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We develop a detailed theory to calculate multiple-quantum transition probabilities. It is
shown that the quantum electrodynamical (QED) approach must be used in order to explain quan-
titatively the experimental observations of Kusch. The anomalous behavior of shifts in reso-
nance frequency and saturation of widths of transition probabilities can be explained on the basis
of a QED renormalization principle. In this paper, we work out the detailed calculations for the

case of a double-quantum transition quantitatively.

The agreement between QED calculation

and Kusch’s observation is remarkable. We conclude that the renormalization principle of
QED is important even for low-frequency and finite-intensity fields.

I. INTRODUCTION

In an earlier paper! a quantum electrodynamic
(QED) theory of induced transitions in atoms and
molecules was developed and shown to be distinct
from the semiclassical theory when the inducing
field is not weak. In this paper the methods de-
veloped are applied in detail to the experiments
of Kusch? resulting in excellent agreement between
theory and observation. No such agreement can
be obtained by applying the semiclassical theory.

Kusch used a five-level system, so that a the-
oretical discussion requires the use of higher or-
ders in perturbation theory. When orders higher
than the lowest nontrivial order are included, it is
necessary to include renormalization effects pro-
duced by forward scattering processes just as in
higher-order radiative correction calculations it
is necessary to take wave-function renormalization
produced by virtual-photon processes into ac-

count.® In Sec. II this renormalization procedure
is developed, and in Sec. III it is applied to a
double-quantum transition observed by Kusch,
yielding both the lineshift and the linewidth as
functions of inducing field strength. The results
are compared with observation and with the semi-
classical results obtained by Salwen.* In Sec. IV
some comments on the method and its relation to
the Majorana formula® are given.

II. RENORMALIZATION BY FORWARD SCATTERING

The Green’s function for an electron moving in
a static potential V(') and in a radiation field with
one mode excited satisfies the Schwinger-Dyson
equation given in I, namely,

Glx, ") =Sp(x,x") =4 [d*x"d*x"' Sp (x,x"")
XM(X”’ x”’)G(x”,,x’) , (1)

where Sgp(x, x') is the propagator in the static field
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17 11t *
alone and where M(x ',x ) is the mass operator

resulting from forward scattering in the excited
radiation field mode as described in I. In lowest
order the expression for the Green’s function is

G(x, x') = E ll)n(f‘.)—ll)-,.(i‘.)j .%7% em(t_t:)

X[Q+E +H, (-], (2)

where H, (- Q) is the Fourier transform of adi-
agonal matrix element of the mass operator. When
H, (= Q) can be considered to depend weakly on Q
so that this dependence is ignorable in evaluating
the integral in (2), then as ¢t'~¢, G(x, x" )= 6(F -7
as is necessary for a Green’s function. When,
however, H, (- Q) cannot be treated as slowly
varying it is necessary to take this variation into
account and to introduce a renormalization con-
stant Z, on the right-hand side of Eq. (2) to cancel
this out.

To accomplish the renormalization itis necessary
to separate two effects of the radiation field: the
shift of energy levels due to nonresonant terms,
analogous to the Bloch-Siegert shift; the produc-
tion of transitions and level widths due to resonant
terms. This split is analogous to the splitting of
self-energy integrals into principal part (nonreso-
nant) and 6-function (resonant) parts.® Thus

H,,(-Q)=H, ,(-Q)+H, (-9) . (8)
We define a propagator G'(x, x') in analogy with Eq.
(2) using only the nonresonant part H',

I A 1 T
G'(x,x')=2 Z;l l]),,(r)lpn(rl)f %7-;1,_ 2 i9¢t=t")

X[Q+E,+H, (-] . (4)

The shifted energy levels are determined by the
poles of the integrand,

~E,+E,+H, ,(E,)=0, (5)

and the renormalization constants Z, are given by
) 2\t
an(f ETTT[Q+E"+H;’"(—Q)] 1)

. 08H, (- Q)
1=

(6)

~
Q =-En

The renormalized Green’s function G(x,x’) then
satisfies the equation

Glx, x") =229, F )En(F’)f g}% JRUTET

X [Q+E,+H, (-], @)

with the renormalized wave functions §=Z;1/%p
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FIG. 1. Level scheme of a five-level atom.

and shifted energies alone appearing. This Green’s
function has the proper behavior as ¢’ - ¢ because
the resonant term H, ,(- Q) has the form

B, (-2)=-C2/(Q+a,) ,

and insertion of this in Eq. (7) with ¢=¢' yields the
required 6 function since the J)n are normalized.
The renormalized Green’s function now is used to
calculate transition probabilities as in I, this pre-
scription meaning that all measurable effects are
to be described in terms of renormalized quantities
only, no “radiation-free” quantities remaining in
the expressions.

