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Scheme to measure the positive P distribution
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A four-port arrangement is shown to yield a direct measurement of the positive P distribution of
Drummond and Gardiner [J. Phys. A 13, 2353 (1980)].
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Recently several proposals [1-4] have appeared for the
study of the quasiprobabilities or the quantum phase
space distributions, such as the Q function [2] and the
Wigner functions [3,4]. One of these proposals [4] on the
Wigner function has also been implemented experimen-
tally[5]. This is rather remarkable, as the quantum prop-
erties of the phase-space distributions [6-9] arise from
the noncommutativity of the relevant conjugate variables,
and yet these can be measured. In this Rapid Communi-
cation we propose a scheme, involving four input ports
and four output ports, which enables us to measure
directly the positive P distribution of Drummond and
Gardiner [10-12]. The idea of operationally measuring
the positive P distribution first originated in the work of
Braunstein, Caves, and Milburn [1]. The proposed
scheme provides an all optical arrangement for an expli-
cit measurement of the positive P distribution.

Drummond and Gardiner [10] showed that one can as-
sociate a positive distribution P(a,) in two complex
variables a and B such that its moments {B™a") are
equal to the normally ordered moments, i.e.,

Tr{pa'a"} = [ d*ad’Bp"a"P(a,B), (1

= [d’aa*"a"P(a) @)

where P(a) represents the function appearing in the diag-
onal coherent-state representation of p. The function
P(a) need not always exist and can be singular for many
quantum states of the radiation field. In contrast, Drum-
mond and Gardiner show that it is possible to choose
P(a,p) such that it possesses all the properties of a classi-
cal probability distribution. A useful choice is [12]
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On using the fact that the mode b is in vacuum, this
reduces to
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where the Q function is defined by [7]
Q(a,a')——»Q(a)=%(a|p|a>. )

We now discuss the kind of experimental arrangement
which will be suitable for a direct measurement of
P(a,B). Our scheme is based on the expression (3) and
what can be achieved by a beam splitter. Consider the
arrangement shown in Fig. 1. Let the field whose positive
P distribution to be measured be represented by the an-
nihilation and creation operators @ and @'. Let the field b
be in the vacuum state. We first calculate the Q distribu-
tion associated with the two output ports ¢ and d. The
beam splitter is represented by a SU(2) transformation
[13]. For a 50%-50% beam splitter we write
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Consider next the generating function x;(z,,z,) for the
antinormally ordered moments

Xed(z1,22)={exp(—zte—z3d)exp(z,e +2,dT)) . (6

The Q function associated with the output ports is

ch(y,SE#fdzzld% exp{z]y+z38—2z,7* —z,8%)

XXcalz1,25) . (7)

The transformation (5) enables us to calculate Q. in
terms of the quantum properties of the input beams @ and
b. We substitute (5) in (6) and simplify the resulting ex-
pression by noting that @ and b are independent, to obtain

) ]exp > . (8)

[
where Y, is the generating function for the @ mode,

Xa(z)=(exp(—az*)exp(@'z)) . (10)

3"’ aT
‘/—5(22 —z;) [exp 72(21 +z,)

On substituting (9) in (7) and on changing the variables of
integration, we arrive at the result
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FIG. 1. Arrangement to show that the positive P distribution
of the @ mode can be measured in terms of the Q function asso-
ciated with the modes ¢ and d.

r+o

V3 (11)

1
Qua(7,8)=— exp| —38—7[*}Q,

On comparison of (11) and (3) we get an important rela-
tion

4P,(V2y,V28)=Q4(7,8) . (12)

Hence the arrangement of Fig. 1 can be used to measure
the positive P distribution of the input field @, provided
we can measure the joint Q distribution of the fields at
the two output ports ¢ and d. We will now show how an
argument originally due to Leonhardt and Paul [2] can be
generalized to measure Q. (y,8). Consider now the
scheme shown in Fig. 2. Here @' and b’ are the vacuum
fields at the unused ports. The fields at the four output
ports are related to the input fields by

P(x,,pz,p3,x4)=(8(xl —21 )8(p2_ﬁ2 )8(p3—ﬁ3 )S(X4_

1
27

On substituting (13) and (14) in (15) and in using the fact
that the fields @' and b’ are in vacuum, we get

ky+ik, | . k,—ik
C({ki})=<expli —1—2—1 i —4—24 ’c‘]
ky—ik, | . ky+ik
Xexp yi —I——Z—Z]dTﬁ-i —j—z-—{ ?Tb.

(17)

In deriving (17) we have used (i) the Baker-Hausdorff
identity, (ii) normal ordering for the vacuum ports @’ and
b’ and (iii) antinormal ordering for the fields ¢ and d.
The choice of these two orderings enables us to cancel the
extra factors coming from the Baker-Hausdorff formula.
It should be borne in mind that (17) is the characteristic
function associated with the Q function. We next use (17)

4
fd‘*(k)exp{ —ikyxy —ikypy —ikyps —ikyx,JC({k;})

FIG. 2. Scheme to measure the joint Q function of the modes
¢and d.

_a'—d . _e+b . _e—b
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(13)
Let us introduce the quadratures of the fields X and p by
. a+al  a,—al
Xy = V3 P = Vi
Let P(x,,p,,p3,Xx4) be the probability distribution for

measuring the four commuting quadratures at the four
output ports:

(14)

%4))
(15)

(16)

f

in (15) and change the integration variables. A simple cal-
culation then shows that

P(x1,p3,P3,%4)=Qcy(x) —ipy, x4 Tip3) . (18)

On combining (18) and (19) we obtain the main result of
this Rapid Communication,

X1 P2 P3 X4

=1 — = — —
PG(Y,B)—4P \/2,‘/2y‘/2y ‘/2 ’

Yy=x;=ipy, 8=x,+ip;. (19)

We have thus proved that the four-port arrangement of
Fig. 2 can be used to obtain a direct measurement of the
positive P distribution. The measurement scheme in-
volves the measurement of the four quadratures (com-
muting variables) at the four output ports
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