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Measurement of the Spin-Orbit Perturbation in the P-State Continuum of HeavyAlkali-Metal
Atoms: K, Rb, and Cs~
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The spin-orbit interaction for the P-state continuum of heavy alkali metals was investigated
in a photoionization experiment using spin-polarized alkali atoms and circularly polarized
light. From the asymmetry in ion-counting rates corresponding to the two photon helicities,
Fano's spin-orbit perturbation. parameter x was determined over a range of several hundred
angstroms for K, Bb, and Cs. The spin-orbit perturbation was found to increase from K to
Bb to Cs as expected, and the nonlinear behavior of x as a function of the photon energy E was
demonstrated for K. Knowledge of x(E) was used to establish accurate values for the position
of the Cooper minimum and to estimate the magnitude of the cross section at the min-
imum. In addition, the g(E) data for Cs were used to gain information about the spin
polarization of photoelectrons in a Fano-type polarized electron source. Finally, extrapola-
tion of x(E) for cesium into the discrete spectrum indicated the existence of a pole in the
function p(E) which corresponds to the doublet line-strength ratio p(E~) = S(nP3/2)/S(nPlg2) at
the discrete energies E„I. According to our extrapolation, the pole lies in the region of
n=10 to 15, in agreement with the early spectroscopic work of Sambursky (1928) and Beutell
(1939), whose measurements were discounted by later investigators.

I. INTRODUCTION

For an electron in the electric field of an atom
or ion, the interaction between its spin and orbital
angular momentum is weak compared with the Cou-
lomb interaction, usually causing only a minor
perturbation. Nevertheless, the spin-orbit inter-
action can lead to well-known conspicuous effects'
such as the polarization effects in Mott scattering
of electrons from heavy atoms, as well as the fine-
structure energy splitting and the associated anom-
alous doublet line-strength ratios of the discrete
P states of the heavy alkali-metal atoms. This
paper deals with the pronounced spin-orbit effect
(Fano effect) in alkali photoionization.

As a vehicle for describing the spin-orbit per-
turbation, Pano introduced a perturbation param-
eter x which is a function of the photon energy E
and is defined by

x= 3R (E)//nR(E)

with

3Ro= 2R, + R,

AR = R~ —R(,
where R is the unperturbed radial matrix element
for the dipole transition from the no S», ground
state, and R3 and R& are the perturbed radial
matrix elements for the final P-state angular mo-
menta J' = & and 2, respectively. Quantitative
knowledge of the strength of the spin-orbit pertur-
bation permits separation of this effect from other
perturbations such as core polarization and con-
figuration interaction, thus facilitating a more
accurate interpretation of observed spectroscopic

anomalies. ' In addition, for the construction of
proper alkali-metal-atom wave functions, data, on
the spin-orbit perturbation provide a useful supple-
ment to data on energy eigenvalues, since the for-
mer are most sensitive to the wave functions at
small radii while the latter depend more on the
wave functions at large radii.

As will be shown in Sec. II, the parameter x(E)
determines all polarization effects in photoioniza-
tion and also enters into the formula for the energy
dependence of the photoionization cross section
o(E). For E &E,„, where E,„ is the photon energy
of the ionization threshold, x(E) is physically
meaningful only at the photon energies which cor-
respond to resonance transitions noS-nP. How-
ever, x(E) can be plotted as a continuous function
which goes smoothly through threshold, analogous
to the behavior of the oscillator-strength density
and the quantum defect. ' In the discrete spectrum,
x(E„~) determines the doublet line-strength ratio,

p(nP) = S(nP~)~)/S(nP, )2)

= 2(x+ 1) /(x —2),
where S(nP3/2) and S(nP, ~2) are the line strengths
of the doublet lines D~ and D, , respectively. Es-
timates for x(E) can be obtained in the discrete
spectrum from measurement of p(nP) of low-lying
P states and in the continuum from data on o(EI. '

As Fano pointed out, accurate values of x(E) can
be obtained from polarization experiments on
photoionization in the vicinity of the cross-section
minimum.

We performed an experiment involving photoion-
ization of spin-polarized alkali-metal atoms by
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monochromatic circularly polarized light. The ex-
periment yielded values of x(E) for potassium, ru-
bidium, and cesium at photon energies in the near
ultraviolet. This paper is the first detailed account
of the experimental work. Brief reports of this
research have already been communicated. ' '4

II. THEORETICAL BACKGROUND

We restrict our considerations to electric-dipole
transitions from the no Sg/2 ground state of the alka-
li-metal atom (no=4, 5, 6 for K, Hb, Cs, respec-
tively) to discrete and continuumP states. As an en-
ergy parameter we use the photon energy E =E,„+ &&

where & is the binding energy of the final discrete
& state for E & E,„and the photoelectron energy for
E & Et„. We assume an average over all directions
of photoelectron emission, so that only the radial
part of matrix elements and wave functions need
be considered. The radial matrix elements R, and

R, , as well as the perturbation parameter x, are
real functions of the photon energy.

A. Photoionization Cross Section

For alkali-metal atoms, the P-state wave func-
tions have nodes in the region of maximum over-
lap with the ground-state wave functions. As a
consequence, a great deal of cancellation occurs
in the dipole-transition matrix element. At some
photon energy Eo the matrix element passes through
zero. For lithium, Eo lies below E,h, for the
other alkalimetals, Eo lies above E,„. When the
matrix element passes through zero, the photo-
ionization cross section o(E) goes through a Cooper
minimum, ' which is exhibited by all alkali-metal
atoms heavier than lithium.

Measurements of o(E) show that the minimum
cross section is different from zero for K, Rb, and

Cs. In 1951Seaton' pointed out that any central-f ield
calculation "almost certainly" would yield a ze:o-
minimum cross section, and therefore he suggested
spin-orbit perturbation as the only likely explana-
tion of o &„&0, Extending Fermi's spin-orbit per-
turbation theory to the continuum P states, Seaton
obtained estimates of O,„which gave an order-of-
magnitude agreement with the experimental data
for Rb and Cs but not for K. This discrepancy
will be discussed in Sec. VB.