III. TWO-QUANTUM TRANSITION

The method just described is applied to the two-
quantum transition observed by Kusch? in the five-
level system provided by the K* hyperfine ground
state, namely, the (2—0) transition. The level
scheme is shown in Fig. 1. According to I the
transition amplitude is

Couot) = [APrd®r'a®+" at’ at" o(t") §y )
x GF, 75t =t )ieN/2wV) /2
woeiwt -i-?')G'(i:.', L
Xie(N/2wV)1/2g gttt -R¥ D 5 (311 puiligtt  (g)

Using Salwen’s notation® we introduce

wn,szn_Em, wn,mzén—ém, (Qa)
aln;m)=(/21) ale,m)=/2n)(n|d|m), (9b)
where d is the dipole operator. The numerical

values corresponding to Kusch’s experiment are
given in Table I. According to Kusch, 2

b/2w=175B, , (10)

with b in kilohertz and B, in gauss. B,, the am-
plitude of the rf field, is related to N/V by
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BE=Nnw/2V . (11)
Further,
Frn @)= [Ep+ @+ H, (- )], (12a)
J
~ - 1 {° doe'™
Cz-o(t)za(o,l)a(l, 2) ﬁ'[w Q+E2—2w

We are interested in this when 2w~ &, o, which cor-
responds to the two quantum transition under study,
or in the pole of the integrand near z=0. This de-
termines the separation of H, , into nonresonant

and resonant parts as given in Eq. (3).

Since we are considering double -quantum transi-
tion, it is sufficient to construct H, (- Q) up to the
fourth-order forward scattering process. Follow-
ing the method of I, we easily obtain, for a five-
level system,

| 2;+1)]2
E¢1+in

| a(s 2;11)|z] o+ 1’.0)!2
’ [(By+Q+ w4 Ey+ Q1+ 20w)] ) , (14a)

Hap - 9=

SPER
" [()E:,x iigli Z),Lfgff‘j;; ! )21:)] > (14p)
’ [(ﬁf(iéi)l,)zl&ii; f )25)0 . (14c)

Examining (14a) - (14c), we have

R la(0;1)1% a(2;1)2

Ho,o(Bo =2)= - [(z = @10+ )%z + Dy — 20)] ’
(15a)
Hy (By—w—2)=0. (15b)

The remaining terms in (14b) and (14c) are non-
secular; they are used in the construction of the
physical states §, and ¢;. The bare state is re-
normalized similarly.

We then have

J;1,1(Z —Ey-w)=(2+@1,9— ) 1= (@y,0—w)? )
(16)
and (13) becomes

=a(0;1) &(1; 2) e~Eot 2—:;[ dz - S e J?o,o(,z ‘Eo)f;,l(z “E~o -w) .

1089

Aym)=21"2Z2 2a(n;m) . (12b)

In this notation, and using the dipole approxima-
tion, we get

Foo@f1,4(Q - w)

em

Wa,0 (13)

| &251)a130) i __l_f“’ et
Canolt) = @yo—w €% om dz F(z)
(17)
where
_ - | 3(2;1)&(1;0)1®
F(2)=2(z+ @3- w) - (110 a)? (18)
We further approximate (18) by
~(2-1)6(1:0)| 2
F(Z)NZ(Z'F(:)Z,O—Q))— |a(2, 1)&(1, O)I . (19)

(@1,0 - w)

With these approximations, (17) can be integrated
to get

- - 2
~ 2 | @(2;1)a(1;0) |” sin’®ft
Pao()= | Couol) | 2= Bro-w T
(20)
where
- - 2
- 2 | @(2;1)a(1;0)
fZ:(w—%wz’o) + —cj—_—(-u:l’T’-— . (21)
We now calculate @, , and &(r;m). We write
Em‘ann"'AEn:"Q . (22)
According to the above discussions, we have
| @(2;0)12
AE,— — 22200 =
Ee ~AE3+w -y ’
| (1;0)12 | a(2;1)12
AE, — =
—AEj+w-wy g —AE1-w+wyy
(23)
TABLE 1. The level structure for (2— 0) transition.
Level separations Matrix elements
n—m W,y (KHZ) an, m)
2—1 20836 1.71
1—0 22670 2.28
0—-1 25095 2.52
-1—=2 28519 2.34
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AL — la(l; 0)(2 | a(0; —1)12 centered at 3@, with a half-width given by
O —AEj-—w+twyy ~Ep+tw—wy, 4 - . .
a(2;1)a(1;0)
do.g= 6——:15—_ . (26)
Since a(n;m)<VN < B, the root AE, must satisfy 1,07 2%80
the condition e s . L
The shift in resonance frequency relative to zwy
AE,~0 as (N/V)Y/% or B,~0. (24) is then
buws,0= 5(AE, - AEy) , (27)

