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The behavior of electron wave functions near but outside the atomic nucleus is discussed.
It is shown that point-Coulomb shapes persist to quite large distances (~ =—5X~, where X~ is
the Compton electronic wavelength) for bound states and also for energy-shifted continuum
states. The screening effects on continuum-state normalizations cancel the screening effects
on the kinematic factor pE in cross sections. These results are used to examine the nor-
malization screening theory in atomic photoeffect, which is characterized by distances both
small on an atomic scale and large compared to the size of the nucleus. It is argued that
this theory, which describes screening effects simply as a change in normalization, can be
good to 1% for photon energies more than 10 keV above the K-shell threshold in Al, 30 keV in
Cu, 60 keV in Sn, 150 keV in Pb, and 200 keV in U. This agrees well in order of magnitude
with exact numerical calculations.

I. INTRODUCTION

Near but outside the nucleus of an atom an elec-
tron sees a point-Coulomb potential corresponding
to the nuclear charge Z. The electron wave func-
tion has a hydrogenlike shape; the only effect of
atomic electrons, as described by a central poten-
tial V(x) deviating from the point-Coulomb form,
is to modify the normalization. "" This change in
normalization is significant both for bound states
and for low-energy continuum states.

This analysis of electron wave functions permits
a simplified discussion of processes characterized
by small distances on an atomic scale: Atomic-
electron screening may be ignored except as an ex-
ternal multiplicative factor. One such process is
orbital electron capture by a nucleus, since only the
region of overlap between electron and nucleus
contributes; Brysk and Rose ~"' summarized the
argument and gave the K- and I.-shell normaliza-
tion changes due to screening as well as the further
changes due to finite nuclear size. In ordinary P

decay, on the contrary, the energy of the emitted
continuum electrons is ordinarily large enough that
screening effects are unimportant. '"

It is less obvious that the analysis applies to
atomic photoelectric effect. Pratt some time ago
argued that over a wide energy range of photon en-
ergies electron-Compton-wavelength distances
(r= 1) dominate the process and that at such dis-
tances the normalization screening theory that we
have described still applies; applications were
made in the MeV ranges and later extended below
100 keV by Schmickley and Pratt. We will give
and extend these arguments shortly. If they hold
for photoeffect, it is not surprising that they also
hold for internal conversion, where the real pho-
ton is replaced by a virtual photon from the nu-

cleus —Band, Sliv, and Trzhaskovskaya have re-
cently demonstrated explicitly the dominance of
electron-Compton-wavelength distances in internal
conversion. For the photoeffect, a striking conse-
quence of the analysis is that the shapes of the
angular distributions of photoelectrons, and the
polarization correlations as well, are independent
of screening. Simple relations among cross sec-
tions from different shells also follow. Another
consequence is that the "standard" screening the-
ory (inner and outer screening, effective charge
Z,«=Z —s) is incorrect. Similar results must fol-
low in internal conversion. Recently, Tseng and
Pratt' have verified that the only significant effect
of atomic-electron screening on low-energy atomic-
field pair production cross sections also comes
from the change in normalizations of the eontinuum-
positron-state and the continuum-electron-state
wave functions; thus similar results may be ob-
tained for the dependence of threshold pair produc-
tion on screening. Photoeffect, internal conver-
sion, and threshold pair production are examples
of processes characterized by small distances on
an atomic scale, but not small enough distances
for nuclear size effects to enter. (Nuclear size
effects require large momentum transfers, which
even for high-energy photoeffect occurs only at
large angles, making a negligible contribution to
the total cross section. )

Recent numerical calculations of Ron and Sco-
field suggest that the normalization screening the-
ory of photoeffect works at lower energies than
had been anticipated, in some cases as low as 10
keV. This has led us to examine the theory in
greater detail. In Sec. II we estimate screening
effects on electron wave functions, bound and con-
tinuum, and determine at what radius deviations
from the point-Coulomb shape become important.
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We compare our expectations with numerical cal-
culations and indeed verify that point-Coulomb
shapes persist to quite large distances (r = 5) for
bound states, independent of the choice of screened
potentials. For reference we tabulate the square
of the ratio of the Hartree-Fock-Slater (HFS) to
point-Coulomb bound -state normalization con-
stants. For continuum wave functions we find sim-
ilar results, particularly when the comparison is
made between Coulomb functions and screened
functions of shifted energy appropriate tother-shell
photoeffect. In Sec. III we use this information to
analyze the photoeffect. We estimate the dominant
regions in r, and then estimate in what ranges (of
Z, energy, shell) and with what accuracy photoelec-
tric cross sections can be obtained from the normal-
ization screening theory. We compare our predic-
tions with numerical calculations.

