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Localization of two-level systems
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The quantum dynamics of the two-level system under a periodic externa1 potential is mapped to the

classical one of a charged particle moving in the harmonic-oscillator potential plus a magnetic fie1d in a

plane. The behavior of tunneling and localization is fully described by the radial trajectory of the parti-

cle. It is shown that localization may happen only if the radial trajectory is periodic. The possible

period is an integral multiple of that of the external force. Three models are studied.

PACS number(s): 03.65.Ge, 82.90.+j, 33.80.Be

Tunneling plays a central role in quantum mechanics
[1]. Although localization, a complementary concept to
tunneling, is extremely important in solid-state physics
[2], it was not until the discovery of the coherent destruc-
tion of tunneling by Hanggi s group [3—6] that attention
has been paid to the study of localization of a single parti-
cle in the double-well potential under a periodic acting
field. Since this external control of tunneling wi11 be
practically valuable in many research fields such as laser
physics, chemical reactions, etc. [7,8], a full understand-
ing of tunneling and/or localization mechanisms is
desired.

Both classical and quantum dynamics of a particle in a
quartic double-well potential perturbed by a periodic
monochromatic field have been investigated extensively
[9]. Because this model is not analytically solvable, one
often resorts to the numerical calculation that sometimes
avoids physical insights. It was demonstrated [6,10] that
a two-level system may also show localization if the pa-
rameters of the acting field are justified, which represents
a common feature of the double-well system. The
influence of an external periodic field on the two-level
system has always been the focal subject in laser physics,
and the main mathematical technique developed in the
study, the Floquet theory [11],was used later to discover
the localization for a double-well model in the deep quan-
tum regime by Hanggi's group. It should be pointed out
that the first report of the destruction of tunneling seems
to be in the study of a two-level system plus a sinusoidal
field; the transition probability from the lower-energy lev-
el to the higher one is strongly decreased if suitable field
parameters are chosen [12]. This observation was over-
1ooked then.

In this Rapid Communication, on the one hand, we
shall map quantum dynamics of the two-level system un-
der the periodic acting field to a classical one. In other
words, we will show that the time evolution of the system
can be described by a classical equation of motion of a
charged particle in two fields simultaneously. One of the
fields is time independent and the other is periodic. The
periodic field can be recognized as a magnetic one. The
particle moves in a plane. Its distance to the origin
represents the extent of one specified state in the state at
that moment. Thus, tunneling or localization is obvious-

where ho is the energy splitting between the states l1 )
and l2), and V( T+ t) = V (t), a periodic function of time.

Define the left state and the right state, respectively, as

ll &=—(ll)+l»)/v 2

and

The wave function l%(t}) can be expanded in the basis
(ll ), lr ) ). Denote

le'(t) ) =c,(t) l l ) +c„(t)l
r ) .

Then C—:(ct(t), c„(t)) satisfy the equation of motion

C=MC,

where

i V(t) i b,o/2—
iso/2 iV(t)

(3)

Note that ct(t) and c„(t) are complex. We introduce two
pairs of real functions of time (y, 8) and (p, P }. Applying
the following variable transformations

c,(t) =y(t)exp i 8(t) i f V(t)dt—
L

c„(t)=p(t)exp iP(t)+i f V(t)dt

and the normalization condition

lc,«) I'+ lc,«)I'=1,

ly shown in the trajectory of the particle. On the other
hand, the system can be viewed as a classical, linear
dynamical system of two variables; thus we can obtain in-
formation of tunneling from the study of stability.

The Hamiltonian of the two-level system in the exter-
nal periodic potential is

8= —(~0/2)(l 1 & & 1
I

—12 & & 21)

+v(t}(l» &2I+ I» & ll),
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we obtain

0 2 0
(j)'+)'(8)'+ y'=

4 4

g2 Q2

(p) +p'(P)'+ p'=
4

(4)

and

2

)'+2iy8 y—(8) +i@8 2i V—(t)(j +iy8)+ y=O,
4

2

p+2ipg p(8—) +ipiP+2iV(t)(p+ipP)+ p=O .
4

These equations can be interpreted by the terminology in
classical mechanics. In fact, if we define

RI =—yer,

R„=pe,

'er+y8ez,

V„=:R„=pe +pge&,

where (er, ee) and (e,e&) are the unit vectors of two
two-dimensional (2D) spaces in the polar coordinate sys-
tem, respectively, then Eqs. (6) and (7) are nothing but
the Newtonian equations describing the dynamics of a
particle experiencing a harmonic force in a magnetic field
that is perpendicular to the plane formed by any pair of
the two sets of unit vectors:

dV(

dt

Q2

yer —VI R, B, (8)