As a result, there can be one root of each of Egs.
(23).7

1t is seen that the w dependence of £2in (21) is
quite involved. However, as was pointed out by
Kusch, ? the static magnetic field which causes the
anomalous Zeeman splitting is not measured direct-
ly, but is calculated from the observed center of
the line using the usual expression® under the as-
sumption that the center of the line corresponds to
the transition frequency at the constant magnetic
field in which the line is observed, i.e., that the
line frequency is not significantly affected by the
rf field. Anticipating this fact, we may assume
that 2w ~w, (5, namely, we neglect the w dependence
of AE, and Z,, as they depend weakly on w.

The line shape is essentially determined by the
factor 7 ~2in (21), we therefore study f? as a func-
tion of w, the frequency tuning. Since (20) is valid
only for 2w near &32,0, it is sufficient to approximate
(21) by the following expression:

&(0;1)&(2;1)

2
- l‘— .
Wy,0 = 2W2,0

£2=(w—30,,0)%+ (25)

We see that f “%w) as a function of w is Lorentzian

|

| @(2;1)a(1;0)]

where (22) has been used.

In the low-intensity limit, BZ or N/V -0, expres-
sions (26) and (27) reduce to the semiclassical re-
sults of Salwen.? For we have

Zy=1l; @ppm=w,n asSN/V-0,

and the width reduces to

a(0; 1)a(2;1)
— e s,
W1,0 ~ 2W2,0

da- (28)

In the same limit, the first nonvanishing order is
BE, and the shift reduces to

1/ 1a(1;0)12
Swa0= 2 < W1,0 = %‘*’2,0

| a(0; -1)|2
éwz,o —Wp, 1

- la(z;l)la )’ (29)

1
2W2,0 ~Wa1

as can be easily seen from (23) in the first approx-
imation to the roots.

We now give a quantitative discussion of (26) and
(27). We note that (26) can be written as

(30)

da

By =1 Gauss
| (|

07 1(ZyZ9) B Zy[wy, — 5wz 0 — AE; — 5(AE 4+ AE) ]|

Ao  Kusch's Experiments
This Calculation (Eq.27)

- -~ —Salwen's Calculations
(Semi-Classical)

FIG. 2. Shift in resonance fre-
quency of the line [2, 0] as a func-
tion of rf amplitude.

| |

3 6 9 12 ) 18 21
RF (Volts)

24 27 30
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FIG. 3. Half-width of the
line [2, 0] as a function of rf
amplitude.

has been shown to follow from the idea of renormal-
ization applied to forward scattering. It seems im-
possible to incorporate this into a semiclassical
theory in any simple way, so we must conclude

that the semiclassical theory is not the appropriate
limit of QED at high intensity when the frequencies
are held fixed. The renormalization used here is
finite because there is no integration over the photon

160 /
//
/
— /
T 120 —*
-
=
S sof
L Kusch's Experiments
) This Calculation (Eg. 30)
T 40 - —--—Salwen's Calculations
(Semi- Classical )
By =1 Gauss
| L L 1 ! | | ] ] ]
3 6 9 12 15 18 21 24 27 30
RF (Volts)
where
la(2;1)12
= T _ 3\ »
21 g —wap)
| @(1;0)]2 | (2;1)2
Z=1+ z ! 31
! (éwz,o - w1,o)2 (%wz,o —Wa1 )2 , (81)
.12 ._1y2
Zo=1+ | @(0;1)] . | @(0; =1)|

(%wz,o — W10 )2 (’lz‘wz,o — Wg, 1 )2

in the first approximation.
From Table I, we have

3Wa,0 = Wp,1= Wy, o = 3Ws 0= 917 kHz,
W, — 4ws,0= 3342 KHZ .

Using (9b) and (10), we can calculate d,., and
Sw,.o as functions of B\, the rf amplitude. The
results are shown in Figs. 2 and 3.