II. BEHAVIOR OF ELECTRON WAVE FUNCTIONS NEAR
ATOMIC NUCLEUS

In the small-z region let us describe bound and
continuum wave functions, apart from normaliza-
tion, by the first few terms of series in x, and ex-
amine the dependence of these series on screening
by a potential with a similar expansion. Consider
the Schrodinger radial equation

R"+ 2r f't+ 2(T —V) 8 —l (l + 1) rA = 0, (2. 1)

where V is the screened central potential and T is
the kinetic energy of the electron. Taking out a
function x' with A =x's gives

—,s + (l + 1)r ' s + (T —V) s = 0 . (2. 2)

For now we may normalize s(0) =-1. For the cen-
tral potential V= —(a/r+ YD+V), with V(0) =0,
a = Z&, the expansion of s in z begins

—,'s,"+(l+1)r 's,'+(T, —V,) s, =0, (2. 3)

as=1- + ~ ~ ~

l+1
with the x term dependent on T and Vp but not on
Y. (Of course, for a bound state, T will be de-
termined from V. ) For a high-energy continuum
state the result assures T~«a. Hence until the
x term becomes significant s is the same as in
the point-Coulomb case I/'p = V=0.

Thus to study the behavior of s at small distances
we factor out the Coulomb solution by substituting
s = s, 8', with s, satisfying

(il Yli)W=1+2 y + ~ ~ ~ (2. 5)

To proceed further requires discussing properties
of V. (Note that to this order the result does not
depend on s, /s„and so in fact does not require
that the unperturbed case s, refer to the point-
Coulomb potential. )

Most analytical representations of the screened
potential V are analytic functions in the argument
Xx, giving a well-behaved power series in Ax, with
X some number such as 1.130.Z' . Since such po-
tentials lead to satisfactory eigenfunctions and
eigenvalues, we here assume that V has these
properties, at least to some order in g. Other
potentials are also possible, such as the z' ex-
pansion of the Thomas-Fermi case'; they require
separate discussion but appear to lead to similar
results.

We now assume

Y= —(a/r) [1+V, ~r+ V,(~r)'+ V, (xr)'+ . . ],
(2. 7)

so that

Vp= Vg~, V='V2, ~ «+V3~ a& + ' ''
~

3 2

For example, in the simple exponential model,
V= —(a/r)e '", V, = —1, Va=-,', V3= — 6, etc.
Note that our assumption accords with the previous
characterization of Y as being O(A. ). Now using'
the expectation values of powers of ~,

(iver /i) = [3n -l(l +1)]/2a,

(ij/ r fi ) = n [5n + 1 —3f (l + 1)7/2a

we can write, neglecting O(A.4),

culate 5T from 5V with perturbation techniques.
The first-order contribution is

-&i[ v, +v[i&= —v, -&i( v(i),
with a second-order contribution

i(il vln) I,

« -«n

Vp has no other effect. If V is characterized by a
perturbation parameter A. , then, neglecting O(X ),

5T-&V= -&i~V~i)+V. (2. 5)

Remembering that V(0) = 0 and noting that s,(0)/
s, (0) = const, we obtain W through order r as

where V, = a/r Defining -5T=—.T —T, and 5V= V
—V, = —(Y0+ Y), W satisfies

~l 1

+ —' + W +(5T —5Y) W=0,
2 Sc

(2. 4)

with W(0) =1 and W (0)=0.
Consider now the bound-state case. We ean cal-

5T —5V:——2 [3n —l(l +1)]Va&

-n [5n +1 —3l(l+1)] V&X /2a

+ Y2~'a~+ V3 X'g~'

= —bp& + V2& ax+ V3A, ax2 2 3 2 (2. a)
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The lowest-order result for S' is then

bpX
2l+3

1+ 3i[3n —l(l +1)t V3& r
2l +3

(2. 9)

2n +l+1 ax
)+1 (2l+2)(2l+3) n

a [n —(l + 1) ]a x
i+1 (&+1)'(2f+ 3) n'

a 2-dar.
+ 1

(2. 10)

Note also that when n = l +1 we have exactly s, /s,
—= -a/n= —a/(l+1); i. e. , there are no higher terms.

Our equation for 5' is now of the form

W' a 2 l+1
+ — —da 'Y+ W

2 l+1

+(-b, ~'+ V, ~'a~+ V, X'ar') iV=0, (2. 11)

with the solution

bp& ~2 2

&:-1+ — +c3 ~ +c4~2l+3 (2. 12)

where

n I5n + 1 —3l (l + 1)] V3 X

[2b() /(l +1)(2l +3) —V3 ]ah
3(l + 2)

[n —(l+1) 1V3X a
(l+1)(l +2)(21+3)

n [5n + 1 —3l (f + 1)] V3 X

3(l+ 1)(i +2)(2l +3)

which neglects relative O(A. ) in the 3 coefficient
and terms in x . Note that this correction is al-
ways positive. The difference in wave function for
different choices of potential is also given by this
formula with V2 replaced by 6 V2—the difference of
the V2 coefficient of the two potentials. If we are
guided by the exponential model (V3=-,'), we con-
clude that the magnitude of deviation of wave func-
tions from Coulomb shape at small distances is
approximately