dV, bo
pe +V„hB,

dt

where B=2V(t)e, . Thus the time evolution of ct(t) and

c„(t) is equivalent to the classical movement of a charged
particle in the harmonic-oscillator potential under a
periodic acting magnetic field. As a consequence, Eqs. (4)
and (5) are expressions of the conservation of energy.
Since ~cI(t)) =y and ~c„(t)~ =p, y and p are the square
roots of the probabilities for the system to be found in the
left state and in the right state, respectively, it is required
that 0~ y ~ 1 and 0~p ~ l. It follows that the motion of
the particle is constrained to the interior of a unit circle in
the same plane. Moreover, a clear physical picture of
tunneling can be taken from the trajectory of the motion:
if the particle always runs in a narrow concentric ring
within the unit circle, then the particle is localized; other-
wise, it tunnels from one state to the other. Note that y
and p contain the same amount of information about the
evolution of the system. To study the characteristic of
tunneling, therefore, we only need to consider one trajec-
tory of the particle, R,{t)or c&(t), say.

The description of the two-level system above reminds
us of the Feynman-Vernon-Hellwarth (FVH) [13] stra-
tagem. By defining the Bloch vector in terms of the ele-
ments in the density matrix, they were able to transform
the quantum dynamics to the precession of the Bloch vec-
tor (with unit length) around a moving pseudofield. The
di6'erence between FVH theory and our method lies in

the fact that the former results in a 3D classical dynamics
and the latter describes the dynamics in a 2D
configuration space plus two additional momentum spaces
which can be reduced to one when the conservation of
energy is taken into account. Although the equation of
motion in 2D configuration space is not simpler than that
of FVH, a 2D picture appeals to one's intuition in some
cases.

An important feature of the system under considera-
tion is the periodicity. We scrutinize some properties
concerning this property according to the Newtonian
equation (8). Suppose Rt is a periodic solution of t with
period V'. It is not diScult to show that the only possible
values for '7 are n T ( n 6N). Furthermore, we can
demonstrate that the dynamics must be periodic if the pa-
rameters of the magnetic field are appropriately matched.
In fact, one can explicitly construct four special, indepen-
dent solutions of (8). For instance, written in the Carte-
sian coordinates (x,y), (x,y'), these solutions RI'(t)
(i =1,2,3,4) may be chosen to satisfy the following initial
conditions:

for 0~ t (T and A= A(T), we have

C(nT+t)= A(t) A"C(0) .

It can be shown that

{10)

,,
b +ic

L

—6 +le

RI"=(1,0), RI =(0,0), RI =(0, 1),

RI =(0,0), RI '=(0,0),RI =(bo/2, 0),

RI '=(0, 0), RI =(0,50/2),
respectively. %e can verify that if one of the four solu-
tions is periodic, then all four are periodic with the same
period. Therefore, the periodic condition requires that
one of the four independent solutions be periodic. Using
the properties V(t+T/2)= —V(T/2 t), V(T/4—+t)
= V(T/4 t), one can fig—ure out the periodic conditions
more physically. For instance, if we want the period of
the motion to be T, then it is necessary that y(T/4)=0
for the four special solutions mentioned above. In this
case, y reaches an extremity at T/4. From the continui-
ty of classical movement, one can always realize this re-
quirement if the parameters of the external field are care-
fully adjusted.

An extremely important question is: 8'hat is the rela-
tion between localization and periodic movement? A relat-
ed problem is when the periodicity is a necessary condi-
tion for localization. Let us answer this question by con-
sidering Eq. (3) directly or by the direct method. We
should stress that the periodicity of ct(t) is equivalent to
that of Rt(t). Since TrM=O, the time-advance mapping
or propagator A over a single period (0, T) is a 2D area-
preserving one (det A= 1 ) [14]. This conclusion does not
depend on the form of V(t) We supp.ose that the Hamil-
tonian of the studied system is invariant under the opera-
tion of P( V(t) ~ —V (t), t ~t + T/2) . Defining

A(t):C(t)= A(t)C(0)
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where a, b, and c are real numbers determined by the sys-

tem anda +b +c =I. Because —2~TrA=2a ~2, the

dynamics of the system is strongly stable [14]. In other
words, the future behavior of the two-level model is in-

sensitive to the initial condition. The power of A can be
determined by the Caley-Hamilton theorem (see, e.g.,
[15]}:

A" '=P„2(a) A P„—3(a)I,

Thus, we find

—I 2Voyydt= gl —y~,„,
which leads to

4V0

4V2 ++2

(13)

where P is the Chebyshev polynomial and I is the identity
matrix. Take o =arccos a, then P„=sin[(n +1)o ]/sino.

For simplicity, we still assume that the initial state is
C(0)—(1,0) . Localization means C(nT + 1)=([1
—5(n, t)]e ', 5'(n, t)e '), where 5(n, t), 5'(n, t)«1 for
any n. Using the Cayley-Hamilton theorem, we can
prove that this will be possible only if A =I for a finite
integer m, i.e., for a periodic dynamics. In the following,
three special forms of V(t) will be treated either by tack-
ling the Newtonian equation or the direct method.