With the inclusion of spin-orbit perturbation, the
radial matrix elements R~ and R& differ from each
other; in particular, they go through zero at differ-
ent energies. The expression for the photoioniza-
tion cross section, written as

&(E) = «I2tRS(E) j'+ IRi(E)1'&, (2 1)

with C as a constant, shows that zero points of
R$(E) and R, (E) at different energies lead to a
nonzero minimum of cr(E). Using the notation in-
troduced in Eels. (1.1) and (l. 2), we can write the

In alkali-metal atoms the electronic spin S and
the nuclear spin I are coupled, forming the total
angular momentum I'. The influence of the nuclear
spin on the photoionization process, however, can
be neglected. Thus only the electronic polariza-
tion of the atom and the polarizations of the elec-
tron and photon need be considered. (The outgoing
ion ha, s only nuclear polarization. ) We define the
electronic polarization of the atom as

P„= (o,)= (2m$), (2 4)

where 0, is the Pauli matrix operator for the spin
component along the axis of quantization determined
by the external magnetic field 8, and (2m$) is
twice the expectation valu'e of the electronic-spin
magnetic quantum number. The spin polarization
of the outgoing photoelectron is defined as

P„= (2m $) (2 5)

with reference to the same axis of quantization as
that for the atom. Finally, for photons incident
parallel to the magnetic field 8, the photon spin
polarization is given by

P,h= (m,.) (2. 6)

The degree of circular light polarization is equiva-
lent to P».

The transition matrix elements in the I I., S, rnI. ,
m $) representation can be written in the general
form shown in Fig. 1. The final state, I E; 1.'=1,
S'= $, ml, , m$), is a continuum P state withI~ =+ 1, 0, or —1, with the proper value of m~
determined by conservation of angular momentum
(ml' = m»+ m$ —m$). Thus the transitions for
which the matrix element is listed as zero are for-
bidden. The spin-orbit interaction is taken into

cross section as

o(E) = —', C E[ bR(E)] (2+ [x(E) j I . (2. 2)

As a first approximation, valid only for a small
energy interval in the vicinity of the Cooper mini-
mum, we can assume that R "(E) is a linear func-
tion while 4R(E) is constant. Qn this basis Fano
deduced an estimate of x(E) for cesium by fitting
a parabola to the cross-section data of Marr and
Creek' according to

o(E) = o.i. (1+ —.
I.x(E) )"r .

Fano emphasized that the value of x(E) obtained in
this way should be used only "most tentatively" for
indicating the magnitude of polarization effects.
Since this estimate has been regarded as a theoreti-
cal prediction, ' ' ' we would like to point out that
the results contained in the present paper, although
numerically different from Fano's estimate, fully
confirm his theory.

8. Polarization Effects in Photoionization
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FIG. I. Matrices for dipole transitions with spin-
orbit interaction. The magnetic quantum numbers m&,

~&, and m~h refer to spin states of atomic electron,
photoelectron, and photon, respectively.

account by A &C and B + 0.
The perturbation parameter x was introduced in

Eqs. (1.1) and (1.2) in terms of R, and R0, the
radial matrix elements for the transitions to final
angular-momentum states which are eigenstates in
the I L, S, J, mz) representation. The matrices
of Fig. 1, however, refer to I L, S, m~, m~)
eigenstates. With the use of the appropriate
Clebsch-Gordan coefficients, the elements A, B,
and C can be related to R3 and R &,

' and thereby
to x. With all common numerical factors omitted
the following results are obtained:

A = 3R0 = AR(x+ 1),
Il = W2 (R0 —R, ) = b, R V2,

C = R0 + 2Rt —— ER(x —1) .

(2 7)

(2x+1)P,„+x P„
(x'+ 2) + (2x —1)P,„P„ (2 9)

With unpolarized atoms and unpolarized photons,
Eq. (2. 8) reduces to Eq. (2. 2), and P„given by
Eq. (2. 9) vanishes. With either one of the incoming
particles polarized (photons or atoms) the cross
section is still given by Eq. (2. 2). However, the
electron polarization is nonzero. The two polar-
ization parameters which can thus be determined by
a polarization measurement of the outgoing photo-
electrons are

The photoionization cross section is proportional
to E' times the sum of the square of matrix elements.
From Fig. 1 and Eqs. (2. 4)-(2. 7) it can then be
shown that the cross section for photoionization of
Polarized atoms by Polarized photons is given by

o(E, P „,P„) = f(E) [(x'+ 2) + (2x —1) P,„P„],
(2 8)

where f(E) = (const) E[ AR(E)] is a function of the
photon energy, independent of P,„and P„. The
polarization of the outgoing electron is given by

With both incoming particles polarized the cross
section is now given by Eq. (2. 8). From counting
rates C" and C of photoionization events corre-
sponding to positive and negative signs of the
product P,hP„, respectively, a third polarization
parameter Q can be determined. With the asym-
metry 5 defined by

8 =—(C' —C )/(C'+ C ) (2. 12)
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and the corresponding cross sections obtained from
Eq. (2. 8), it follows that Q is given by

Q =—8/
i
P,„P„I = (2x —1)/(x + 2) . (2. 13)

The functions P(x), Q(x), and R(x) are plotted in

Fig. 2.
The spin-orbit perturbation pushes out the P3/2

radial wave functions and pulls in the P&~, functions,
It therefore follows thatR, (E) goes through zero at a
higher photon energy than R&(E). Equations (1.1)
and (1.2) then show that the slope dx/dE is negative,
In order to achieve visual similarity amongfigures,
the x axis in Fig. 2 was chosen to point from right
to left.

As Fano pointed out in a later paper, a small
correction is necessary to take into account the
phase difference in the normalization of the wave
functions of the P3~2 and P&~, photoelectrons. Thus
Eq. (2. 7) should be modified by multiplying R0 and

R& with phase factors e' "3 and e ' "~, respectively,
and by introducing a complex perturbation param-
eter z = x+ iy. Because a Q measurement does not
distinguish between spin states in the outgoing

P —= [P„/P,„] = (2xp 1)/(x'p 2) (2. 10)

-I 0—
I I I I I I I

2 I 0 -I -2 -3 -4

PERTURBATION PARAMETER, x

and

t/P t ]p =0 = x'/(x'+ 2) (2. 11)

FIG. 2. Polarization parameters P, Q, and R as
functions of the perturbation parameter ~. Note that x
increases from right to left.
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channel, Eg. (2. 13) remains unchanged. However,
Egs. (2. 10) and (2. 11) for P(x) and R(x) can only

be retained as approximations. The phase differ-
ence & p= ps —p& is related to quantum defect 7 by

(2. 14)

where ~7 is extrapolated into the continuum from
the values &r= r(nPf/p) T(BP3/p) in the discrete
spectrum. The values of the quantum-defect lag
Ar are 0. 0029, 0. 013, and 0. 032 for K, Rb, and

Cs, respectively. ' Since the corrections are of

the order of sin ~ y, they are far too small to be
detected with present techniques available for mea-
surements of P or R.