1 3n'-f(i+1)
4 2l +3

It is possible to obtain a consistent result for
8' through order x'. For this purpose one needs
the first two terms in the small-r expansion of
sc /sc:

s, = e "i" F(l + 1 —n, 2 l + 2, 2a3'/n)

e, =(4( +10) '(Sa(l+)) 'c,

2b, ~3a3rn3-(l+1)3]
1( ()2(2 3)2 ) B~ 8) . (2 ~ (S)

Note that when n = l +1, c3 and c4 are of one higher
order in X. One can now see by inspection from
the differential equation (2. 11) that if c3 is of higher
order in A. for n=l+1, so will all higher-order
terms in the expansion, since there are no d terms
or higher. This means that for n =l +1 the devia-
tions from Coulomb shape will remain small for
larger ~, i.e. , x =1, as long as X is small, since
the higher-order term of the expansion will remain
small, O(X), whereas for n &f + 1 all terms of the
series will there be of the same magnitude. Note
that the n=l+1 case is the nodeless case. When
there are nodes and screening shifts their position
even slightly, 5' will have singularities near the
node, so the formulation is not suitable at such dis-
tances. Numerically we will see that in fact
screened and Coulomb shapes remain close even
beyond the first node.

How is this analysis modified for continuum
states '7 We have already noted the requirement
Tx «a for the expansion

as=l- + ~ a ~

Z+1

For T and x which do not satisfy the requirement-
for example, Tr = O(1)—one is already in the os-
cillatory region of the wave function. The same
requirement enters Eq. (2. 4) for W in the factor
s,'/s, . One understands the necessity for this on
realizing that once again screening is shifting the
position of nodes and at such points 8' must diverge.
For high energies this requirement, T~«a, is in
fact unnecessarily restrictive in a discussion of
screening effects, but the present techniques cannot
be used; we will show some numerical results.

For the low-energy case T& O(a ) we may use our
previous analysis. The only difference is how we
specify 6T, the change in kinetic energy of Coulomb
and screened calculation. Since T is no longer cal-
culated from V for continuum states, one would ex-
pect 5T=O. But in fact this is generally not the
correct physical choice. For example, in the
atomic photoeffect with a given incident photon
energy, if the bound-state energy is shifted 5T~
because of screening, the ejected continuum elec-
tron will also have an energy shift 5T= 5TJ3 and a
shape considerably closer to the Coulomb shape at
small distances than for 5T =0. A shape even
closer to yoint-Coulomb results from the choice
5T = —Vp, for the z term in W then vanishes.
Noting that Vp has the opposite sign for a positron
(changing the sign of V), we realize that this is
the proper choice to make for pair production: For
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FIG. 1. Screening effects on the shape of Dirac radial
bound-state wave functions G and I' near the atomic
nucleus for Z =13. (X, in the figure is the Compton wave-
length. )

a given incident photon energy, point-Coulomb pro-
duction of (E„E) should be compared with a screened
production of (E + Vp E Vp).

We may summarize the lowest-order results for
8' in these three cases:

(i) fT=O,

~0&'
2l+3 2l +3

1.04

y=f, TC = lakeV
y=f, TC = a) eV

1.05

for the coupled radial wave functions of the Dirac
equation and have verified that relativistic effects
do not change the conclusion that deviations from
Coulomb shape are small at these distances. The
algebra is considerably more complicated and we
shall not reproduce it here. Some features do
differ from the nonrelativistic case. " Most of
these differences can already be seen in the Klein-
Gordon case with its extra V term. As a result
there are extra screening-dependent terms of rela-
tive order a/x —at small x there are now linear as
well as quadratic screening terms in ~, but by
Compton-wavelength distances the quadratic terms
will dominate, so our earlier estimates still apply.
In addition, in the Dirac case the linear term of
the small-component wave function has a signifi-
cant energy dependence, resulting in a greater de-
pendence on screening.

We now illustrate these ideas by showing in Figs.
1-4 and Tables I-III the point-Coulomb and
screened wave functions (omitting the normaliza-
tion) obtained in numerical calculations with the
Dirac equation. The cases were chosen to give
some coverage of large and small components,
bound and continuum states (with the different en-
ergy-shift choices), low and high Z, and dependence
on energy and z. For high-Z elements, to show
that agreement persists beyond the first node, we
have presented the wave functions in tables instead
of figures. The screening effect on the low-& par-

(ii) ST=ST~,

(il Vl z) r
2l +3

t3~'-r. (I, +i)]V31 'y'
2(21+3)

with l and I, continuum and bound orbital quantum
numbers;

(iii) 5T = —V„

O

CP

1-

1.02

1.01

y=g, TC= keV

y=f, Tc=

) y=g, T =yz keVJ 10

Vqa~ r
3(l+ 2)

The relative orders of the deviations are as a, X,

and m. , respectively.
Our conclusion thus far is that deviations from

Coulomb shapes remain rather small out to several
Compton wavelengths because they are character-
ized not by ay or (ax) but by something like
a Z x2. We have carried out a similar analysis

) y=g Tc =(iokeV

~) y = f,T& =(~okeV

0.99
0 I

I I I I I I

2 3 4 5 6 7

r(Xe)
FIG. 2. Screening effects on the shape of Dirac radial

continuum-state wave functions g and f near the atomic
nucleus for Z=13, T,=2 and 10 keV, and v=1.
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FIG. 3. SameSame as Fig. 2 except for the la

nent continuum-state
or e large-compo-

-s a e wave function g and Z = 13
kV d-11, +, —2, +2, —5)+5.