Example 1. Suppose V (t)= Vo, R&(0}= 1, and
Rt(0) =0. It is a trivial model for observing localization,
since this model is something like an asymmetric double-
well system. In this case, the generalized parity transfor-
mation P does not leave the Hamiltonian (1) invariant.
This problem is easier to solve directly from Eq. (3) than
from the Newtonian equations (8} and (9). However,
more physical insight will be obtained if (8) and (9) are
tackled. For instance, we want to know the minimum of
c&(t),ct and at what time r from the beginning this
value is reached. Classical mechanics tells us that the
change rate of angular momentum equals the torque pro-
vided by the magnetic field. The torque is 2Voyye, and
the angular momentum reads ym;„er h ym;„e(r)ee. Notic-
ing that y(r)=0, we have from conservation of energy
(4),

(12}

C(nT+t)

A, (t) A"C(0) if 0 & t & T/2

A, (t —T/2) A, ( T/2) A"C(0) if T/2 & t & T,

where

A, 2(t)=
'cosdpt 7 l cx slncot

iP singlet

i P sincot

coscot gaia sincot

with a=2VO/Qho+4Vo, P=(1+4VO/bo) '~, and
co =60/(2P), and

Note that in general it is not the motion of the particle,
R&(t), but y(t) that is periodic (see Fig. 1). The period
reads

2K

Qa', +4V',

y takes the minimum value at the half period.
Example 2. Suppose

V, if 0&t&T/2
—

Vo if T/2&t & T

and V(T+t)= V(t) Pdoe.s leave the Hamiltonian (1) in-

variant in this case.
The solution of (3) in the nth period can be written as

A= Aq(T/2) Ai(T/2)

2 COT 2 2 . 2NTcos +(a —P )sin
2 2

2 coT
iP since T+2aP sin

2

2 coT
i P since T—2aP sin

2

cos +(a —P )sin
2T 2 2 2T

2 2

For a periodic solution, with nT being the period to
come out, A should satisfy A"=I and A, A
A" 'AI. This allows us to derive the following periodic
condition:

sin —Qbo+4VO =+1+4VO/hosin—
4 Pl

(14)

Let n =1. We find T=4mn. /')/b, o+4VO; m is an in-
teger Here m d. etermines the period of y(t), which equals
T/(2m) (see Fig. 2). The y(t) goes to its minimum
y;„=4Vo/(50+4VO) at T/(4m).

An interesting fact is that not every integer n is avail-
able to construct the period nT. 2T, for instance, should

Vo
p(t)= —,'b, o I exp 2i cosset' dt'

0 CO

(15)

I

be removed from the set of possible periods which can be
seen from (14). Obviously, if the strength parameter of
the magnetic field Vo is fixed, then

+i+4Vo/b, osin(m. /n) must not be larger than 1 for nT
to be a period of C(t}.

Example 3. Suppose V( t) = Vosincot and C(0)= (1,0) .
From the physical illustration above, we know that if Vo
and co are properly chosen, one will find localization. In
this case, p will always be small. Thus the first term on
the right-hand side of (9) may be neglected. We solve (9)
to obtain
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FIG. 1. The classical trajectory of a charged particle moving

in a harmonic oscillator potential plus a perpendicular constant
magnetic 6eld in a plane. The particle starts at the edge of the
unit circle and reaches again to the edge at multiple times of the

period of y(t), 2m. /ghp+4V~O.

FIG. 2. The periodic classical trajectory dealing with exam-
ple 2. Here the period is 4n/'1/b, o+4VO, the same as the
period of the external potential.

According to the discussion above, we know that R„(t)
must be periodic. In this case or more generally, if V(t)
is symmetric about T/4, then p(t +T/2) =p(t) and
y(t+T/2)=y(t) and they reach their extremities at
T/4 Suppo. se p possesses a period nT/2, then we have
the periodic condition

5o
p(nT/2) = ,'nm —Jp(2Vp/co)

(16)

p', „=p'(T/4)

~o ~'
z Hp(2Vp/cp),

4M

=0
which is simplified as

Jp(2 Vp/cp) =0, (17)

where Jo is the zeroth-order Bessel function. This result
is identical to that of the other approximation [10]. If we
set Vo and co to the values according to the first root of
(17), the maximum of p reads

where Hp is the Struve function [16]. The minimum of y
1S

2
XmiII PmaX ' (19)

%e thank Professor Mo-Lin Ge for many useful dis-

cussions.

The physical basis of our approximation, i.e., setting
p(t) =0 in (9) is obvious: compared to the magnetic force,
the harmonic force acting on the particle is so small that
its effect on the radial trajectory can be omitted. This
physical picture can be used to evaluate the accuracy of
the approximation. Since the harmonic force always
pulls the particle to the origin, the approximate p(t) is

larger than the exact one. In other words, the particle
moves in a narrower range than we estimated [see (19)].
It should be pointed out that for p(t) there is only one

possible period in this case, i.e., T/2.
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