III. EXPERIMENTAL ARRANGEMENT AND PROCEDURE

A. Choice of Method

With present technology, a measurement of Q
can be executed with significantly higher accuracy
than a measurement of P or R for the following
reasons.

(a) The relative ease of producing and detecting
polarized particles is displayed by the figure of
merit, M = 6' q, where 6' is the degree of polariza-
tion produced (or the analyzing power of a polar-
izationdetector) and q is the intensity attenuation
accompanying the production (or detection) of the
polarization. The respective figures of merit are
approximately 1.6 x 10, 4. 5 x10, and 6. 3 x 10 '
for photons, atoms, and electrons. For any

given statistical accuracy the time t required for
a measurement of P, Q, or R is proportional to
product of the two relevant figures of merit. Thus
we find tp M»M„-10 ', t ~ M»M„- 8x10
and tg M~)M, q

- 3 x10
(b) Photoelectrons from walls provide a large

background which must be distinguished from the
signal resulting f rom the atomic-beam photoelec-
trons. In the Q measurement (which does not re-
quire polarization analysis of the photoelectrons)
ions can be detected rather than electrons.

(c) The theoretical relations given in Secs. I and
II contain only the radial parts of the matrix ele-
ments, since they represent averages over all
directions of photoelectron emission. There are,
however, angular dependences in the polarization
effects ' and deviations can be expected if the
experimental averaging is incomplete. If electrons
are detected, careful attention must be paid to this
problem, particularly at the higher photon energies
for which the initial electron energies are electron-
optically significant. Vfith ion detection in a Q

measurement, the directional averaging is not a
problem, since the recoil energy of the ion is neg-
ligible.

For these three compelling reasons we chose to
measure Q rather than P or R. The main advantage

for pursuing a measurement of P or R is that the
required apparatus can be regarded as a source of
polarized electrons at the photon wavelengths for
which P or R are close to unity. The requirements
for optimum performance of such a source, how-

ever, are so different from the requirements for an
accurate determination of x that these two goals
have been pursued separately in this laboratory.
In this paper, we report only the work on the mea-
surement of the strength of the spin-orbit pertur-
bation. Parallel to this work, a polarized electron
source, based on photoionization of unpolarized
cesium atoms by circularly polarized light and

designed for yielding a high current of highly po-
larized electrons with a small energy spread, has
been built and tested" and is now being employed
in an e-H low-energy scattering experiment. A

detailed report on this polarized electron source
will be published separately.

B. Apparatus

The apparatus, shown schematically in Fig. 3,
was a crossed-beam system. An atomic beam
produced by effusion from an oven and state select-
ed by passage through a permanent six-pole mag-
net was intersected by a monochromatic, circularly
polarized light beam. .In the interaction region a
weak magnetic fieldof 2 G(produced by Helmholtz
coils not shown in Fig. 8) was applied parallel to
the incident light beam. The atomic-beam intensity
was monitored by means of a hot-wire detector;
the light intensity was monitored by a photocell.
The alkali-metal ions produced in the interaction
region were accelerated onto the cathode of an
electron multiplier and counted. As seen from
Eq. (2. 8), measurement of the polarization param-
eter Q as a function of the photon energy E re-
quires polarization of atom and photon beam and
measurement of the ion-counting-rate asymmetry
5(E). Since the six-pole magnet produced only
positive atomic polarization the photon polarization
was reversed for measuring the counting rates
~' and C . Details of the system are discussed
below.

Atomic-beam system. In order to lower the
molecular content in the atomic beam the alkali-
metal oven was designed as a two-chamber oven
with reduced vapor pressure and increased tem-
perature in the second chamber from which the
beam emerged through an orifice 0. 1 cm in diam.
After preliminary measurements indicated that
the two-chamber design did not reduce the molecu-
lar content sufficiently, a central beam stop 0. 16
cm in diam was inserted 1.8 cm upstream from
the entrance to the six-pole magnet and 5. 6 cm
downstream from the oven orifice. This stop
blocked the line of sight between the oven orifice
and magnet exit. Since alkali-metal molecules
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FIG. 3. Schematic diagram of the
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view, except for enlarged part).
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are not affected by inhomogeneous magnetic fields
and therefore travel on straight trajectories, they
were eliminated from the beam completely. The
six-pole magnet was 17. 5 cm long and had a gaa gap
diameter of 0. 32 cm. The magnetic field at the
pole tips was approximately 8500 G. A detailed
discussion of the molecular content in alkali-metal
beams and the focusing properties of six-pole mag-
nets was presented in a previous publication.
Highly purified alkali metal in 2-g glass ampoules
was used for loading the oven. The ampoules were
cracked inside the oven in an argon atmosphere.

OPtical system. Light from a xenon high-pres-
sure arc lamp (Hanovia No. 959-C) was passed
through a grating monochromator (Bausch and

Lomb Nos. 33-86-25 and 33-86-01) whose slits
were set for a spectral resolution of ~ ~= 16 A.
The monochromator was calibrated with a mercury
spectral lamp. As a linear polarizer we employed
a dichroitic film (Polacoat PL40) deposited onto a
fused-quartz plate. The quarter-wave plate (B.
Halle Nachf. , Berlin) consisted of two crystal-
quartz plates, sandwiched together with their fast
axes 90' apart and ground to a thickness difference
such that the resulting optical-path difference for
the two polarization states was 4 ~ at &= 2800 A. .

This provided a high degree of circular polariza-
tion over a wide spectral range (cf. Fig. 5). Both

the linear polarizer and quarter-wave plate were
mounted in rotatable holders. The light was fo-
cused onto the atomic beam by Suprasil quartz
lenses. Several well-blackened apertures (not
shown in Fig. 3) were built into the vacuum cham-
ber to reduce stray light. The light intensity was
continuously monitored by means of a photocell
with 8-5 spectral sensitivity.

Ion-detection system. The alkali-metal ions
produced by photoionization were accelerated ver-
tically down (cf. enlargement of Fig. 3) onto the
mouth of a Channeltron multiplier (Bendix No.
4028~ The repeller electrode above the ionization
region was at potential of +4 kV, and the mouth
of the Channeltron was at -3.3 kV. The electrodes
in front of the multiplier were at variable negative
potentials optimized for ion transfer.