FIG. 4. SameSame as Fig. 3 except for the small-compo-
nent continuum-state wave f t'unc ion f.

energy shift as expected. At z= 0 —'=o2) '
g

o e s ape of the continuum-state wave
unction is very small both fo or the cases with an

without energy shift. Thi
RIld

is is the result needed
the low-energy screening theor ofing o y o R o i pRix'

ion. We see also that for la

tial-wave cont'ontinuum wave function with ener
shift is similar to that of the lar e-

-s a e wave function at small distances. F

a er or the case with energy shift than without

TABLE I. Sha ' ' -s at

rge compo

I. Shape of Dirac radial bound-stat
nucleus for Z=92. S m

-s ate wave functions G and E (o i'g
~ is the Compton wavelen h )

t Co lo b d odif' dTh
e engt . )

r o o — j. xe omas-Fermi potent' len za s, respectively.

Gc

Z= 92,

GTFC

X shell

+TFC Gc

Z=92, 1.
&

shell

G TFC

0.2
0.4
0.6
0.8
1.0
1.4
1.8
2. 2
2. 6
3.0
3.4
3.8
4. 2
4. 6
5.0
5.4
5.8
6.2
6.6
7.0

0.874 36
0.764 50
0.668 44
0.584 46
0.51102
0.390 67
0.298 67
0.22833
0.174 56
0.13345
0.102 02
0.078 00
0.059 63
0.045 59
0.034 85
0.026 64
0.020 37
0.015 57
0.01190
0.009 10

0.87460
0.764 96
0.669 10
0.585 27
0.51196
0.39179
0.299 88
0.229 56
0. 17575
0.13458
0.10306
0.078 93
0.06046
0.046 31
0.035 47
0.027 17
0.020 80
0. 015 92
0.01218
0.00930

—0.337 13
—0.29477
—0.25773
—0. 22535
—0.19704
—0. 150 63
—0.11516
—0.088 04
—0.067 31
—0.05145
—0.039 34
—0.030 07
—0.022 99
—0.017 58
—0.01344
—0.010 27
—0.007 85
—0.006 00
—0.004 59
—0.003 51

—0.337 07
—0.294 69
—0.257 64
—0.225 27
—0.196 97
—0.150 61
—0.11518
—0.088 10
—0.06740
—0.051 58
—0.03947
—0.030 21
—0.023 13
—0.01771
—0.01357
—0.01039
—0.007 97
—0.006 ll
—0.004 69
—0.003 60

0.847 72
0.71176
0.590 60
0.482 83
0.387 17
0.227 67
0. 103 96
0.009 33

—0.061 81
—0. 11404
—0.15116
—0. 176 28
—0. 19196
—0. 200 26
—0.202 89
—0. 201 22
—0.19635
—0.189 17
-0.180 39
—0.170 57

0.848 61
0.71348
0. 593 08
0.485 98
0.390 90
0. 23223
0. 108 95
0.01435

—0.057 09
—0. 109 90
—0. 147 80
—0. 173 85
—0. 190 55
—0.19993
—0. 203 63
—0. 203 00
—0. 19912
—0. 19286
—0. 184 90
—0. 175 81

—0.343 39
—0.305 20
—0.270 66
—0.23944
—0.21125
—0.16291
-0.123 73
—0.092 13
—0.066 78
—0.046 56
—0.030 57
—0.018 03
—0.00830
—0.000 85

0.00475
0.008 86
0.01179
0.01377
0.01501
0.015 67

—0.343 19
—0.30491
—0. 27034
—0. 239 16
—0.21106
—0. 16295
—0.12405
—0.09273
—0.067 62
—0.047 60
-0.03175
—0.01930
—0.009 61
—0.00216

0.00348
0.007 67
0.01069
0.01278
0.01414
0.014 92
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Z = 92, T~= 100 keV, rc = 1

gTFC (1) g TFC (2)gTFC(1) gTFC(2) g TFC(3) g TFC (3)

TABLE II. Shape of Dirac radial continuum-state wave function g near the atomic nucleus for Z = 92, T~= 60 and 100
keV, and ~=1. Symbols gTFC(1) gTFc(2), and &TFc(3) refer to AT=0, &T=QTI3 of K shell and 6T= —Vo, respectively.

