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A perturbation treatment of the variable-phase method for scattering is presented. The
zeroth-order phase shift is given by the solution of a first-order nonlinear differential equa-
tion. The perturbation corrections are given as the solutions of first-order nonhomogeneous
but linear differential equations. A variational procedure for the optimization of the zeroth-
order approximation is formulated. The results of a test calculation for the s-wave scattering
from an attractive exponential potential are included.

PERTURBATION TREATMENT

In the theory of scattering, the scattering phase
shifts provide us with the complete information
which is needed in order to solve for the cross sec-
tions. 2 Recently, new variation®® and variation-
perturbation” methods for the calculation of the
phase shifts have been proposed and applied to po-
tential- and low-energy electron—hydrogen-atom
scattering problems. In this note we apply the var-
iation-perturbation theory to the variable-phase
method!*® and indicate the applicability of the meth-
od by performing a test calculation for a simple
potential-scattering problem. The scattering by a
central potential V(r) is described by the Schrédin-
ger equation

[VZ+R2 - U@ 0(F)=0, Ul)=Q2m/m¥)Vvr), (1)

with the finiteness at the origin and the asymptotic
boundary conditions imposed on the solutions.

In the theory of the variable-phase method one
introduces two auxiliary functions defined by

sir) ==k [ dr" UG )f, (er Yu, (') (2)

e =1-k [ ar' U6 iy (r Y, ') @)
where U(r) is the potential, 7,(x) and 7,(x) are the
Ricatti-Bessel functions, ! and «,(r) is the radial
Ith partial-wave amplitude. Using the well-known
asymptotic behavior of these functions, the phase
shift of the /th partial wave is defined as

tand; =s,;/c; , (4)

5

where
c;=cy(*°) and s;=s,(°) . (5)
Introducing the “tangent function” ¢,(») which is
defined as
t,(r)=s,(#)/c,(r) =tans,(») , (6)
it is easily inferred from (4) that

lim¢,(r)=t,=tand, . (7
yeco
Let us partition the potential U (») into a zeroth-
order term and a perturbation part:

Ur) = Volr) + 2V, (#) . (8)

The partitioning is dictated by the condition that
U(7) = V,(») has to be small enough; otherwise the
convergence of the perturbation series is doubtful.
In other words, V,(r) has to be a sufficiently accu-
rate description of the true potential U(r).

Under these conditions let us expand the radial
function in a power series of the perturbation pa-
rameter A,

w1 () =ul00) + 2V ) + X2 B () e e (9)

Substitution in the equations defining s,(») and c,(#),
(2) and (3), yields

$: ) =5 D+ AsP) +2%2 @) +- - -, (10)

where

si00) ==k [ ar' Vo) e g )
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s == LT @' Vol )iy ler sV )
RN Vi) g, e @)

etc., and

;) =c@@) + AP () + 2% () + - - -, (11)
where

M) =1-k1 [ ar" vyl ) n,(r ) ui®6")

V@) ==k [T ar' Vol nkr' ) uP (")

-k ar Vi) iy (er Y (),

etc.

Substituting the series for s,(») and c,(»), (10) and
(11), into the definition of #,(r) and identifying terms
in the resulting expression with the corresponding
terms in the expansion of #,(»)

1) =t00) + MV () + 222 )+ (12)
we get
tO0)=s® )/ c V), (13)
(1) (1)
1201 =S ) gy i) o

) ¢ ()
(15)
In order to get the equation for #°(») we follow
Calogero.! Taking the first derivative of si*’(»)
and ¢;% () and making use of the expression for

u® (), we obtain

$3 00 == k1 Vo) fy )0 7, (k) = sV 0) , (k)]
(16)

VW) ==k VO(V)ﬁ,(kr)[c§°’(7)f,(k1f) =590 n, (k)] .
(17)

Multiplying Eq. (16) by ¢i®’(») and Eq. (17) by s{”(r),
subtracting the second from the first and dividing
by [¢{®(#)]?, and comparing with the derivative of
Eq. (13), we obtain the following first-order non-
linear equation for #{(+):

£O0) == B V) [ 5, () = 10 ) my (k) ]2. (18)
Performing similar manipulations and comparing
with the first derivatives of Eqs. (14) and (15)yields
the following first-order nonhomogeneous but linear
equations for #{'(#) and #{¥’(+), respectively:

P = = 267 7, (kr) Volr )y (en)HO(r) = 7,(6r) 11§ ()

