&3g, an additional external field

E'"'(t) = n h (t) cos set, (45)

where 8 t is a slowa slowly varying envelope, then the
equations of motion (27) and (28) become

8 = Bp sinO~+ (p/8) h (t) sinC,

4 = Ay cos8+ (p/8) h (t) cot8 cos 4 .

(46)

(47)

Imm
sented by a. point quite high on the Blo he oc sphere.

e och vectors mightmmediately after pumping th Bl
e as shown in Fig. 7 a . The small group of atoms

cited, whilemost o
c or e are hi hl ex-represented by the short vector

st of the atoms represented by the
cor hg y

long vector g are in the ground state. The f'e inal
um vec or e+ gi e the one in which the sum t

points straight down, Fig. 7(b) B toi, ' . . u the angle
etween e and g is fixed so th ta in the final state

essentially all of the atoms of rou e
cited. The

oms o group e are still ex-
ci e . hey have simply induced a slight amount
of dipole moment in the atoms of rou
the total dio a ipole moment of the system. One would

ec o see much energy in a superradiant
pulse from such a system; most of tho e energy will

rappe, and ultimately dissipated b in h
processes.

y incoherent

VI e COHERENT PUMPING
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0
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FIG. 6. Time dependence of the
two azimuthal angles 4~ and 4'2(t)
for two interacting systems of atoms
with equal length super Bloch vectors
(R& =R2). One system is almost fully
excited, while the other one is almost
ful, ly deexcited initially, with OH&(0)

=0.14, OH2(0) =3.0, and 4~(0) =0=4»(0).
Note that the atomic dipoles are aligned
in antiphase in the steady state.
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We have not obtained the general analytic solutions
of these equations, but certain implications can be
seen immediately. Whereas the spontaneous damp-
ing rate P and the frequency shift y in Eqs. (46)
and (47) are multiplied by the superradiant enhance-
ment factor R, which may be as large as N, the
external field $(t) is not similarly enhanced. An

extremely strong applied field will therefore be
needed to overcome the enhanced spontaneous emis-
sion and to excite the system appreciably.

VII. SUMMARY AND CONCLUSIONS

ever comparison is possible. The radiation pro-
duced was found to be chirped; the frequency of the
field decreased during the emission. Solutions
were also found for the dipole moments and ener-
gies of the individual atoms, for arbitrary initial
states.

The detailed analytic solutions to the rather corn-
plex nonlinear equations were obtained with the

help of a number of constants of the motion. The

We have used a semiclassical formalism, in
which the expectation values of the atomic dipole-
moment operators are taken to be the sources of
the classical Maxwell fields, to describe the evolu-
tion of a collection of N identical two-level atoms
located in a volume with dimensions small com-
pared with a wavelength of the emitted radiation.
The effects of dipole-dipole interactions as well
as the effects of radiation reaction were included.
The resulting equations yielded an analytic solution
for the time development of the macroscopic dipole
moment of the entire system, for the energy stored
in the system, and for the intensity of the radiated
field. In the limit of a large number of atoms, the
results for the radiated intensity are identical to
those obtained previously by other methods, wher-

(a)
R=e+g

(b)

FIG. 7. Illustration of the evolution of a small system
of partially excited atoms (super Bloch vector e) which
is interacting with a large system of atoms in the ground
state (super Bloch vector g). The initial state is shown

in (a) and the final state in (b). Note that the super Bloch vec-
tor 8 turns only slightly, so that very little of the initial energy
is radiated coherently.
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FIG. 8. Relation between the directions of the Bloch vector
r& and the super Bloch vector R.