Z=92, T =60 keV, ~=1

0.2
0.4
0.6
0.8
1.0
1.4
1.8
2. 2
2. 6

3.0
3.4
3.8
4. 2
4.6
5.0
5.4
5.8
6. 2
6.6
7.0

1.287 5

1.510 2
1.673 2
1.781 8

1.8412
1.8330
1.6892
1.448 2
1.145 2
0.81173
0.474 73
0.15641

—0. 125 93
—0.359 89
—0. 537 72
—0.65602
—0.715 18
—0.718 89
—0.673 48
—0. 587 23

1.2863
1.5114
l. 6804
1.798 2

1.869 5

1.891 9
1.783 9
1.579 6
1.309 9
1.0024
0.681 05
0.366 04
0.073 74

—0. 183 30
—0.396 18
—0.559 42
—0. 670 72
—0.730 53
—0.741 71
—0.709 06

1.2874
1.5103
1.6737
1.7828
1.8428
1.835 8
l. 6928
l.452 2

1.1490
0.81464
0.476 33
0. 156 50

—0. 127 28
—0.36231
—O. 540 59
—0.658 51
—0.71639
—0.717 94
—0.669 61
—0. 579 93

l.2875
1.510 2
l. 6733
1.7818
1.8410
1.. 8320
1.6868
l.443 8

l. 1385
0.80260
0.463 42
0. 143 58

—0. 13929
—0.37252
—0.548 19
—0.662 86
—0.71707
—0.71476
—0.66264
—0. 569 54

1.290 5

1.5064
l. 6534
l. 737 5
1.7650
1.6767
1.441 9
l. 1129
0.738 00
0.359 61
0.01233

—0.277 87
—0.494 06
—0.628 07
—0.679 76
—0.655 87
—0.568 54
—0.433 63
—0.269 04
—0.'093 07

1.2894
l. 5080
l. 6613
1.754 9
1.794 6
1.736 2

1.5341
1.2350
0. 88232
0.51446
0. 163 78

—0. 144 29
—0.39166
—0. 56747
—0. 66779
—0. 69476
—0. 655 70
—0.56191
—0.427 39
—0. 267 58

l. 2904
1.5066
l.6540
1.738 6
1.7666
l. 6794
l.445 4
l. 1165
0.741 15
0.361 77
O. 013 25

—0. 278 14
—0.495 14
—0. 629 31
—0. 68041
—0.655 17
—0.565 87
—0.428 65
—0. 26181
—0.084 03

1.2905
l. 5065
l. 6535
l.7375
l.7648
1.675 6
1.439 5
l. 108 7
0.73202
0.35206
0.003 90

—0. 286 15
—0.500 92
—0. 63219
—0. 67996
—0.65132
—0.558 90
—0.419 16
—0. 250 66
—0.072 27

nent continuum wave functions, the higher the g

partial waves, the smaller the screening effect on
the wave function shape. For small-component
continuum wave functions for the positive-y partial
waves we have the same conclusion as for the large-
component continuum wave functions, while for the
negative-g partial waves we have the inverse con-
clusion.

In this paper we are concerned with the shape of
electron wave functions. A second related question

concerns the normalization of electron wave func-
tions. Although we do not here wish to discuss the
theory of the normalization constants, for complete-
ness we give some numerical results. Consider
first the continuum case. For high energies we
have noted that the deviation from Coulomb normal-
ization is small. For very low energies we had
noted' that continuum Coulomb wave functions vary
as (PE) ~ . Now, in photoetfect and other similar
processes the matrix element is multiplied by

TABLE III. Same as Table II except for the wave function f of Z = 92 and T, = 60 and 100 keV.

Z=$2, Tc 60 keV, Z=92, Tc 100 keV,

0. 2

0. 4
0. 6
O. 8
1.0
1, 4
1.8
2. 2
2. 6
3. 0
3.4
3.8
4. 2

4. 6
5, 0
5.4
5. 8

6, 2

6, 6
7. 0

fc
2. 279 8
1.984 8
1.7088
1.452 2

1.215 0
0.79829
0.456 75
O. 186 65

—0. 017 19
—0. 16114
—0, 252 40
—0.298 74
—0.308 16
—0.28862
—0.247 81
—0. 192 90
—0. 13038
—0. 065 89
—0. 00420

0. 050 95

f»c(1)
2. 291 0
2. 0075
1.742 9
1.4971
1.269 7
0. 86878
0. 536 86
0.269 54
0. 061 72

—0. 092 28
—O. 19856
—0.263 46
—0.293 43
—0.294 84
—O. 273 87
—O. 236 36
—O. 187 70
—O. 132 77
—0. 075 84
—0. 020 55

fTm (2)

2. 280 4
l. 986 0
1.7106
l. 4544
l.2174
0. 80078
0. 458 84
0. 188 01

—0. 016 72
—0. 161 53
—0.253 45
—0.300 14
—0.309 53
—0.289 57
—0.248 00
—O. 192 07
—O. 12839
—0. 062 77
—0. 00011

O. 055 71

fTFC (3)