C. Photon Polarization

The determination of P» is straightforward in

principle, but was somewhat complicated in prac-
tice because the optical elements were not ideal
The light emerging from the monochromator was
not unpolarized; the linear polarizer was imper-
fect; and the quarter-wave plate was a true —~

0
rue 4

plate only at ~= 2800 A. Since these instrumental
effects were all wavelength dependent, the measure-
ment of P» had to be carried out over the entire
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wavelength range used (3200—2200 A).
The light leaving the optical system contained

an unpolarized component and an elliptically
polarized component. Therefore the light must be
characterized by a total polarization P„,& 1. By
P», however, is meant the degree of circular
polarization. From considerations of polarization
vectors in Poincare space it can be shown that
P» and P„t are related by

Pyh [Ptot Plin ] (3. 1)

where P„,is the degree of linear polarization. The
determination of P» was accomplished by separate
measurements of P&f„and Pt„.

For both of these measurements a linear analyzer
was introduced. The intensity modulation% pro-
duced by the rotation of the analyzer was measured
for the following two cases: (i) settings of the
quarter-wave plate which produced minimum modu-
lation and were used in the photoionization experi-
ment, and (ii) settings of the tluarter-wave plate
which produced maximum modulation at eachwave-
length. The intensity modulation K is proportional
to the degree of linear polarization P of the light
incident upon the analyzer. This leads to p = Pff,
for case (i) and P =P„,for case (ii).

If I,„and I;,denote, respectively, the maxi-
mum and minimum transmitted intensity, K is
given by

K = (I,„I„)/(I +-I „). (3. 2)

If the analyzer had been ideal, p would have been
equal to SR. However, the analyzer had finite trans-
mittances for both polarization states. For linear-
ly polarized incident light the analyzer can be charac-
terized by two transmittances T and t corresponding,
respectively, to positions for maximum and mini-
mum transmission. Both transmittances were
wavelength dependent. Under these nonideal cir-
cumstances P is given by

ments it was established that the stray light was of
0

wavelengths longer than 3200 A. As seen from
Fig. 4, the ratio of the counting rates with filter
"in" and filter "out" displayed the same wavelength
dependence as the filter transmission curve. In

other words, the stray light which remained when

the filter was inserted corresponded to photons of
energy less than E,„(Cs)«„„(Rb)«„„(K). Since
the polarization of the stray light differed from
the polarization of the light proper, the stray light
had to be subtracted from the photocell signal dur-
ing the measurement of the modulation K given by
Etl. (3. 2). This subtraction was achieved by mov-
ing the filter in and out of the light beam while
the analyzer was rotated. Only that part of the light
signal which was doubly modulated was used for
the determination of SR.

Checks were made to ensure that the quartz
window and the lens mounted inside the vacuum
chamber (see Fig. 3) did not alter the light polar-
ization. In our data-taking procedure four differ-
ent combinations of polarizer settings were em-
ployed for obtaining circularly polarized light.
The light polarization was measured for each of
these settings, and the four polarizations were
averaged. The result P»(E) is presented in Fig.
5. The proper sign of P,„=(I,„)was determined
through a comparison of our optical elements and

magnetic-field direction with those employed in a
high-resolution resonance experiment on Bb vapor
optically pumper' by D, -resonance light. ~~ 3'

D. Ion-Counting-Rate Asymmetry and Background Corrections

The ion-counting rates C'and C used for calcu-
lating the asymmetry 5 according to Eq. (2. 12) con-
tained corrections for background effects and vari-
ations in light and atomic-beam intensities. Since
data were always taken in the sequence C', C, C,

p = I(1+7)/(1 —r)]K, (3. 3) 0.8—

where r= t/T & 0. In a separate measurment v(&)
was determined using the analyzer together with a
linear polarizer and was found to vary between
0. 05 and 0. 01 over the wavelength range &= 3150
to 2200 A. A check was made to ensure that the
polarizer and analyzer had the same optical prop-
erties.

The light measurements were further complicated
by the fact that the monochromator transmitted
some stray light. The presence of the stray light
was detected through the use of a filter whose
transmission curve is shown in Fig. 4. Vfith the
monochromator dial set at && 2600 A and the filter
inserted, the $-5 photocell continued to detect
light. From cesium ion-counting-rate measure-
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ION COUNTING RAT
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F ILT ER

0, A ~ ~ ~ ~l~
2400 2600 2800 3000 5400

gAVELE NGTH (A)

FIG. 4. Measurements demonstrating that the stray
light from the monochromator did not contribute to cesium
photoionization. The ratio of ion-counting rates with and

without the color filter in the light beam agrees very well
with the calibration of the filter transmittance furnished
by Corning Glass Works.
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C' with the wavelength held constant, any linear
variations in the product of the light and atomic-
beam intensities were automatically iaken into
account. Small nonlinear variations were corrected
with the aid of the intensity chart recordings. In
the few cases where the variations were extremely
nonlinear the entire data set was rejected.

Three different background counting rates were
measured separately with atomic beam on, light
beam off; light beam on, atomic beam off; and

light beam off, atomic beam off. These corre-
sponded to RQt+ RQ~ Rph+ RQ~ and RQ, where RQ

is the residual counting rate with both beams off,
R« is the background counting rates produced by
the atoms alone, and R» is the background counting
rate produced by the light alone. The sum R«
+ R» + R Q was subtracted from the raw countin g
rates. Typical values of the background counting
rates were R« = 7 min ', R» = 5 min ', and

RQ = 3 min '. The background correction. to the
counting rate varied substantially over the wave-
length range covered for each alkali metal. The
average correction was 10% for K, 8% for Rb, and

3% for Cs. In the worst case, the correction was
52% for K, 31% for Rb, and 11% for Cs.

An additional background effect resulted from
molecular contamination of the atomic beam.
Since the molecular photoionization cross sections
are several orders of magnitude larger than the
atomic cross sections at certain wavelengths, even
a minute contamination can lead to a substantial
reduction of the ion-counting-rate asymmetry 5

at these wavelengths. This reduction is demon-
strated in Fig. 6, which shows early data for 5/P»
obtained with a cesium beam from a conventional
oven and with no central beam stop installed. The
photon energy range in which the data points deviate
from the solid line in Fig. 6 coincides with the
region in which pronounced peaks in the molecular
photoionization cross section have been observed.

FIG. 5. Circular polarization of the photon beam as a
function of the photon energy. Four different combinations
of polarizer and quarter-wave plate settings were used
in the experiment, which ideally should have yielded the
same value for ) P h j . In reality, slight deviations in mag-
nitude were found as indicated by the error bar.