existence of these constants of the motion, i.e. ,
conservation laws, is perhaps more significant than
the solutions themselves, as they determine cer-
tain properties of the solutions which are indepen-
dent of the initial states of the various atoms. The
most important conservation law implies that the
evolution of the collective atomic system is such
that the Bloch vectors on the unit sphere move as
a rigidly connected set. This means that the evolu-
tion of the entire system can be represented by one
super Bloch vector, the vector sum of all the indi-
vidual Bloch vectors. The conservation law illus-
trates how strong the coupling is between the atoms.
It is so strong that they all evolve together, gen-
erating a coherent spontaneous emission pulse
which may be N times as intense as the emission
from a single isolated atom. The conservation law
also requires that if the N atoms are initially not
all in exactly the same state, then they cannot all

return to their individual ground states by coopera-
tive emission. Some energy will remain trapped
in the system, with the dipoles rigidly locked into
a configuration with total dipole moment zero. The
conservation law results from the assumption that
all the atoms are exposed to the same field, which
is likely to be only approximately true in practice.

Finally, it should be pointed out again that the
results obtained by this semiclassical formalism,
sometimes called neoclassical radiation theory,
are expected to coincide with those obtained by
quantum electrodynamics when the number of
atoms is large, as it surely is in practical cases.

APPENDIX: EVOLUTION OF INDIVIDUAL BLOCH VECTORS

To obtain the analytic solutions IEqs. (41)-(43)j
for the motion of the Bloch vector r„ it is conve-
nient to transform to a new coordinate system in
which the super Bloch vector is at rest (see Fig.
8). From Eq. (40) and the arguments following it
one can see that the motion of r, in this coordinate
system is a rotation about the axis R, with a con-
stant polar angle g, and an azimuthal angle g„de-
scribing a constant precession at rate —yR, i. e. ,
the angle y, (t) defined in Fig. 8 satisfies the equa, -
tion

(Al)

cose, = cosa cosp, + sinOsinp, cosy, ,

while the law of sines gives

(A2)

sin(C —Q, ) = sing, sing, /sing, . (A3)

On substituting Eqs. (30), (31), and (A1) into Eqs.
(A2) and (A3), we obtain the desired results, Eqs.
(41)-(43).

q, (f) = Ity(t - t„)-.

The solutions for the evolution of 8, (t) and Q, (t)
can then be immediately expressed in terms of the
known quantities O~(t), C (t), and y, (t) by use of some
identities of spherical trigonometry. The law of
cosines gives (see Fig. 8)

Research supported by the National Science Foundation,
by the Air Force Office of Scientific Research, and by
the Army Research Office, Durham, N. C.

)Address during the 1971-72 academic year: SLAC,
Stanford University, Stanford, Calif. 94305.

~R. H. Dicke, Phys. Rev. 93, 99 (1954).
One recent treatment of superradiant emission, and a

large number of references to other works, is given in
N. E. Rehler and J. H. Eberly, Phys. Rev. A 2, 1735
(1971).

3G. S. Agarwal, Phys. Rev. A 2, 2038 (1970); Opt.
Commun. 2, 357 (1971).

4E. T. Jaynes and F. W. Cummings, Proc. IEEE 51,
89 (1963); M. D. Crisp and E. T. Jaynes, Phys. Rev.
179, 1253 (1969); C. S. Chang and P. Stehle, Phys. Rev.
A 4 630 (1971). Other early work is referred to by

Chang and Stehle. The previous work most directly
important for ours is given in Ref. 5.

C. R. Stroud, Jr. and E. T. Jaynes, Phys. Rev. A 1,
106 (1970); 2 1613(E) (1970).

We distinguish Hilbert-space operators by the caret.
R. P. Feynman, F. L. Vernon, Jr. , and B. W. Hell-

warth, J. Appl. Phys. 28, 49 (1956).
It is important to bear in mind that our equations involve

vectors in two different spaces; vectors such as E& and
n are in real space, whereas 0&, r&, 7„, etc. , are vectors
in the symbolic space of the Bloch sphere.

~It is known (cf. Jaynes et al. , Refs. 4 and 5-) that a
self-consistent semiclassical treatment of single-atom
radiation problems can lead to the prediction of radiative
level widths and frequency shifts. Whether or not the
frequency shifts are precisely the same as those calculated



1104 STBOUD, EBEHLY, I AMA, AND MANDEL

in quantum electrodynamics has been discussed by Crisp
and Jaynes (Ref. 4). Because of our concern with a many-
atom system with strong classical analogies we expect
the semiclassical results to be completely adequate for
our needs.