2.279 7
1.9846
1.7085
1.45' 6
1.214 0
0.79632
0.453 78
0. 182 80

—O. 02163
—0. 165 71
—O. 256 59
—0. 301 99
—0.309 96
—0.288 58
—0. 245 69
—0. 18864
—0. 124 12
—0. 057 99

0. 004 82
0. 06041

2.2506
1.925 6
1.6203
l.336 2

1.0743
0. 620 18
O. 260 36

—0, 00727
—0. 188 88
—0.293 89
—0, 334 07
—0.322 68
—0.273 49
—0, 200 02
—O. 11477
—0.028 65

O. 049 45
0. 112 96
0. 15767
0. 18166

2. 261 8

1.9482
1.654 0
1, 3800
1, 1270
O. 685 35
0.330 12
D. 058 85
0. 133 82

0.255 69
0.316 37
0.326 70
0.298 09
0, 241 92
0. 169 05
O. 08930
O. 011 11
0, 05871
O. 11513
O. 154 99

fTFC (2)

2, 251 13
1.9269
1.622 1
1.338 3
1, 0766
0. 622 45
0, 262 13

—0. 00629
—0. 188 74
—0. 294 43
—O. 334 99
—0, 323 57
—0.273 97
—0, 19979
—0, 11366
—0. 026 69

0. 052 09
0. 11592
0. 16049
O. 183 86

fTFC (3)

2, 2506
1.925 4
l. 619 9
1, 3355
1.0733
0.618 33
0.257 73

—0. 01042
—0. 192 11
—0.296 66
—0.335 83
—0. 322 96
—0. 272 00
—O. 196 71
—0, 109 85
—0. 022 56

O. 056 05
0. 11929
0. 162 89
O. 185 03
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WE O'L )WE

TABLE IV. Screening effects on the continuum-state normalizations. Symbols p, s, WO, WE, and WL& refer to
point-Coulomb potential, modified Thomas-Fermi potential, results without energy shift (6T = 0), results with 6T =6T~
of E shell, and results with ~T=&Tz of L~ shell, respectively.

NgN~ (Z = 13) WO WO WE WO WO WE

(keV) 10 100

—1
+1

+2
—5
+5
—10
+10

X,/X, (Z =92)

(keV)

0. 998
0. 872
0. 871
0. 728
0. 554
0. 503
0. 391
0.375

0. 999
0. 981
0. 981
0. 994
1.13
1.25
2. 07
2. 39

10

0. 998
0. 933
0. 932
0. 873
0. 842
0. 857
l. 04
1.11

WLr

0. 995
0. 922
0. 922
0. 848
0. 741
0. 704
0. 607
0. 591

0. 999
0. 987
0. 987
0. 988
1.03
1.06
1.28
1.35

WE'

50

0. 998
0. 958
0. 958
0. 924
0. 890
0. 887
0, 923
0. 942

WL)

0. 994
0. 951
0. 950
0, 909
0. 842
0. 816
0. 741
0. 728

WO

0. 999
0.991
0. 991
0. 989
1.001
1.013
1.10
1, 12

100

0. 997
0. 973
0. 973
0. 953
0. 927
0. 920
0. 920
0. 925

WL

0. 997
0. 993
0. 992
0. 987
0. 976
0. 971
0. 953
0. 950

0. 999
0. 999
0. 998
0. 997
0. 996
0. 996
0. 997
0. 998

WE

400

0. 999
0. 996
0. 995
0. 993
0. 987
0. 985
0. 977
0. 976

WL

—1
+1
—2
+2
—5
+5
—10
+10

0. 985
0. 939
0. 909
0. 741
0.345
0, 241
0. 0870
0. 0732

1.000
0. 997
0. 997
1, 005
1.20
1.40
4. 06
5. 53

0. 997
0. 988
0. 983
0. 963
1.03
1.14
2. 61
3 ~ 37

0. 986
0. 952
0. 927
0. 847
0. 662
0. 601
0.427
0. 401

0. 999
0. 997
0. 998
1.000
1.05
l. 08
l.39
1.48

0. 997
0. 990
0. 986
0. 975
0. 978
0. 993
l. 16
1.22

0. 987
0. 961
0. 940
0. 893
0. 771
0. 732
0. 592
0. 571

0. 999
0. 998
0. 998
0. 999
1.02
l. 03
1.15
1.19

0. 997
0. 992
0. 989
0. 981
0. 976
0. 980
1.04
1.06

0. 990
0. 982
0. 968
0. 956
0. 904
0. 894
0. 820
0, 812

0. 999
0. 999
0. 999
0. 998
1.001
1.002
1.02
1.02

0. 998
0. 996
0. 994
0. 991
0. 985
0. 984
0. 985
0. 986

(pE)'~ for each final electron. It is thus appro-
priate to look at N= (pE)~~2N, -where N is the con-
tinuum-state normalization, which we find is nearly
independent of screening. We demonstrate this in
numerical calculation, and, as in the case of shape,
best agreement is obtained if we compare the con-
tinuum Coulomb wave function with the screened
wave function of shifted energy. We show these
results in Table IV, where we have used K and

LI shifts in view of our prospective application to
the photoeffect. For low-y partial waves except
at very low energies N, -=(p, E,) ~ N, is equal to
N, = (p, E,)'~ N, for the case with energy shift.
At high energies even for high-g partial waves
N, is equal to N, for the cases with or without en-
ergy shift. The worst cases are for high g at low
energies, which are not of concern in most pro-
cesses. For example, for the atomic photoeffect,
the process that we will consider in Sec. III in de-
tail, the low-z partial waves dominate the cross
section for low photon energies. Therefore we
ma. y conclude tha, t for the atomic photoeffect N,
is equal to N, .