In order to eliminate this molecular effect, a two-
chamber oven was designed. This measurement
was not sufficient for work with potassium; con-
sequently, a central beam stop was introduced.
The data for all three alkali-metal atoms presented
in Sec. IV were obtained with the central beam
stop in place.

One type of background has not yet been consid-
ered; viz. , ionization of alkali-metal atoms by im-
pact of wall photoelectrons. This background ap-
pears only with both atom and photon beam "on"
and therefore is not contained in RQ, R,&, or
R,„. Only photoelectrons originating at the surface
of the electrode above the mouth of the Channeltron
(cf. Fig. 3) which was kept at about -1 kV could
have traversed the atomic beam. Great care was
taken to reduce scattered light in the ionization
region. The probability for an incident photon to
backscatter to the electrode and to eject a photo-
electron is quite small. On the other hand, the
probability need be only 10 ' for this type of back-
ground to become serious. The cross section for
alkali-metal ionization by impact of 1-2-kV elec-
trons ls probably on the order of 10-16 em2, as

WAVELENGTH (A)

5200 5000 2800 2600 2400
O. IO I I I I I I I I I

2200

0.05—

0.00—

Qf
II
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-0.IO—

-O.I5—

I I I I I I I I I I
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PHOTON ENERGY, E(eV)

FIG. 6. Early data on P/P h for cesium obtained before
the central beam stop had been inserted at the entrance
of the six-pole magnet. The solid line is a fit based upon
a linear function for x(E). Note the deviation of the data
points from the solid line, particularly at higher photon
energies. This is interpreted as an effect of photoioniza-
tion of Cs2 molecules.
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judged from an extrapolation of the data of McFar-
land and Kinney. ' ' By comparison, the photo-
ionization cross section at the rubidium minimum
is only 10 cm . Therefore this kind of background
cannot be ruled out. If present, it would be most
apparent near the crass-section minimum of Bb,
since it is known that the photoelectron yield in-
creases rapidly with increasing photon energy
and the Rb minimum lies at a higher photon energy
than the K or Cs minimum.

Atom
Parameter

ci (eV )

c2 (eV ')
c, (eV-')

Eo (ev)
&at

Potass ium . Rubidium

32, 8+3. 2 9. 26 ~ 0. 97
34~16 —3.7+4. 0

—76~ 44 —5.4+4. 9
4. 556 + 0. 005 4. 955 s 0. 022
0. 254 + 0. 014 0. 203+ 0. 007

Cesium

2. 99~0. 13
—0. 34+ 0. 32

0. 37 ~ 0. 53
4. 534 s 0. 011
0. 142+ 0. 002

TABLE I. Results of data analysis.

E. Data-Evaluation Procedure
hx = [dx(E)/dE js ~ aE . (3. 8)

For the data evaluation a computer program was
used to perform a multiparameter regression
analysis. ' Five parameters, c&, c~, c3, E0, and
I',&, were iteratively adjusted in the function
q(E)P„, where

In no case did the correction g~ exceed 0. 03. The
smallness of the correction indicates that the rec-
tangular transmittance function of the monochromator,
implicit in Eg. (3. 6), is a sufficiently accurate
representation.

Q = (2x —1)/(x + 2) (3. 4) IV. RESULTS

and

(2x; —1)/(x, + 2)
1+q; (x, , hx) (3. 6)

q, (x,t, m) = (-.'~x)'/3(x', +2) (3. 7)

( ) = &(
— 0) + z(E —Eo) + cs(E'-Eo),

(3. 5)
in order to obtain a best fit to the data points
&(E;)/P»(E;). The data points were weighted in
accordance with the experimental errors in the
measurement of 5/P, „. The ratio (rms data)/(rms
residuals) and the Durbin-Watson statistics for or-
dered residuals"' were used as indicators of the
goodness of fit. The fits obtained with the third-
degree polynomial, given by Eq. (3. 5) were sig-
nificantly superior to fits obtained with first- and

second-degree polynomials. Use of a higher-degree
polynomial did not seem to be warranted (cf. Sec.
V).

The computer program contained a point-by-
point correction to (6/P»);, thereby accounting
for the averaging of the measured effect produced
by the finite spectral width 4~ of the light. Since
the spectral distribution of the light source d:d not
vary by more than 5% over the interval (E, —~E/2,
E;+ AE/2), where b.E = (dE/dX) AX, the approxi-
mation can be made that the spectral distribution
is constant over this interval. The effect of the
finite spectral width can then be taken into account
in the following manner:

J ' "
(2x —1)dx

x)-h, g/2
5(x(, &x) =

The five parameters determined by the computer
fit are presented in Table I. Errors refer to 1
standard deviation. Since the errors are corre-
lated, we have displayed the complete error ma-
trices in Table II. In Fig. 7 we have given a
graphical presentation of our measurements. The
data points correspond to Q;=a(5/P»);, where
a= (I+@;)/P,&. The vertical error bars, calcu-
lated from hQ; =a A(5/P»);, represent 1 standard
deviation, while the horizontal error bars corre-
spond to the error in the monochromator dial set-
ting, estimated to be +5 A. (As explained in Sec.
III E, the finite spectral width ~& is taken into
account by the correction term q;. ) The curves
Q(E) in Fig. 7 were calculated from Egs. (2. 13)
and (3. 5) using the parameters given in Table I.

The main goal of our experiment was the deter-
mination of the perturbation parameter x(E) over
a wide energy range. In Fig. 8 are shown the
functions x(E) for the three alkali-metal atoms as
determined from Eq. (3. 5) and Table I. The error
band was calculated with the aid of the error ma-
trices given in Table II. A measure of the strength
of the spin-orbit interaction is given by the energy
separation of the maximum and minimum of Q(E)
(cf. Fig. I) which corresponds to the zero points
of R& and B3, respectively. An equivalent measure
is given by (dE/dx)0= -I/e, , the reciprocal of the
slope of x(E) at E = Eo (cf. Fig. 8 and Table I). As
can be seen, the strength increases from potassium
to rubidium by approximately a factor of 3. 5 and
from rubidium to cesium by approximately a factor
of 3.