~ See, for example, M. Born and E. Wolf, I'principles
of Optics, 4th ed. (Pergamon, New York, 1970), Sec.
2. 2.3.

~~For a discussion of similar results in a slightly differ-
entcontextsee: J. H. Eberly, M. L. Report 940, Hansen

Laboratories of Physics, 1962 (unpublished); and Ph. D.
thesis (Stanford University, 1962) (unpublished); Second
Rochester Conference on Coherence and Quantum Optics,
1966 (unpublished) .

~2S, Bloom, J. Appl. Phys. 27, 785 (1956); 28, 800
(1957).

~3See, for example, N. Bloembergen and B. V. Pound,
Phys. Rev. 95, 8 (1954),

4See, for example, W. L. Lama, H. Jodoin, and L.
Mandel, Am. J. Phys. (to be published).

PHYSIC AL REVIEW A VOLUM K 5, NUMB ER 3

Photoprotonic Effect in Hydrides

I. L. Thomas
Oak Ridge National Laboratory, Oak Ridge, Tennessee 3783o

(Received 5 October 1971)

MARC H 1972

The cross section for the photoejection of a proton from a hydride molecule is derived using
the Born approximation for hv»I, and using the long-wavelength approximation for hv =I,
where v is the frequency of the incident photon and I is the ionization potential of the proton.
The cross section is negligible in the high-energy case. Near threshold, the probability for
one photon being adsorbed in a path length of 1 cm is

, pN'/' v 'I 5vp (6z+s)/3
2= 14x 10

(~ 1) g
C

where p is the density, M is the molecular weight, Z is the orbital exponent of the Slater
function describing the proton, 5 is a number between 1 and 2, N is the principal quantum num-
ber of the proton, A, vp ——I, and Pv~ is the kinetic energy of the center of mass plus the kinetic
energy of the relative coordinate in the direction of the motion of the center of mass. The co-
efficient fz oscillates as N increases. For the range in N considered (88-125), fN varies
from a minimum of 7. 793 at N =103 to a maximum of 175.4 at N =115 beyond which it decreases
again. Since N is large, & is large only near threshold.

I. INTRODUCTION

The ionization potential of a proton is the energy
required to remove a proton with zero kinetic en-
ergy from a molecule. This ionization potential
can be calculated by subtracting the energy of the
molecule from that of the negative ion which is
formed when a proton is removed. For example,
McLean and Yoshimine got —100. 0704 hartree
for the ground state of HF, and Clementi got
—99. 4594 hartree for the ground state of F .
Therefore, the protonic ionization potential in HF
is 0. 6210 hartree or 16. 8 eV, which is in fair
agreement with the experimental appearance poten-
tial of 15.9 eV. '

Another way to estimate the protonic ionization
potential is to use a two-particle model for HF.
The energy levels in this case are

@2 2 g2g2
E~ = — ~ 8 = —

8 (Cgs)
2p,N Ap 2p. Qp

z'
(hartree),

2p,

where z is the effective charge attracting the proton,
p. is the reduced protonic mass, Ao=k /(p, a ),
where —e is the electronic charge, and ap is the
Bohr radius. The ionization potential would equal
the ground-state energy. This model was used to
discuss the vibrational energy levels in HF where
1.067 hartree was found for the ground-state en-
ergy. ' However, the value of z was derived from
the orbital exponent of the Slater function which
described the proton, and Slater has shown that
the effective z of the wave function is larger than
the effective z which should be used in the energy
expression if the central-field model is used.
Therefore, the true ionization potential is given by

I= —Z„/V,

where b is a number between 1 and 2.
Consider a monochromatic plane wave traveling

in the z direction and polarized in the x direction
incident on a hydride molecule. If hv ~ I, a proton
may be excited to the continuum leaving a proton
and a negative ion. The energy relation is