For bound states, we present values of the
square of the ratio of screened (s) to point-Coulomb
(c) bound-state normalization' for states K, L~,
L», and L», in Table V in five different potentials,
i.e. , the ionic HFS-,' (ionic), " the Kohn-Sham
(HFS-, ), ' the Hartree-Fock-Slater (HFS), 7 the
modified Thomas-Fermi (TFC), "and the Thomas-

TABLE V. Square of the ratio - of screened to point-
Coulomb bound-state normalizations for states E, Lz,
LD„, and L~», where "—=lim„o G (r)/G (r) =lim„E8(r)/
E (r). (Here G and I are the bound-state wave functions
without omitting normalization. )

Z Potentials

Ionic
HFS 3
HFS
TFC
TF

0. 9659
0. 9286
0. 9479
0. 9065
0. 8823

Lr

0.5257
0, 4996
0.5260
0.4546
0.4633

L»
0.3319
0.3025
0.3360
0.2355
0. 2461

L»i
0.3306
0.3012
0, 3346
0.2346
0.2452

92

Ionic
HFS 3
HFS
TFC
TF

0. 9905
0. 9819
0. 9868
0. 9915
0. 9897

0. 8895
0. 8829
0. 8905
0. 9127
0. 8866

0. 8370
0, 8251
0. 8378
0. 8860
0. 8344

0. 7999
0. 7899
0. 8011
0. 8508
0. 8019

Fermi (TF) potential models. This shows that
for low Z the choice of the model is quite impor-
tant. For high Z the difference is less than 1%
for the K shell, less than 3.5% for the L, shell,
and less than 8/o for L„andL», she11s. Finally,
we tabulate values of the squa, re of the ratio of the
HFS to point-Coulomb bound-state normalizations
for the K, L„L»,and L», shells in Table VI for
elements Z=13-92. We can see that the screening
effect is more important for low Z and much more
important for higher shells —1—5/o for the K shell
over the same range of Z, 10-70% for the I. shell.
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0.7—

0.6

0.5

E 0.O

0.2

Values of the minimum
momentum transfer q ~, above the K
shell and above the L& shell. The
eigenvalues eE are given in Table VII;

for Z=13 and 92 are 0.0001999I
and 0.043 23m~c, respectively.

O. I

0.0
0

I

50
I

100
I

1 50
k-6 (keV)

I

200 250

III. NORMALIZATION SCREENING THEORY IN ATOMIC
PHOTOEFFECT

Following the formalism of the earlier photo-
effect work, we write the differential cross section
for the atomic field photoeffect as

from

o- ( f™xdrr '
8'b,„„aW „„,„„)

0

r~,",-(I + ~),
with

(3.3)

dc/dQ = (2v) pE
~
Mz; i

subject to energy conservation, with

M&; = (211a./I2) f d r111& c2

(3.1)

(3. 2)

b, = 4(L + 3)(L + 5) ' (2L + 3) '

x [3n L(L+1)]-(2V2) & r

Here g; is the initial bound-state wave function
square normalized to unity with binding energy e,
and gz is the final continuum-state wave function
asymptotically normalized to a unit-amplitude
modified plane wave of four-momentum (E, p) plus
an incoming spherical wave. The incident radiation
is specified by four-momentum (k, k) and four-
polarization (0, e).

The normalization screening theory &
' works

for energies well above threshold because the min-
imum possible momentum transfer to the nucleus

q, „

is of order 1, so that the most important re-
gions of configuration space x for the photoeffect
matrix element are of the order of the electron
Compton wavelength. Contributions from larger
distances are cut off fairly sharply, perhaps reach-
ing the 1% level by 3—5r, where r q'„We=-.
calculate q „=p —k using the energy conservation
relation 0+I —e=(1+p )' . In Fig. 5 we give
values of q „

for various choices of k and e. We
note in passing the interesting fact that, given an
electron bound by e, there exists one photon en-
ergy k (= e+ —2'6 ) for which the electron can be
ejected without any momentum transfer.

By using the properties of electron wave func-
tions at small distances discussed in Sec. II we wish
here to estimate roughly to how low an energy the
normalization screening ta.eory should be believed.
The change in cross section is then determined

TABLE VI. Values of ( )Hqs for Z =13-92.