Although the quadratic and cubic coefficients c2
and c3 for rubidium and cesium do not have devia-
tions from zero which are statistically significant,
it should be noted that there is no theoretical rea-
son whatever why x(E) should be linear. On the
contrary, from the known values of the doublet
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Parameter C(

TABLE II. Error matrices.
C2 C3

Potassium
Cg

C2

C3

Pa~

0. 104 E+ 02
0. 281 E+ 02
0. 168 E+ 02

—0. 126 E —01
0 ~ 345 E-01

0. 255 E+ 03
—O. 321 E+ 03
—O. 622 E —Ol

0. 172 E 00

0, 196 E+ 04
O. 483 E —Ol

—O. 222 E 00
0. 230 E —04

—0. 553 E —04 0. 199 E —03

Rubidium
Cf

C2

C3

Cg

C2

C3

Pa

0. 935 E 00
—0. 142 E+ 01
—0. 283 E 00

0.401 E —02
0.435 E —02

0. 170 E —01
—0. 523 E —02

0. 351 E-Ol
—0. 842 E —03

0. 284 E —04

0. 158 E+ 02
0. 180 E+ 02

—0.670 E —01
0. 110 E-02

0. 103 E 00
0. 924 E —01

—0. 177 E —02
—0. 247 E —03

Cesium

0. 242 E+ 02
-0.727 E —01

O. 580 E —02

G. 279 E 00
—O. 289 E —02

0. 320 E —03

0.465 E —03
—0.821 E —05

0. 128 E —03
0. 600 E —05

0.443 E —04

O. 349 E —05

0.5—

PHOTON ENERGY, E (eV)
4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4

I
'

I
'

I

' "I '
I

'
I

'
I I

Eo

LU—0.0
C3

line-strength ratios of the discrete I' states at low
energies and the fact that both R~(E) and R&(E)
must approach zero at high energies (a consequence

oi the f sum rule ), it follows that x must be a
nonlinear function of E. This nonlinearity is dem-
onstrated by the results for potassium, where the
domain of E covered in the experiment correspond-
ed to the largest range of x.

As explained above, five independent parameters
were determined from a computer fit to the data
points. Although the statistical indicators give a
high confidence in the results obtained, an addi-
tional confidence check is provided by a comparison
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FIG. 7. Data on Q(E) for potassium, rubidium, and
cesium. The solid lines represent the best fit based upon
a cubic funct, ion for gN).
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FIG. 8. Perturbation parameter g(E) obtained from
our measurements of Q(E). The band corresponds to 1
standard deviation. Below the threshold of cesium, the
energies of some of the discrete P states are indicated b
vertical lines.
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V. CONCLUS&ONS

A. Comparison with Other Data on x(E)

Vfeisheit and Dalgarno ' have recently extended
their theoretical work on core-polarization effects
in n0S -vI' transitions of potassium to include the
effects of the spin-orbit perturbation. They em-
ployed the value E&= 4. 556 eV given in Table I to
set the value of the core radius at r, = 4. 220a0.
They then calculated x(E) between threshold and
4. 8 eV and obtained quantitative agreement with
the potassium curve in Fig. 8. Similar calculations
for rubidium and cesium, which have very recently
been carried out, also show good agreement with
the curves in Fig. 8.

Experimental values of x(E) can be inferred from
measurements of a (E), P(E), and p(nP), among
others. However, to date there exist no data which
are sufficiently accurate to provide a quantitative
check of our results for x(E). Consequently, in

TABLE III. Calculated and measured atomic polarization.

K4' Rb"' Rb8' cs 1 33

Abundance (/0)

Nuclear spin
hfs energy splitting

AS'/p, (G)
P«obtained from

calculation:
Single isotope
Isotope mixture
Interpretation

P«obtained from
data analysisa

93.1 6. 9
3 3
2 2

330 82

0.259 0. 267
0. 260

Exact value
0.254 + 0.014

72. 15 27. 85
5. 3

2
2169 4883

1OO
7

2

6568

0.168 0.251 0.125
0.191 0.125

Approximation Lower limit
0.203 + 0. 007 0.142 + 0.002

~Error refers to 1 standard deviation.

of the experimental value of I',t to an independently
determined value based upon state-selection theory.
The electronic polarization I'„of atoms state
selected in a six-pole magnet can be calculated
rigorously, provided that the magnetic six-pole
field is large compared to & W/p~, where &W is
the hfs energy splitting and p, & is the Bohr mag-
neton. Beyond the six-pole magnet P„ is a func-
tion of the magnetic field 8 in the ionization re-
gion. In the limit 8-0, I', t is given by

P„=I/(2I+ 1) .

Since the low-field region of the six-pole magnet
was blocked by the central beam stop, the six-pole
field was larger than 2000 G everywhere. From
the values of nW/ps listed in Table III it follows
that Eq. (4. 1) gives an exact value for P„for
potassium, a good approximation for rubidium, and
only a lower limit for cesium. The agreement be-
tween the experimental and calculated values,
shown in Table III, is excellent in the case of po-
tassium. The deviations in the case of rubidium
and cesium are exactly as expected. '

Secs. V 13-VD we will use our x(E) to obtain in-
formation about o'(E) and P(E) for a comparison
wi h other data available. In addition, we will
extrapolate our x(E) function into the discrete spec-
trum for a comparison with the p(nP) data avail-
able for cesium.

B. Photoionization Cross Section

~ shown by Eq. (2. 2) knowledge of x(E) can be
used to evalua. te o(E), provided some assumptions
are made about nR(E). The ratio of the minimum
to the threshold cross section o „/o,„ is of par-
ticular interest, since O,„was predicted by Sea-
ton17 and at„ is well known from direct measure-
ments as well as from extrapolation of the oscilla-
tor-strength density. From Eq. (2. 2) this ratio
is given by

./ =[nR(Eo)l/&R(E )]'(Eo/E )/(1+-' '),
(5. 1)

where E „=E0. From Fermi"s treatment of
first-order spin-orbit perturbation theory' for
the discrete spectrum modified for the continuum
transitions & we obtain

P [ E(n'P)]'"R'(n'P)
n'-no E —E(n P)

«2 " R (E')
(5. 2)

where 4v is the quantum-defect lag for the princi-
pal series (which to a very good approximation is
independent of E), r E(n'P) is the fine-structure
energy splitting of the n'P doublet, E(n'P) is the
photon energy corresponding to the unperturbed

I
n'P ) state, and R (n'P) and R (E') are the un-

perturbed radial matrix elements for transitions
to the discrete and continuum P state, respectively.
The symbol + indicates a Cauchy principal-value
integral. Note that R (n'P) and R (E') are dimen-
sionally different because the bound-state wave
functions are normalized to unity, whereas con-
tinuum-state wave functions are normalized per
unit energy interval.