— EVALF, ) - R0 0)]2, - (19)

143 () = = 28710, (k) Vo) 0, (e1)15° () =3, (7)1 62 ()
=2 (k) Vo)t ()] = 267 () V()

X [,V EQ (k) =5, =) 1P () . (20)

By substituting Eq. (12) in Eq. (6), writing in the
right-hand side the expansion for &,() in powers of
A, and expanding the trigonometric function, we get
for the zeroth-order phase shift

£ (r) =tans " (») (21)

and the following expressions for the corrections:
(00 =0 () coss ()], (22)

126 ={6 () + 6 VP11 ()Hcoso (] 7,

ete. (23)
In the limit of » - «, we get the corresponding phase
shifts (7). The same equations can be derived
starting with Calogero’s first-order nonhomogeneous
equation for the exact ¢, (7)1, by substituting the par-
titioned potential U and the series expansion for ¢,(r)
and then equating terms in orders of .

Following Calogero we define the $-matrix function
8, () in the following way:

5, ( )_c,(r)+z's,(1f)

o) —is o)’ §,(0)=1. (24)

The scattering-matrix function can be written in
the following equivalent form:

8, (r) =01 =14 26 (r) = 268 (r) +- -+ . (25)

The solution of Calogero’s differential equation for
Sl (7)’
as,(r)

- =(2ik)™ UGN () + iy (k)]s ()

+ 5 (lr) = iy (k)2 (26)

with the boundary condition §,(0) =1, yields in the
asymptotic limit the scattering matrix 8;:
lim 8,(r)=8,(»)=s, . (27)
o
The perturbation treatment can be applied to the
equations determining 8, (») in close analogy to the
way we have done it for #,(r). The corresponding
equations for the zeroth-order approximation 8{°’(v)
and for its perturbation corrections have the same
general form and behavior as Egs. (18)—(20).

It is obvious that the £{V¢") (i =0, 1, 2, ...) func-
tions have a pole whenever 6{°'(r) takes a value
equal to an odd multiple of 3 7. As was pointed out
by Calogero, we may resolve this difficulty by in-
troducing the “cotangent function” c#,(») defined in
the following way:
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ct;(r)=1/t,(¥) =cot §,(») . (28)

The corresponding equations for c#{%’(») and the
corrections to it can be easily derived by applying
the same procedure that was used in deriving Eqgs.
(18)-(20). When integrating Egs. (21)-(23) from
the origin to a point » =R, where a value larger in
modulus than unity is obtained for #{”(»), we con-
vert to the corresponding “cotangent equations, ”
with R, as the lower limit and integrate them until
a point 7 =R, is reached, for which ct{®’(r) goes
through a value larger in modulus than unity, and
we switch back to the “tangent equations.” We pro-
ceed in this way until the functions become asymp-
totically constant. The number of times and the lo-
cation of the points where one has to switch from
one set of equations to the other (corresponding)
one, depends on the range and on the strength of the
potential relative to the initial energy of the incident
particle.

METHOD CF SOLUTION AND APPLICATION TO s-WAVE
SCATTERING FROM AN EXPONENTIAL POTENTIAL

The intricacy of the problem lies in the solution
of the equation for #{(r) [or § \°’(r)] because of its
nonlinearity. Many authors addressed themselves
to this problem, and various methods of solution
have been proposed.® The existing approximation
methods can be divided into three main classes:

(i) First are iteration schemes, which try to linear-
ize or quasilinearize the equations; these methods
end up with Born or modified Born-type approxima-
tions. (ii) Second are variational and extremum
principles. (iii) Third are numerical methods; the
applicability of these methods may be greatly en-
hanced by a convenient choice of the form of V
(subjected to the conditions which we have stated

in the introduction).

If the zeroth-order potential is written in the
form Vy(7; ¢y, €5y ...), where the ¢y, C5 ... are a
set of parameters, we may optimize the zeroth-
order approximation with respect to these param-
eters,” by using the variational condition for the
tangent of the phase shift. The resulting optimized
values of the parameters in V, are then used in the
equations for the corrections to #{9(») [or 8 ()] .