From the figures, we see that the numerical
values calculated according to the QED formulas
(27) and (30) agree with Kusch’s experiment? very
well. Note that in Fig. 3, we have added 18 kHz
to the width arisen from the velocity distribution of
the atoms, as was determined by Kusch. 2

In concluding this section, we mention that the
anomalous behavior of shift and width is entirely
due to the renormalization effect envisaged in the
present approach. It is therefore clear that for
high-intensity rf fields the QED renormalization
effect must be taken into account despite the low
frequency.

IV. DISCUSSION

The behavior of line shift and linewidth as func-
tions of intensity of the transition-inducing field

momentum as there is when radiative corrections
are involved, so there is no subtraction physics in-
volved. We can look on this as an additional justi-
fication of the idea of renormalization.

When the levels involved are all equally spaced, ®
the nonresonant terms in the mass operator are not
present and no renormalization is needed. In this
case the result of Heitler-Ma perturbation theory,
the Majorana formula discussed in I, is obtained.
It is difficult however, to identify the transitions
being produced under these circumstances by high-
intensity incoming fields, so the experiment is best
done using unequally spaced levels. When lines
overlap it is difficult to separate H, , into resonant
and nonresonant parts and it is not clear how to
proceed. The procedure is unambiguous for non-
overlapping lines.

In conclusion, we wish to point out that the pres-
ent approach should be applied to the experiments
quoted in a paper by Mizushima.!? In arecent ex-
periment by Mowat ef al., ! the renormalization
effect should also be taken into account, since the
experimental data clearly indicate that the multi-
level Bloch-Siegert shifts calculated are outside
the experimental errors. We believe that the re-
normalization effect should be included in the
masers and lasers experiments.
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The Schlosser-Marcus stationary principle for discontinuous approximate wave functions
is shown to be the “finite part” of the energy expectation value. The divergent terms in the
expectation value of the kinetic energy are second order in the discontinuity, which explains
why the energy expression obtained when they are omitted remains stationary.

Energy eigenfunctions must be continuous and
have continuous first derivatives. Approximate
eigenfunctions may have discontinuous first deriva-
tives or even be discontinuous themselves, if suit-
able formulas are used for kinetic-energy matrix
elements.!~* This paper is to clarify some con-
fusion concerning the justification of these “suit-
able formulas.”

When ¢ is continuous but has jump discontinuities
in its first derivatives, the kinetic-energy expec-
tation value is correctly given by!

(¥]-392|9)=3 [ (Vo). (VP)av . @

It is not always appreciated that

W) -4v2|)=~ % [ 9> v3pav (@)

is also covvect if V2 is evaluated covrectly.

Consider for simplicity one dimension. Let the
first derivative of ¥=¥(x) have a jump discontinuity
[ (xg+0) = ¥’ (xo— 0] at x,, where ¥’ (x) denotes
(d/dx)$(x). Let ' (xo)=0 and ' (x)= (d/dx)*P(x)
when x # x,; then the correct formula for (d/dx)?
xP(x) involves a Dirac 6 function®:

(£) w6047 cov00-
-] @) =9 (x) + [¥7 (xo+0) = P’ (xo— 0)] 8(x - x) .

dx
(3)
Thus we have

—%./_‘: h* (%)2 Ydx

[T ) () v

%g+0

(M

- %ll)"‘ (xo) [¢'(x0+ 0)- 9’ (xo— 0)] . (4)

The three-dimensional version is?

—s [ viyav=-5 [ _ y*vipav
i*Yo

-3 [, ¥ (9U,- V) as,

where [, s dV denotes the integral over the volume
excluding the surface of discontinuity S, and

(v, - V¥,) denotes the discontinuity in the gradient
across the surface and represents the “strength”

of the 6 function obtained by differentiating the
discontinuous function V¢ across the surface. By
integration by parts (Green’s theorem), the right-
hand side of Eq. (5) is =% [(VY)*. (V§)dV. Hence
Egs. (1) and (2) are equivalent when Eq. (5) is used
to evaluate the right-hand side of Eq. (2). Q.E.D.

By way of example, the augmented-plane-wave
method of Slater!'®7 uses continuous wave functions
with discontinuous first derivatives. Slater® clearly
understood the content of Eqs. (2)-(5), which he
stated! more or less in words (also see Ref. 2).
(Indeed, the rigorous mathematical theory of 6
functions came several years later. °)

If ¥ itself is discontinuous, the kinetic-energy
expectation value is infinite, but the infinity is
easily identified and removed. The essence of this
exorcism is revealed by the following heuristic
(but decidedly nonrigorous) considerations. (The