From measurements of oscillator strengths and
fine-structure energy intervals of discrete I'
states together with assumptions about the behavior
of Po(E') in the continuum, &R(E) can be estimated
according to Eq. (5. 2). The function R (E') should
be consistent with experimental values of a,„and
x,„. Furthermore, R (E') must pass through zero
at E = So, and it must approach zero at very high
energies because according to the f sum rule the
continuum oscillator strength must remain finite.
A maximum in the cross section which must thus
occur between E0 and E = ~ has not yet been ob-
served. Given this uncertainty in the photoioni. za-
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TABLE IV. Alkali-metal photoionization cross sections.

Alkali metal

Potassium

Rubidium

Cesium

Authors

Ditchburn, Tunstead, Yates~

Marr and Creek

Hudson and Carter"

Seaton~
Weisheit and Dalgarno~
This work'

Marr and Creek

Seaton'
This work'

Mohler and Boeckner
Braddick and Ditchburn~

Marr and Creek

Seatone
This work'

Ref.

17
43

48
49

Threshold value

crt~ (Mb)

0.012
0.007

+ 0.002
0.010
0.002

fO. 010]
0.006

0.100
+ 0.005

f0. 100]

0.20
0.20
0.20

+ 0.01
f0. 201

Minimum value
0. q„(Mb)

0.008
0.004

+ 0.002
0.002

+ 0.002
0.0003
0.00022

0.008
+ 0.003

0.004

0.035
0.075
0.06

+ 0.01
0.03

Ratio
Omjn/0 th

0. 67

0.57

0.2

0.03
0.037
0. 02

0.08

0.04
0. 03

0.18
0.38

0.3

0. 15
0. 3

Data adjusted by Marx and Creek utilizing better vapor-pressure data.
Note that the data are consistent with a zero-minimum cross section.

Seaton gives only minimum values. The threshold values in brackets were used to calculate the cross-section ratio.
These computations are based upon our measured value of Eo.
Based upon Eqs. (5. 1) and (5.4) and the measured threshold value of &(E).

tion cross section, the function

R (E' ) = a(E' —E ) e o (5.3)

with reasonable values for the coefficients a and

5, provf des an acceptable model for calculation
of the principal-value integral in Eg. (5. 2).
Evaluation of this integral leads to the tabulated
exponential-integral function Ei(y) with y = b(E —E*),
where E* is the lower limit of integration. It is
convenient to extend the summation only over the
lowest-lying P states and to account for the higher-
lying P states by extrapolating R (E ) below thresh-
old with a correspondingly lowered integration
limit E~ &E,„.

In the case of cesium for example, we found by
numerical evaluation that at E = E,„as well as at
E =ED more than 70% of ~(E) is given by the
first term of the summation in Eg. (5. 2). This
contribution to ~(E) has an energy dependence
proportional to [E -E(noP)], where noP denotes
the lowest P state. The energy dependence of the
total AR can then be approximated by that of the

+p P term. We therefore used the approximation

~(E0)/4R(E~„) = [Egb —E(noP)]/[Ep E(npP)]

(5.4)
in conjunction with Eq. (5. 1) for determining the
cross-section ratio o,„,/o, „for all three alkali
metals. These results are compared with other

data in Table IV.
For rubidium and cesium our values are con-

sistent with all other data. For potassium our
value lies below the experimental result of Ditch-
burn et al. and that of Marr and Creek. How-
ever, our value is consistent with the measure-
ment of Hudson and Carter'7 and agrees with the
theoretical calculation of Seaton' and that of
Weisheit and Dalgarno. "

x(E)c, = —2 eV (E —4. 52 eV), (5. 5)

which, in fact, is the one deduced from our first
published results. The solid line in Fig. 9 gives
P(E) based on Eq. (5. 5). The band is the result of

C. Photoelectron Polarization

Polarized electron sources are of great current
interest in atomic as well as high-energy physics. '
Our x(E) values provide information about the rele-
vant polarization parameter P(E) [cf. Eq. (2. 10)]
which determines the maximum electron polariza-
tion obtainable in a Fano-type source based on
photoionization of unpolarized cesium atoms by
circularly polarized light. Therefore we computed
P(E) from our data. As the cesium parameters
listed in Table I show, the coefficients c~ and c3
are close to zero and c& is very close to 3. Thus
a simpler and still quite accurate description of
our cesium result can be given in the form of
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I.O r(nP) = p(nP) E(nP&/2)/E(nP&/z)

=p(nP) . (5. 6)
0.8

O
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FIG. 9. Polarization parameter I'(E) for cesium.

Extrapolation of x(E) below threshold is of par-
ticular interest in the case of cesium because it
has the largest spin-orbit perturbation. Therefore
the line-strength ratio p(nP) shows the greatest
deviation from the ratio of the statistical weights,
g3 / g/gg /2 2. In addition, the extrapolation of our
data indicates that the energy at which Rq= 0 (and
x= 2) lies in the discrete spectrum. This energy
corresponds to p=+ ~ [cf. Eq. (1.3)]. We there-
fore searched the literature for evidence that such
a great anomaly had ever been observed.

In the older literature, the quantity referred to
is the doublet-intensity (or oscillator-strength)
ratio

the more elaborate calculation, using the best cubic
function for x(E) and the error matrix of Table II.

An experiment for measuring the polarization
parameter I' of cesium was performed by Heinz-
mann, Kessler, and Lorenz. ' Their results
are given by the data points in Fig. 9. In view of
the fact that a I' measurement is much more diffi-
cult than a Q measurement (cf. Sec. IIIA), the
over-all agreement is very good, particularly in
the vicinity of the zero transition of P(E). Devi-
ations exist, however, near threshold and at high
photon energies. Heinzmann et al. in their de-
tailed report note a deviation in the zero transi-
tion of P(E) between our 1969 results [Eq. (5. 5)
and solid line in Fig. 9] and their data. As Fig. 9
shows, this deviation does not exist.

D. Doublet Line-Strength Anomaly in Cesium

In order to convert p(nP) into a value of x, we re-
wrote Eq. (1.3) in the form

2[p(nP)/2]'" ~ 1
( )

[ ( P)/2 ]1/2 (5 'I)

I I

'
I

'
I
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FIG. 10. Data on the perturbation parameter x(E) for
the discrete spectrum of cesium.

in which the upper signs apply to region x & 2, i. e. ,
the low-energy side of the p = ~ pole, while the low-
er signs apply to the region x & 2, i. e. , the side
between the pole and the ionization threshold. We
have used the discrete energy values E(nP) based
on the spectroscopic work of Kratz.