The variational optimization procedure consists
of the following steps: (i) Solve the Schrédinger

equation for u\*’,

d? - 11 +1 - -
T )+ (L v D)t 9 =0,

(29)
where ¢ is the parameter vector. (ii) Construct

the trial function 7,(»),
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(30)

(iii) Apply the variational principle for the solution
of first-order differential equations!® to Calogero’s
equation for #,(r) [corresponding to U(»)], with
7,(r), Eq. (30), as a trial function. The variations
are taken with respect to the set of parameters ¢.
The variational principle reads here as follows:

o{= & [Jar UG- kr') = 1,(r"; T ) n3(kr” )]

xexpl 2™ [ ds U(s) i, (ks)(, (ks)

—ts; E)nks) =0 . (31)

This results in a set of equations for the set of pa-
rameters ¢. The solution of this equation will be
denoted by C,,;. Substituting &, in (30), we get an
optimized value for the zeroth-order function
£39(r; ¢,,4); in the limit of -, we get

lim #9(r;¢,,) =tans{® |

7o

where 5{°’ is the optimized zeroth-order phase
shift. As we noted before, the integration of Egs.
(19), (20), etc., for the perturbation corrections is
carried out with the functions #°(r;¢,,.) and
Vo7 ; Cope) substituted for £{°(r) and V,(#).

In order to test the applicability of the method we
have applied the above procedure to s-wave scatter-
ing from an attractive exponential potential

Vr)=-e"" . (32)

Following Knudson and Kirtman' the zeroth-order
approximation was taken as the spherical well:

Vo=—=D, 7<%,

(33)

VO=0, v >y .

The parameter vector ¢ consists of two components
(vy, D).

The Schrédinger equation (29) can be solved
exactly for this potential, and by substituting the
§olutions in (30) we evaluate an expression for
t,(7; 7o, D). By substitution of the expression for Z,
in the variational (31) and by taking the variations
with respect to 7, and D, we get two simultaneous
equations for the nonlinear parameters », and D,
which were solved numerically by the Newton-
Raphson method. The optimized parameters were
used in (30), and after taking the limit we got the
optimized zeroth-order phase shifts 550’. In order
to find the perturbation corrections wé solved the
first-order nonhomogeneous equations (19) and (20).
The results are summarized in Table I. It is of
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TABLE 1. s-wave phase shifts for the scattering of an electron by the potential V{r)=—¢"",

D 7 Ey 5, Sk Ok
(@.u.) (a.u.) @.u.) (rad) agh a¢» 8 (Ref. 5)  (Ref. 5) S exact
0.3126 2.195 0.01 2.0988 0.0299 0.0051 2.1338 2.0826 2.1348 2.1334
0.3542 1.913 0.10 1.2694 0.0148 0.0018 1.2860 1.2632 1.2860 1.2857
0.3125 2.940 0.5 0.7673 0.0121 0.0009 0.7803 0.7579 0.7806 0.7801
0.2517 2.293 0.8 0.6501 0.0069 0.0005 0.6575 0.6663 0.6580 0.6574
0.5752 2.041 2.0 0.4513 0.0035 0.0001 0.4549 0.4492 0.4549 0.4549

interest to note that in the example studied here the
values which we get for the optimized zeroth-order
phase shifts (5§"’) are better than the zeroth-order
phase shifts which were computed by the variation-
perturbation method with the Hulthen variational
principle.” Moreover, carrying the calculation
through first-order, we get already good results
which are improved by the second-order correc-
tion. Comparing our results with the exact re-
sults, we see that in the present method there is no
need for third-order calculations which are essen-
tial in the variation-perturbation method suggested
by Knudson and Kirtman. This, and the relative
simplicity of the correction equations (19) and (20)
are the main encouraging conclusions that we draw
from the above example. The observation that 5
is a lower bound to the exact result and that the to-
tal phase shift (5) is an upper bound calls also for
further study of the present method.

Finally, let us remark about an obvious general-
ization of the method. Let us denote the sum of the
centrifugal term and the potential U(») by W, (»),

W, (r)=1( +1)/72+Ulr) . (34)

W, (r) can always be written as a sum of two terms
W (y) and W3 (). The first is the one that we in-
clude in the differential equation

2

DD [ - W]y, =0 (35)
»

W@ () is the interaction potential. In our preced-
ing discussion we used W'¥(») =1 (7 +1)/? and
- W2 (r)=U(¥) = Vy +AV,, and thus we identified
(35) as the Ricatti-Bessel differential equation.
Other choices of W'Y (») are possible (the conven-
ient ones are those which yield an equation which
is solvable in closed form). In such cases the solu-
tions of (35) will replace 7, and ﬁ, (the regular and
irregular solutions, respectively) in the above
formulation.
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