13
20
26
29
42
47
50
60
74
79
82
92

0. 9479
0. 9615
0. 9686
0.9713
0. 9784
0. 9801
0. 9810
0. 9832
0. 9853
0. 9859
0. 9861
0. 9868

LI

0. 5260
0. 6509
0. 7133
0, 7354
0. 7968
0, 8128
0. 8211
0, 8443
0. 8689
0. 8757
0. 8794
0. 8905

Lrr

0.3360
0.4928
0. 5790
0.6112
0. 7016
0. 7254
0. 7377
0.7717
0. 8072
0. 8170
0. 8223
0. 8378

Lrrr

0. 3346
0.4899
0. 5745
0.6058
0.6915
0, 7134
0. 7244
0. 7540
0. 7824
0. 7892
0. 7927
0. 8011

characterizing the magnitude of the deviation from
a simple normalization description of screening.
We have assumed that continuum effects are ap-
proximately the same as bound-state effects. We
find that the choice of screened-potential model
does not change the estimate of Eq. (3.3) greatly.
As an illustration we chose the modified Thomas-
Fermi potential model (TFC)." The nice feature
of this model is that the potential is written ana-
lytically, namely,

&/«)(0 7111e-0, 175a0r+ 0 2339e-1.6625aox)

(3 4)
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13 50 82 92

0, 002 801 5 0, 017 122 0, 056 933 0, 174 69 0.23053

TABLE VII. Estimations of the correction ~ of the
normalization screening theory for the K-shell atomic-
field photoeffect cross section.

TABLE VIII. Error of the normalization screening
theory (NE) based on the X-shell atomic-field photo-
effect cross sections of Scofield (see Ref. 6) with HFS
potential and of HNO (see Ref. 17) with point-Coulomb
potential.

13 29 50 82

4
5
7 ~ 5

10
20
30
40
50
60
80

100
150
200
250

with

0. 03
0. 024
0. 016
0. 010
0. 006
0, 004
0. 004
0. 004
0. 002
0. 002
0. 002
0. 002
0, 002
0. 001

0.06
0.04
0.03
0.014
0.010
0. 008
0„006
0. 006
0. 004
0. 004
0.002
0. 002
0. 002

0. 06
0. 03
0. 02
0. 014
0. 012
0. 010
0. 008
0. 006
0. 004
0. 004
0. 004

~ ~ ~

0.03
0. 02
0, 016
0.010
0. 008
0. 006

~ ~ ~

0. 03
0.02
0.014
0. 010
0.008

5
6
8

10
15
20
30
40
50
60
80

100
150
200
300
400

0. 030
0. 023
0. 015
0. 010
0. 004
0. 001

—0. 002
—0. 003
—0, 005
—0. 004
—0. 005
—0. 004
—0. 004
—0. 003
—0. 003
—0. 002

~ ~ ~

~ 4 ~

0. 013
0. 008
0. 003
0. 002
0. 002
0. 002

—0. 001
—0. 001
—0. 001
—0, 002

~ 0 0

0. 11
0. 01
0. 01
0. 01
0. 005
0. 004
0. 002
0. 001

~ ~ ~

0. 008
0. 006
0. 006

~ ~ ~

0, 007
0. 007
0, 006

In order to calculate n given by Eq. (3.3) we need
the binding energy e, which was calculated numer-
ically by solving the bound-state Dirac wave equa-
tions. The binding energies are given in Table
VII. We may now tabulate the values of the correc-
tion & to the normalization screening theory. For
the K shell the values of & are given in Table VII.
We also find that the normalization screening the-
ory can be good to 1% for photon energies more than

40 keV above the L,-shell threshold in Al, 100 keV
in Cu, 250 keV in Sn, 500 keV in Pb, and 600 keV
in U; and to 2% for photon energies more than 20

keV above the L,-shell threshold in Al, 40 keV in
Cu, 80 keV in Sn, 150 keV in Pb, and 150 keV in
U. However, since the K shell contributes more
than 80% of the total cross section for the cases
in which the K-shell cross section dominates the
total cross section, we may conclude that this the-
ory can be good to 1% for photon energies more
than 10 keV above the K-shell threshold in Al, 30
keV in Cu, 60 keV in Sn, 150 keV in Pb, and 200
keV in U. It is apparent that this theory will achieve
higher accuracy only above the K threshold.

For the above estimates we have also used Dirac
wave functions; the results agree quite well with
the nonrelativistic Schrodinger treatment.

Let us now compare our estimates with actual
numerical calculations. By using the recent results
of Scofield for the HFS potential and the point-Cou-
lomb results of Hultberg, Nagel, and Olsson (HNO)

we show the error of the normalization screening
theory (NT)

NE =- [o(NT) —o(Scofield)]/o(Scofield)

in Table VIII for the E shell. Here we find that the
normalization screening theory can be good to 1%
for the E shell for photon energies more than 8 keV
above the K-shell threshold in Al, 25 keV in Cu,
30 keV in Sn, and 80 keV in U. These results agree
well in order of magnitude with our estimates. For
the higher-Z cases the shape deviation appears in
fact quite close to &&. For 1., shell our results
agree also quite well with the results which were
calculated with the computer code of Rakavy and
Ron "

These ideas can also be used to predict model-
and energy-independent ratios of cross sections for
states having the same angular momentum. This
follows ' because in a given atom the bound-state
wave functions of same angular momentum but dif-
ferent n are proportional in the important region
r= O(1), and the proportionality is independent of
Z. Angular distributions and polarization correla-
tions from such states are the same.
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