With increasing quantum number n, the cesium
doublets get weaker and narrower very rapidly,
making measurements of r(nP) very difficult.
Only a few investigators studied the oscillator-
strength ratios of the higher nP states. Their
results, together with two theoretical computations
and the extrapolation of our continuum results,
are presented in Fig. 10. The first investigator
who extended the measurements beyond n = 8 was
Sambursky (1928). He found an increase of r(nP)
up to n = 10, followed by a marked decrease of ~
f rom n = 10 to n = 13. He presented a plot of r(E)
which clearly indicates a discontinuity between
e = 10 and n = 11. Consequently, we used the upper
signs of Eq. (4. 7) for calculating the x values
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TABLE V. Experimental values for the doublet-intensity ratios, for the cesium P states with g =7 and 8.

Year

1914
1921
1921
1924
1926
1926
1927
1927
1928
1928
1929
1929
1930
1930
1933
1939
1952
1966

Author

Fuchtbauer and Hofmann
Bartels
Roshde stvenski
Rasetti
Kohn and Jakob
Fuchtbauer and Maier
Filippov
Hagenow and Hughes
Sambursky
Jakob
Fuchtbauer and Wolff
Bleeker
Minkowski and Muhlenbruch
Schutz
Kohn and Hubner
Beutell
Kvater and Meister
Agnew

Ref.

63
64
65
66
67
68
69
70
56
71
72
73
74
75
76
58
59
61

Method

Absorption
Absorption
Dispersion
Magneto-optics
Emission
Absorption
Emission
Emission
Emission
Emission .

Emission
Emission
Magneto-optics
Absorption
Emission
Emission
Dispersion
Absorption

y (7)

4.07
3.85 + 0.09

3-4
3.58

5

4.0
3.3
5.5

4. 27 +0.12
3

4.1
4. 285

4. 15+ 0.28

5.00, 5.23
7 ~ 4

5. 6

10

4.6

8.0+ 0.3
8.7
8.0

7.63+ 0.76

corresponding to Sambursky's results for n - 10
and the lower signs, for n ~ 11. To date, no one
has been able to verify this decrease of ~ for the
higher nP states; on the contrary, subsequent in-
vestigators have contradicted Sambursky's work.
This started in 1929, when Waibel reported r(10)
= 5. 2 and r(ll) = 10.0 (not included in Fig. 10). In
1939 Beutell" measured x values which are the
largest ever observed: r(10)= 50-80 and r(11)
= 110-170. Since it is not clear, to which side of
the pole this latter value belongs, we plotted two
branches for Beutell in Fig. 10. In 1949 Kratz
published his measurements on the cesium lines,
and for the doublets resolved up to n= 21 he stated,
".

~ ~ an inspection of the cesiumplates shows not
the decrease observed by Sambursky, but rather
an increase in the ratios, perhaps to an asymptotic
value, with increasing principal quantum number. "
Kvater and Meister (1952)' obtained r values no
larger than 8. 1 for n = 8 through n = 11. What is
notable is the vigor with which Kvater and Meister
criticize Sambursky as well as Beutell. The cal-
culations of Stone (1962) are based on one-electron
wave functions in a central potential, tailored to
give good reproduction for the discrete energy levels.
Stone calculated the oscillator strengths with the
inclusion of a spin-orbit term which led to the x
values plotted as the dashed line in Fig. 10. The
most recent experimental data are those of Agnew

(1966), ' which are in good agreement with Stone' s
results in the range of higher n. In a calculation
which takes into account not only the differences

in wave functions due to spin-orbit interaction,
but also the configuration mixing caused by that
interaction, Warner (1968) obtained results cor-
responding to the thin solid line in Fig. 10. In

summary, all the more recent work, experimental
as well as theoretical, yields x values which lie
considerably above the extrapolation of our x(E)
data.

Our data support the assumption that the results
of the early work of Sambursky and Beutell have
more validity than later critics were willing to
concede. We do not know the reasons for the
discrepancies exhibited in Fig. 10. Doublet oscil-
lator-strength ratios are difficult to measure.
Even for the lower states n = 7 and 8, for which
oscillator strengths and energy. splittings are
large, the experimental results of different authors
show considerable variation, as exhibited in Table
V. The papers referred to give detailed accounts
of the technical problems with which each one of
those experiments was beset. Nevertheless,
modern spectroscopy should yield a definite answer
to the existing discrepancies. Work with that aim
is currently being pursued.
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We develop a detailed theory to calculate multiple-quantum transition probabilities. It is
shown that the quantum electrodynamical (@ED}approach must be used in order to explain quan-
titatively the experimental observations of Kusch. The anomalous behavior of shifts in reso-
nance frequency and saturation of widths of transition probabilities can be explained on the basis
of a @ED renormalization principle. In this paper, we work out the detailed calculations for the
case of a double-quantum transition quantitatively. The agreement between @ED calculation
and Kusch's observation is remarkable. We conclude that the renormalization principle of
@ED is important even for low-frequency and finite-intensity fields.

I. INTRODUCTION

In an earlier paper' a quantum electrodynamic
(QED) theory of induced transitions in atoms and
molecules was developed and shown to be distinct
from the semiclassical theory when the inducing
field is not weak. In this paper the methods de-
veloped are applied in detail to the experiments
of Kusch resulting in excellent agreement between
theory and observation. No such agreement can
be obtained by applying the semiclassical theory.

Kusch used a five-level system, so that a the-
oretical discussion requires the use of higher or-
ders in perturbation theory. When orders higher
than the lowest nontrivial order are included, it is
necessary to include renormalization effects pro-
duced by forward scattering processes just as in
higher-order radiative correction calculations it
is necessary to take wave-function renormalization
produced by virtual-photon processes into ac-

count. In Sec. II this renormalization procedure
is developed, and in Sec. III it is applied to a
double-quantum transition observed by Kusch,
yielding both the lineshift and the linewidth as
functions of inducing field strength. The results
are compared with observation and with the semi-
classical results obtained by Salwen. ' In Sec. IV
some comments on the method and its relation to
the Majorana formula' are given.

II. RENORMALIZATION BY FORWARD SCATTERING

The Green's function for an electron moving in
a static potential V(r ) and in a radiation field with
one mode excited satisfies the Schwinger-Dyson
equation given in I, namely,

G(x, x') =S,(x, x') i Jd'x"d'x" &, (x, x )

x ~(x",x"')G(x"', x'), (&)

where Sz(x, x') is the propagator in the static fieM


